write some codes for integrate reward code

This commit is contained in:
mhz 2024-09-08 20:28:14 +02:00
parent 244b159c26
commit 11d9697e06

View File

@ -1,4 +1,5 @@
# These imports are tricky because they use c++, do not move them
import tqdm
import os, shutil
import warnings
@ -144,10 +145,25 @@ def main(cfg: DictConfig):
else:
trainer.test(model, datamodule=datamodule, ckpt_path=cfg.general.test_only)
from accelerate import Accelerator
from accelerate.utils import set_seed, ProjectConfiguration
@hydra.main(
version_base="1.1", config_path="../configs", config_name="config"
)
def test(cfg: DictConfig):
accelerator_config = ProjectConfiguration(
project_dir=os.path.join(cfg.general.log_dir, cfg.general.name),
automatic_checkpoint_naming=True,
total_limit=cfg.general.number_checkpoint_limit,
)
accelerator = Accelerator(
mixed_precision=cfg.mixed_precision,
project_config=accelerator_config,
gradient_accumulation_steps=cfg.train.gradient_accumulation_steps * cfg.n_epochs,
)
set_seed(cfg.train.seed, device_specific=True)
datamodule = dataset.DataModule(cfg)
datamodule.prepare_data()
dataset_infos = dataset.DataInfos(datamodule=datamodule, cfg=cfg, dataset=datamodule.dataset)
@ -177,32 +193,88 @@ def test(cfg: DictConfig):
os.chdir(cfg.general.resume.split("checkpoints")[0])
# os.environ["CUDA_VISIBLE_DEVICES"] = cfg.general.gpu_number
model = Graph_DiT(cfg=cfg, **model_kwargs)
trainer = Trainer(
gradient_clip_val=cfg.train.clip_grad,
# accelerator="cpu",
accelerator="gpu"
if torch.cuda.is_available() and cfg.general.gpus > 0
else "cpu",
devices=[cfg.general.gpu_number]
if torch.cuda.is_available() and cfg.general.gpus > 0
else None,
max_epochs=cfg.train.n_epochs,
enable_checkpointing=False,
check_val_every_n_epoch=cfg.train.check_val_every_n_epoch,
val_check_interval=cfg.train.val_check_interval,
strategy="ddp" if cfg.general.gpus > 1 else "auto",
enable_progress_bar=cfg.general.enable_progress_bar,
callbacks=[],
reload_dataloaders_every_n_epochs=0,
logger=[],
)
graph_dit_model = model
if not cfg.general.test_only:
print("start testing fit method")
trainer.fit(model, datamodule=datamodule, ckpt_path=cfg.general.resume)
if cfg.general.save_model:
trainer.save_checkpoint(f"checkpoints/{cfg.general.name}/last.ckpt")
trainer.test(model, datamodule=datamodule)
inference_dtype = torch.float32
graph_dit_model.to(accelerator.device, dtype=inference_dtype)
# optional: freeze the model
# graph_dit_model.model.requires_grad_(True)
import torch.nn.functional as F
optimizer = graph_dit_model.configure_optimizers()
# start training
for epoch in range(cfg.train.n_epochs):
graph_dit_model.train() # 设置模型为训练模式
for batch_data in datamodule.train_dataloader: # 从数据加载器中获取一个批次的数据
data_x = F.one_hot(batch_data.x, num_classes=12).float()[:, graph_dit_model.active_index] # 节点特征
data_edge_attr = F.one_hot(batch_data.edge_attr, num_classes=2).float() # 边特征
# 转换为 dense 格式并传递给 Graph_DiT
dense_data, node_mask = utils.to_dense(data_x, batch_data.edge_index, data_edge_attr, batch_data.batch, graph_dit_model.max_n_nodes)
dense_data = dense_data.mask(node_mask)
X, E = dense_data.X, dense_data.E # 节点特征和边特征
y = batch_data.y # 标签
# 前向传播和损失计算
pred = graph_dit_model(dense_data) # 传入 Graph_DiT 模型
loss = graph_dit_model.train_loss(pred, X, E, y, node_mask)
# 优化步骤
optimizer.zero_grad()
loss.backward()
optimizer.step()
# start sampling
samples = []
for i in tqdm(
range(cfg.general.n_samples), desc="Sampling", disable=not cfg.general.enable_progress_bar
):
batch_size = cfg.train.batch_size
num_steps = cfg.model.diffusion_steps
y = torch.ones(batch_size, num_steps, 1, 1, device=accelerator.device, dtype=inference_dtype)
# sample from the model
samples_batch = graph_dit_model.sample_batch(
batch_id=i,
batch_size=batch_size,
y=y,
keep_chain=1,
number_chain_steps=num_steps,
save_final=batch_size
)
samples.append(samples_batch)
# trainer = Trainer(
# gradient_clip_val=cfg.train.clip_grad,
# # accelerator="cpu",
# accelerator="gpu"
# if torch.cuda.is_available() and cfg.general.gpus > 0
# else "cpu",
# devices=[cfg.general.gpu_number]
# if torch.cuda.is_available() and cfg.general.gpus > 0
# else None,
# max_epochs=cfg.train.n_epochs,
# enable_checkpointing=False,
# check_val_every_n_epoch=cfg.train.check_val_every_n_epoch,
# val_check_interval=cfg.train.val_check_interval,
# strategy="ddp" if cfg.general.gpus > 1 else "auto",
# enable_progress_bar=cfg.general.enable_progress_bar,
# callbacks=[],
# reload_dataloaders_every_n_epochs=0,
# logger=[],
# )
# if not cfg.general.test_only:
# print("start testing fit method")
# trainer.fit(model, datamodule=datamodule, ckpt_path=cfg.general.resume)
# if cfg.general.save_model:
# trainer.save_checkpoint(f"checkpoints/{cfg.general.name}/last.ckpt")
# trainer.test(model, datamodule=datamodule)
if __name__ == "__main__":
test()