write some codes for integrate reward code
This commit is contained in:
parent
244b159c26
commit
11d9697e06
@ -1,4 +1,5 @@
|
||||
# These imports are tricky because they use c++, do not move them
|
||||
import tqdm
|
||||
import os, shutil
|
||||
import warnings
|
||||
|
||||
@ -144,10 +145,25 @@ def main(cfg: DictConfig):
|
||||
else:
|
||||
trainer.test(model, datamodule=datamodule, ckpt_path=cfg.general.test_only)
|
||||
|
||||
from accelerate import Accelerator
|
||||
from accelerate.utils import set_seed, ProjectConfiguration
|
||||
|
||||
@hydra.main(
|
||||
version_base="1.1", config_path="../configs", config_name="config"
|
||||
)
|
||||
def test(cfg: DictConfig):
|
||||
accelerator_config = ProjectConfiguration(
|
||||
project_dir=os.path.join(cfg.general.log_dir, cfg.general.name),
|
||||
automatic_checkpoint_naming=True,
|
||||
total_limit=cfg.general.number_checkpoint_limit,
|
||||
)
|
||||
accelerator = Accelerator(
|
||||
mixed_precision=cfg.mixed_precision,
|
||||
project_config=accelerator_config,
|
||||
gradient_accumulation_steps=cfg.train.gradient_accumulation_steps * cfg.n_epochs,
|
||||
)
|
||||
set_seed(cfg.train.seed, device_specific=True)
|
||||
|
||||
datamodule = dataset.DataModule(cfg)
|
||||
datamodule.prepare_data()
|
||||
dataset_infos = dataset.DataInfos(datamodule=datamodule, cfg=cfg, dataset=datamodule.dataset)
|
||||
@ -177,32 +193,88 @@ def test(cfg: DictConfig):
|
||||
os.chdir(cfg.general.resume.split("checkpoints")[0])
|
||||
# os.environ["CUDA_VISIBLE_DEVICES"] = cfg.general.gpu_number
|
||||
model = Graph_DiT(cfg=cfg, **model_kwargs)
|
||||
trainer = Trainer(
|
||||
gradient_clip_val=cfg.train.clip_grad,
|
||||
# accelerator="cpu",
|
||||
accelerator="gpu"
|
||||
if torch.cuda.is_available() and cfg.general.gpus > 0
|
||||
else "cpu",
|
||||
devices=[cfg.general.gpu_number]
|
||||
if torch.cuda.is_available() and cfg.general.gpus > 0
|
||||
else None,
|
||||
max_epochs=cfg.train.n_epochs,
|
||||
enable_checkpointing=False,
|
||||
check_val_every_n_epoch=cfg.train.check_val_every_n_epoch,
|
||||
val_check_interval=cfg.train.val_check_interval,
|
||||
strategy="ddp" if cfg.general.gpus > 1 else "auto",
|
||||
enable_progress_bar=cfg.general.enable_progress_bar,
|
||||
callbacks=[],
|
||||
reload_dataloaders_every_n_epochs=0,
|
||||
logger=[],
|
||||
)
|
||||
graph_dit_model = model
|
||||
|
||||
if not cfg.general.test_only:
|
||||
print("start testing fit method")
|
||||
trainer.fit(model, datamodule=datamodule, ckpt_path=cfg.general.resume)
|
||||
if cfg.general.save_model:
|
||||
trainer.save_checkpoint(f"checkpoints/{cfg.general.name}/last.ckpt")
|
||||
trainer.test(model, datamodule=datamodule)
|
||||
inference_dtype = torch.float32
|
||||
graph_dit_model.to(accelerator.device, dtype=inference_dtype)
|
||||
|
||||
|
||||
# optional: freeze the model
|
||||
# graph_dit_model.model.requires_grad_(True)
|
||||
import torch.nn.functional as F
|
||||
optimizer = graph_dit_model.configure_optimizers()
|
||||
# start training
|
||||
for epoch in range(cfg.train.n_epochs):
|
||||
graph_dit_model.train() # 设置模型为训练模式
|
||||
for batch_data in datamodule.train_dataloader: # 从数据加载器中获取一个批次的数据
|
||||
data_x = F.one_hot(batch_data.x, num_classes=12).float()[:, graph_dit_model.active_index] # 节点特征
|
||||
data_edge_attr = F.one_hot(batch_data.edge_attr, num_classes=2).float() # 边特征
|
||||
|
||||
# 转换为 dense 格式并传递给 Graph_DiT
|
||||
dense_data, node_mask = utils.to_dense(data_x, batch_data.edge_index, data_edge_attr, batch_data.batch, graph_dit_model.max_n_nodes)
|
||||
dense_data = dense_data.mask(node_mask)
|
||||
|
||||
X, E = dense_data.X, dense_data.E # 节点特征和边特征
|
||||
y = batch_data.y # 标签
|
||||
|
||||
# 前向传播和损失计算
|
||||
pred = graph_dit_model(dense_data) # 传入 Graph_DiT 模型
|
||||
loss = graph_dit_model.train_loss(pred, X, E, y, node_mask)
|
||||
|
||||
# 优化步骤
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
# start sampling
|
||||
|
||||
samples = []
|
||||
|
||||
for i in tqdm(
|
||||
range(cfg.general.n_samples), desc="Sampling", disable=not cfg.general.enable_progress_bar
|
||||
):
|
||||
batch_size = cfg.train.batch_size
|
||||
num_steps = cfg.model.diffusion_steps
|
||||
y = torch.ones(batch_size, num_steps, 1, 1, device=accelerator.device, dtype=inference_dtype)
|
||||
|
||||
# sample from the model
|
||||
samples_batch = graph_dit_model.sample_batch(
|
||||
batch_id=i,
|
||||
batch_size=batch_size,
|
||||
y=y,
|
||||
keep_chain=1,
|
||||
number_chain_steps=num_steps,
|
||||
save_final=batch_size
|
||||
)
|
||||
samples.append(samples_batch)
|
||||
|
||||
|
||||
# trainer = Trainer(
|
||||
# gradient_clip_val=cfg.train.clip_grad,
|
||||
# # accelerator="cpu",
|
||||
# accelerator="gpu"
|
||||
# if torch.cuda.is_available() and cfg.general.gpus > 0
|
||||
# else "cpu",
|
||||
# devices=[cfg.general.gpu_number]
|
||||
# if torch.cuda.is_available() and cfg.general.gpus > 0
|
||||
# else None,
|
||||
# max_epochs=cfg.train.n_epochs,
|
||||
# enable_checkpointing=False,
|
||||
# check_val_every_n_epoch=cfg.train.check_val_every_n_epoch,
|
||||
# val_check_interval=cfg.train.val_check_interval,
|
||||
# strategy="ddp" if cfg.general.gpus > 1 else "auto",
|
||||
# enable_progress_bar=cfg.general.enable_progress_bar,
|
||||
# callbacks=[],
|
||||
# reload_dataloaders_every_n_epochs=0,
|
||||
# logger=[],
|
||||
# )
|
||||
|
||||
# if not cfg.general.test_only:
|
||||
# print("start testing fit method")
|
||||
# trainer.fit(model, datamodule=datamodule, ckpt_path=cfg.general.resume)
|
||||
# if cfg.general.save_model:
|
||||
# trainer.save_checkpoint(f"checkpoints/{cfg.general.name}/last.ckpt")
|
||||
# trainer.test(model, datamodule=datamodule)
|
||||
|
||||
if __name__ == "__main__":
|
||||
test()
|
||||
|
Loading…
Reference in New Issue
Block a user