Graph-DiT/graph_dit/diffusion/noise_schedule.py

159 lines
6.7 KiB
Python
Raw Permalink Normal View History

2024-01-30 01:49:14 +01:00
import torch
import utils
from diffusion import diffusion_utils
class PredefinedNoiseScheduleDiscrete(torch.nn.Module):
def __init__(self, noise_schedule, timesteps):
super(PredefinedNoiseScheduleDiscrete, self).__init__()
self.timesteps = timesteps
if noise_schedule == 'cosine':
betas = diffusion_utils.cosine_beta_schedule_discrete(timesteps)
elif noise_schedule == 'custom':
betas = diffusion_utils.custom_beta_schedule_discrete(timesteps)
else:
raise NotImplementedError(noise_schedule)
self.register_buffer('betas', torch.from_numpy(betas).float())
# 0.9999
self.alphas = 1 - torch.clamp(self.betas, min=0, max=1)
log_alpha = torch.log(self.alphas)
log_alpha_bar = torch.cumsum(log_alpha, dim=0)
self.alphas_bar = torch.exp(log_alpha_bar)
def forward(self, t_normalized=None, t_int=None):
assert int(t_normalized is None) + int(t_int is None) == 1
if t_int is None:
t_int = torch.round(t_normalized * self.timesteps)
return self.betas[t_int.long()]
def get_alpha_bar(self, t_normalized=None, t_int=None):
assert int(t_normalized is None) + int(t_int is None) == 1
if t_int is None:
t_int = torch.round(t_normalized * self.timesteps)
### new
self.alphas_bar = self.alphas_bar.to(t_int.device)
return self.alphas_bar[t_int.long()]
class DiscreteUniformTransition:
def __init__(self, x_classes: int, e_classes: int, y_classes: int):
self.X_classes = x_classes
self.E_classes = e_classes
self.y_classes = y_classes
self.u_x = torch.ones(1, self.X_classes, self.X_classes)
if self.X_classes > 0:
self.u_x = self.u_x / self.X_classes
self.u_e = torch.ones(1, self.E_classes, self.E_classes)
if self.E_classes > 0:
self.u_e = self.u_e / self.E_classes
self.u_y = torch.ones(1, self.y_classes, self.y_classes)
if self.y_classes > 0:
self.u_y = self.u_y / self.y_classes
def get_Qt(self, beta_t, device, X=None, flatten_e=None):
""" Returns one-step transition matrices for X and E, from step t - 1 to step t.
Qt = (1 - beta_t) * I + beta_t / K
beta_t: (bs) noise level between 0 and 1
returns: qx (bs, dx, dx), qe (bs, de, de), qy (bs, dy, dy).
"""
beta_t = beta_t.unsqueeze(1)
beta_t = beta_t.to(device)
self.u_x = self.u_x.to(device)
self.u_e = self.u_e.to(device)
self.u_y = self.u_y.to(device)
q_x = beta_t * self.u_x + (1 - beta_t) * torch.eye(self.X_classes, device=device).unsqueeze(0)
q_e = beta_t * self.u_e + (1 - beta_t) * torch.eye(self.E_classes, device=device).unsqueeze(0)
q_y = beta_t * self.u_y + (1 - beta_t) * torch.eye(self.y_classes, device=device).unsqueeze(0)
return utils.PlaceHolder(X=q_x, E=q_e, y=q_y)
def get_Qt_bar(self, alpha_bar_t, device, X=None, flatten_e=None):
""" Returns t-step transition matrices for X and E, from step 0 to step t.
Qt = prod(1 - beta_t) * I + (1 - prod(1 - beta_t)) / K
alpha_bar_t: (bs) Product of the (1 - beta_t) for each time step from 0 to t.
returns: qx (bs, dx, dx), qe (bs, de, de), qy (bs, dy, dy).
"""
alpha_bar_t = alpha_bar_t.unsqueeze(1)
alpha_bar_t = alpha_bar_t.to(device)
self.u_x = self.u_x.to(device)
self.u_e = self.u_e.to(device)
self.u_y = self.u_y.to(device)
q_x = alpha_bar_t * torch.eye(self.X_classes, device=device).unsqueeze(0) + (1 - alpha_bar_t) * self.u_x
q_e = alpha_bar_t * torch.eye(self.E_classes, device=device).unsqueeze(0) + (1 - alpha_bar_t) * self.u_e
q_y = alpha_bar_t * torch.eye(self.y_classes, device=device).unsqueeze(0) + (1 - alpha_bar_t) * self.u_y
return utils.PlaceHolder(X=q_x, E=q_e, y=q_y)
class MarginalTransition:
def __init__(self, x_marginals, e_marginals, xe_conditions, ex_conditions, y_classes, n_nodes):
self.X_classes = len(x_marginals)
self.E_classes = len(e_marginals)
self.y_classes = y_classes
self.x_marginals = x_marginals # Dx
self.e_marginals = e_marginals # Dx, De
self.xe_conditions = xe_conditions
self.u_x = x_marginals.unsqueeze(0).expand(self.X_classes, -1).unsqueeze(0) # 1, Dx, Dx
self.u_e = e_marginals.unsqueeze(0).expand(self.E_classes, -1).unsqueeze(0) # 1, De, De
self.u_xe = xe_conditions.unsqueeze(0) # 1, Dx, De
self.u_ex = ex_conditions.unsqueeze(0) # 1, De, Dx
self.u = self.get_union_transition(self.u_x, self.u_e, self.u_xe, self.u_ex, n_nodes) # 1, Dx + n*De, Dx + n*De
def get_union_transition(self, u_x, u_e, u_xe, u_ex, n_nodes):
u_e = u_e.repeat(1, n_nodes, n_nodes) # (1, n*de, n*de)
u_xe = u_xe.repeat(1, 1, n_nodes) # (1, dx, n*de)
u_ex = u_ex.repeat(1, n_nodes, 1) # (1, n*de, dx)
u0 = torch.cat([u_x, u_xe], dim=2) # (1, dx, dx + n*de)
u1 = torch.cat([u_ex, u_e], dim=2) # (1, n*de, dx + n*de)
u = torch.cat([u0, u1], dim=1) # (1, dx + n*de, dx + n*de)
return u
def index_edge_margin(self, X, q_e, n_bond=5):
# q_e: (bs, dx, de) --> (bs, n, de)
bs, n, n_atom = X.shape
node_indices = X.argmax(-1) # (bs, n)
ind = node_indices[ :, :, None].expand(bs, n, n_bond)
q_e = torch.gather(q_e, 1, ind)
return q_e
def get_Qt(self, beta_t, device):
""" Returns one-step transition matrices for X and E, from step t - 1 to step t.
Qt = (1 - beta_t) * I + beta_t / K
beta_t: (bs)
returns: q (bs, d0, d0)
"""
bs = beta_t.size(0)
d0 = self.u.size(-1)
self.u = self.u.to(device)
u = self.u.expand(bs, d0, d0)
beta_t = beta_t.to(device)
beta_t = beta_t.view(bs, 1, 1)
q = beta_t * u + (1 - beta_t) * torch.eye(d0, device=device).unsqueeze(0)
return utils.PlaceHolder(X=q, E=None, y=None)
def get_Qt_bar(self, alpha_bar_t, device):
""" Returns t-step transition matrices for X and E, from step 0 to step t.
Qt = prod(1 - beta_t) * I + (1 - prod(1 - beta_t)) * K
alpha_bar_t: (bs, 1) roduct of the (1 - beta_t) for each time step from 0 to t.
returns: q (bs, d0, d0)
"""
bs = alpha_bar_t.size(0)
d0 = self.u.size(-1)
alpha_bar_t = alpha_bar_t.to(device)
alpha_bar_t = alpha_bar_t.view(bs, 1, 1)
self.u = self.u.to(device)
q = alpha_bar_t * torch.eye(d0, device=device).unsqueeze(0) + (1 - alpha_bar_t) * self.u
return utils.PlaceHolder(X=q, E=None, y=None)