add best score part
This commit is contained in:
parent
fb5e04988d
commit
5e66aa74e7
@ -3,7 +3,9 @@ import torch.nn.functional as F
|
|||||||
import pytorch_lightning as pl
|
import pytorch_lightning as pl
|
||||||
import time
|
import time
|
||||||
import os
|
import os
|
||||||
|
from naswot.score_networks import get_nasbench201_nodes_score
|
||||||
|
from naswot import nasspace
|
||||||
|
from naswot import datasets
|
||||||
from models.transformer import Denoiser
|
from models.transformer import Denoiser
|
||||||
from diffusion.noise_schedule import PredefinedNoiseScheduleDiscrete, MarginalTransition
|
from diffusion.noise_schedule import PredefinedNoiseScheduleDiscrete, MarginalTransition
|
||||||
|
|
||||||
@ -26,6 +28,43 @@ class Graph_DiT(pl.LightningModule):
|
|||||||
nodes_dist = dataset_infos.nodes_dist
|
nodes_dist = dataset_infos.nodes_dist
|
||||||
active_index = dataset_infos.active_index
|
active_index = dataset_infos.active_index
|
||||||
|
|
||||||
|
class Args:
|
||||||
|
pass
|
||||||
|
|
||||||
|
self.args = Args()
|
||||||
|
self.args.trainval = True
|
||||||
|
self.args.augtype = 'none'
|
||||||
|
self.args.repeat = 1
|
||||||
|
self.args.score = 'hook_logdet'
|
||||||
|
self.args.sigma = 0.05
|
||||||
|
self.args.nasspace = 'nasbench201'
|
||||||
|
self.args.batch_size = 128
|
||||||
|
self.args.GPU = '0'
|
||||||
|
self.args.dataset = 'cifar10-valid'
|
||||||
|
self.args.api_loc = '/home/stud/hanzhang/nasbenchDiT/graph_dit/NAS-Bench-201-v1_1-096897.pth'
|
||||||
|
self.args.data_loc = '../cifardata/'
|
||||||
|
self.args.seed = 777
|
||||||
|
self.args.init = ''
|
||||||
|
self.args.save_loc = 'results'
|
||||||
|
self.args.save_string = 'naswot'
|
||||||
|
self.args.dropout = False
|
||||||
|
self.args.maxofn = 1
|
||||||
|
self.args.n_samples = 100
|
||||||
|
self.args.n_runs = 500
|
||||||
|
self.args.stem_out_channels = 16
|
||||||
|
self.args.num_stacks = 3
|
||||||
|
self.args.num_modules_per_stack = 3
|
||||||
|
self.args.num_labels = 1
|
||||||
|
|
||||||
|
if 'valid' in self.args.dataset:
|
||||||
|
self.args.dataset = self.args.dataset.replace('-valid', '')
|
||||||
|
print('graph_dit starts to get searchspace of nasbench201')
|
||||||
|
self.searchspace = nasspace.get_search_space(self.args)
|
||||||
|
print('searchspace of nasbench201 is obtained')
|
||||||
|
print('graphdit starts to get train_loader')
|
||||||
|
self.train_loader = datasets.get_data(self.args.dataset, self.args.data_loc, self.args.trainval, self.args.batch_size, self.args.augtype, self.args.repeat, self.args)
|
||||||
|
print('train_loader is obtained')
|
||||||
|
|
||||||
self.cfg = cfg
|
self.cfg = cfg
|
||||||
self.name = cfg.general.name
|
self.name = cfg.general.name
|
||||||
self.T = cfg.model.diffusion_steps
|
self.T = cfg.model.diffusion_steps
|
||||||
@ -629,15 +668,15 @@ class Graph_DiT(pl.LightningModule):
|
|||||||
prob_E = unnormalized_prob_E / torch.sum(unnormalized_prob_E, dim=-1, keepdim=True) # bs, n, d_t-1
|
prob_E = unnormalized_prob_E / torch.sum(unnormalized_prob_E, dim=-1, keepdim=True) # bs, n, d_t-1
|
||||||
prob_E = prob_E.reshape(bs, n, n, pred_E.shape[-1])
|
prob_E = prob_E.reshape(bs, n, n, pred_E.shape[-1])
|
||||||
|
|
||||||
return prob_X, prob_E
|
return prob_X, prob_E, pred
|
||||||
# diffusion nag: P_t(G_{t-1} |G_t, C) = P_t(G_{t-1} |G_t) + P_t(C | G_{t-1}, G_t)
|
# diffusion nag: P_t(G_{t-1} |G_t, C) = P_t(G_{t-1} |G_t) + P_t(C | G_{t-1}, G_t)
|
||||||
# with condition = P_t(G_{t-1} |G_t, C)
|
# with condition = P_t(G_{t-1} |G_t, C)
|
||||||
# with condition = P_t(A_{t-1} |A_t, y)
|
# with condition = P_t(A_{t-1} |A_t, y)
|
||||||
prob_X, prob_E = get_prob(noisy_data)
|
prob_X, prob_E, pred = get_prob(noisy_data)
|
||||||
|
|
||||||
### Guidance
|
### Guidance
|
||||||
if self.guidance_target is not None and self.guide_scale is not None and self.guide_scale != 1:
|
if self.guidance_target is not None and self.guide_scale is not None and self.guide_scale != 1:
|
||||||
uncon_prob_X, uncon_prob_E = get_prob(noisy_data, unconditioned=True)
|
uncon_prob_X, uncon_prob_E, pred = get_prob(noisy_data, unconditioned=True)
|
||||||
prob_X = uncon_prob_X * (prob_X / uncon_prob_X.clamp_min(1e-10)) ** self.guide_scale
|
prob_X = uncon_prob_X * (prob_X / uncon_prob_X.clamp_min(1e-10)) ** self.guide_scale
|
||||||
prob_E = uncon_prob_E * (prob_E / uncon_prob_E.clamp_min(1e-10)) ** self.guide_scale
|
prob_E = uncon_prob_E * (prob_E / uncon_prob_E.clamp_min(1e-10)) ** self.guide_scale
|
||||||
prob_X = prob_X / prob_X.sum(dim=-1, keepdim=True).clamp_min(1e-10)
|
prob_X = prob_X / prob_X.sum(dim=-1, keepdim=True).clamp_min(1e-10)
|
||||||
@ -647,32 +686,120 @@ class Graph_DiT(pl.LightningModule):
|
|||||||
assert ((prob_X.sum(dim=-1) - 1).abs() < 1e-4).all()
|
assert ((prob_X.sum(dim=-1) - 1).abs() < 1e-4).all()
|
||||||
assert ((prob_E.sum(dim=-1) - 1).abs() < 1e-4).all()
|
assert ((prob_E.sum(dim=-1) - 1).abs() < 1e-4).all()
|
||||||
|
|
||||||
sampled_s = diffusion_utils.sample_discrete_features(prob_X, prob_E, node_mask=node_mask, step=s[0,0].item())
|
# sampled_s = diffusion_utils.sample_discrete_features(prob_X, prob_E, node_mask=node_mask, step=s[0,0].item())
|
||||||
|
|
||||||
# sample multiple times and get the best score arch...
|
# sample multiple times and get the best score arch...
|
||||||
|
|
||||||
sample_num = 100
|
num_to_op = ['input', 'nor_conv_1x1', 'nor_conv_3x3', 'avg_pool_3x3', 'skip_connect', 'none', 'output']
|
||||||
|
op_type = {
|
||||||
|
'input': 0,
|
||||||
|
'nor_conv_1x1': 1,
|
||||||
|
'nor_conv_3x3': 2,
|
||||||
|
'avg_pool_3x3': 3,
|
||||||
|
'skip_connect': 4,
|
||||||
|
'none': 5,
|
||||||
|
'output': 6,
|
||||||
|
}
|
||||||
|
def check_valid_graph(nodes, edges):
|
||||||
|
nodes = [num_to_op[i] for i in nodes]
|
||||||
|
if len(nodes) != edges.shape[0] or len(nodes) != edges.shape[1]:
|
||||||
|
return False
|
||||||
|
if nodes[0] != 'input' or nodes[-1] != 'output':
|
||||||
|
return False
|
||||||
|
for i in range(0, len(nodes)):
|
||||||
|
if edges[i][i] == 1:
|
||||||
|
return False
|
||||||
|
for i in range(1, len(nodes) - 1):
|
||||||
|
if nodes[i] not in op_type or nodes[i] == 'input' or nodes[i] == 'output':
|
||||||
|
return False
|
||||||
|
for i in range(0, len(nodes)):
|
||||||
|
for j in range(i, len(nodes)):
|
||||||
|
if edges[i, j] == 1 and nodes[j] == 'input':
|
||||||
|
return False
|
||||||
|
for i in range(0, len(nodes)):
|
||||||
|
for j in range(i, len(nodes)):
|
||||||
|
if edges[i, j] == 1 and nodes[i] == 'output':
|
||||||
|
return False
|
||||||
|
flag = 0
|
||||||
|
for i in range(0,len(nodes)):
|
||||||
|
if edges[i,-1] == 1:
|
||||||
|
flag = 1
|
||||||
|
break
|
||||||
|
if flag == 0: return False
|
||||||
|
return True
|
||||||
|
|
||||||
|
class Args:
|
||||||
|
pass
|
||||||
|
|
||||||
|
def get_score(sampled_s):
|
||||||
|
x_list = sampled_s.X.unbind(dim=0)
|
||||||
|
e_list = sampled_s.E.unbind(dim=0)
|
||||||
|
valid_rlt = [check_valid_graph(x_list[i].cpu().numpy(), e_list[i].cpu().numpy()) for i in range(len(x_list))]
|
||||||
|
from graph_dit.naswot.naswot.score_networks import get_nasbench201_nodes_score
|
||||||
|
score = []
|
||||||
|
|
||||||
|
for i in range(len(x_list)):
|
||||||
|
if valid_rlt[i]:
|
||||||
|
nodes = [num_to_op[j] for j in x_list[i].cpu().numpy()]
|
||||||
|
# edges = e_list[i].cpu().numpy()
|
||||||
|
score.append(get_nasbench201_nodes_score(nodes,train_loader=self.train_loader,searchspace=self.searchspace,device=torch.device("cuda:0" if torch.cuda.is_available() else "cpu") , args=self.args))
|
||||||
|
else:
|
||||||
|
score.append(-1)
|
||||||
|
return torch.tensor(score, dtype=torch.float32, requires_grad=True).to(x_list[0].device)
|
||||||
|
|
||||||
|
sample_num = 10
|
||||||
best_arch = None
|
best_arch = None
|
||||||
best_score = -1e8
|
best_score_int = -1e8
|
||||||
|
score = torch.ones(100, dtype=torch.float32, requires_grad=True) * -1e8
|
||||||
|
|
||||||
for i in range(sample_num):
|
for i in range(sample_num):
|
||||||
sampled_s = diffusion_utils.sample_discrete_features(prob_X, prob_E, node_mask=node_mask, step=s[0,0].item())
|
sampled_s = diffusion_utils.sample_discrete_features(prob_X, prob_E, node_mask=node_mask, step=s[0,0].item())
|
||||||
score = get_score(sampled_s)
|
score = get_score(sampled_s)
|
||||||
if score > best_score:
|
print(f'score: {score}')
|
||||||
|
print(f'score.shape: {score.shape}')
|
||||||
|
print(f'torch.sum(score): {torch.sum(score)}')
|
||||||
|
sum_score = torch.sum(score)
|
||||||
|
print(f'sum_score: {sum_score}')
|
||||||
|
if sum_score > best_score_int:
|
||||||
|
best_score_int = sum_score
|
||||||
best_score = score
|
best_score = score
|
||||||
best_arch = sampled_s
|
best_arch = sampled_s
|
||||||
|
|
||||||
X_s = F.one_hot(sampled_s.X, num_classes=self.Xdim_output).float()
|
# print(f'prob_X: {prob_X.shape}, prob_E: {prob_E.shape}')
|
||||||
E_s = F.one_hot(sampled_s.E, num_classes=self.Edim_output).float()
|
|
||||||
|
# best_arch = diffusion_utils.sample_discrete_features(prob_X, prob_E, node_mask=node_mask, step=s[0,0].item())
|
||||||
|
|
||||||
|
# X_s = F.one_hot(sampled_s.X, num_classes=self.Xdim_output).float()
|
||||||
|
# E_s = F.one_hot(sampled_s.E, num_classes=self.Edim_output).float()
|
||||||
|
print(f'best_arch.X: {best_arch.X.shape}, best_arch.E: {best_arch.E.shape}') # 100 8 8, bs n n, 100 8 8 2, bs n n 2
|
||||||
|
|
||||||
|
print(f'best_arch.X: {best_arch.X}, best_arch.E: {best_arch.E}')
|
||||||
|
X_s = F.one_hot(best_arch.X, num_classes=self.Xdim_output).float()
|
||||||
|
E_s = F.one_hot(best_arch.E, num_classes=self.Edim_output).float()
|
||||||
|
print(f'X_s: {X_s}, E_s: {E_s}')
|
||||||
|
|
||||||
# NASWOT score
|
# NASWOT score
|
||||||
target_score = torch.tensor([3000.0])
|
target_score = torch.ones(100, requires_grad=True) * 2000.0
|
||||||
|
target_score = target_score.to(X_s.device)
|
||||||
|
|
||||||
# compute loss mse(cur_score - target_score)
|
# compute loss mse(cur_score - target_score)
|
||||||
|
mse_loss = torch.nn.MSELoss()
|
||||||
|
print(f'best_score: {best_score.shape}, target_score: {target_score.shape}')
|
||||||
|
print(f'best_score.requires_grad: {best_score.requires_grad}, target_score.requires_grad: {target_score.requires_grad}')
|
||||||
|
loss = mse_loss(best_score, target_score)
|
||||||
|
loss.backward(retain_graph=True)
|
||||||
|
|
||||||
# loss backward = gradient
|
# loss backward = gradient
|
||||||
|
|
||||||
# get prob.X, prob_E gradient
|
# get prob.X, prob_E gradient
|
||||||
|
x_grad = pred.X.grad
|
||||||
|
e_grad = pred.E.grad
|
||||||
|
|
||||||
|
beta_ratio = 0.5
|
||||||
|
# x_current = pred.X - beta_ratio * x_grad
|
||||||
|
# e_current = pred.E - beta_ratio * e_grad
|
||||||
|
E_s = pred.X - beta_ratio * x_grad
|
||||||
|
X_s = pred.E - beta_ratio * e_grad
|
||||||
|
|
||||||
# update prob.X prob_E with using gradient
|
# update prob.X prob_E with using gradient
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user