add best score part
This commit is contained in:
		| @@ -3,7 +3,9 @@ import torch.nn.functional as F | ||||
| import pytorch_lightning as pl | ||||
| import time | ||||
| import os | ||||
|  | ||||
| from naswot.score_networks import get_nasbench201_nodes_score | ||||
| from naswot import nasspace | ||||
| from naswot import datasets | ||||
| from models.transformer import Denoiser | ||||
| from diffusion.noise_schedule import PredefinedNoiseScheduleDiscrete, MarginalTransition | ||||
|  | ||||
| @@ -26,6 +28,43 @@ class Graph_DiT(pl.LightningModule): | ||||
|         nodes_dist = dataset_infos.nodes_dist | ||||
|         active_index = dataset_infos.active_index | ||||
|  | ||||
|         class Args: | ||||
|             pass | ||||
|  | ||||
|         self.args = Args() | ||||
|         self.args.trainval = True | ||||
|         self.args.augtype = 'none' | ||||
|         self.args.repeat = 1 | ||||
|         self.args.score = 'hook_logdet' | ||||
|         self.args.sigma = 0.05 | ||||
|         self.args.nasspace = 'nasbench201' | ||||
|         self.args.batch_size = 128 | ||||
|         self.args.GPU = '0' | ||||
|         self.args.dataset = 'cifar10-valid' | ||||
|         self.args.api_loc = '/home/stud/hanzhang/nasbenchDiT/graph_dit/NAS-Bench-201-v1_1-096897.pth' | ||||
|         self.args.data_loc = '../cifardata/' | ||||
|         self.args.seed = 777 | ||||
|         self.args.init = '' | ||||
|         self.args.save_loc = 'results' | ||||
|         self.args.save_string = 'naswot' | ||||
|         self.args.dropout = False | ||||
|         self.args.maxofn = 1 | ||||
|         self.args.n_samples = 100 | ||||
|         self.args.n_runs = 500 | ||||
|         self.args.stem_out_channels = 16 | ||||
|         self.args.num_stacks = 3 | ||||
|         self.args.num_modules_per_stack = 3 | ||||
|         self.args.num_labels = 1 | ||||
|  | ||||
|         if 'valid' in self.args.dataset: | ||||
|             self.args.dataset = self.args.dataset.replace('-valid', '') | ||||
|         print('graph_dit starts to get searchspace of nasbench201') | ||||
|         self.searchspace = nasspace.get_search_space(self.args) | ||||
|         print('searchspace of nasbench201 is obtained') | ||||
|         print('graphdit starts to get train_loader') | ||||
|         self.train_loader = datasets.get_data(self.args.dataset, self.args.data_loc, self.args.trainval, self.args.batch_size, self.args.augtype, self.args.repeat, self.args) | ||||
|         print('train_loader is obtained') | ||||
|  | ||||
|         self.cfg = cfg | ||||
|         self.name = cfg.general.name | ||||
|         self.T = cfg.model.diffusion_steps | ||||
| @@ -629,15 +668,15 @@ class Graph_DiT(pl.LightningModule): | ||||
|             prob_E = unnormalized_prob_E / torch.sum(unnormalized_prob_E, dim=-1, keepdim=True)  # bs, n, d_t-1 | ||||
|             prob_E = prob_E.reshape(bs, n, n, pred_E.shape[-1]) | ||||
|  | ||||
|             return prob_X, prob_E | ||||
|             return prob_X, prob_E, pred | ||||
|         # diffusion nag: P_t(G_{t-1} |G_t, C) = P_t(G_{t-1} |G_t) + P_t(C | G_{t-1}, G_t) | ||||
|         # with condition = P_t(G_{t-1} |G_t, C) | ||||
|         # with condition = P_t(A_{t-1} |A_t, y) | ||||
|         prob_X, prob_E = get_prob(noisy_data) | ||||
|         prob_X, prob_E, pred = get_prob(noisy_data) | ||||
|  | ||||
|         ### Guidance | ||||
|         if self.guidance_target is not None and self.guide_scale is not None and self.guide_scale != 1: | ||||
|             uncon_prob_X, uncon_prob_E = get_prob(noisy_data, unconditioned=True) | ||||
|             uncon_prob_X, uncon_prob_E, pred = get_prob(noisy_data, unconditioned=True) | ||||
|             prob_X = uncon_prob_X * (prob_X / uncon_prob_X.clamp_min(1e-10)) ** self.guide_scale   | ||||
|             prob_E = uncon_prob_E * (prob_E / uncon_prob_E.clamp_min(1e-10)) ** self.guide_scale   | ||||
|             prob_X = prob_X / prob_X.sum(dim=-1, keepdim=True).clamp_min(1e-10) | ||||
| @@ -647,32 +686,120 @@ class Graph_DiT(pl.LightningModule): | ||||
|         assert ((prob_X.sum(dim=-1) - 1).abs() < 1e-4).all() | ||||
|         assert ((prob_E.sum(dim=-1) - 1).abs() < 1e-4).all() | ||||
|  | ||||
|         sampled_s = diffusion_utils.sample_discrete_features(prob_X, prob_E, node_mask=node_mask, step=s[0,0].item()) | ||||
|         # sampled_s = diffusion_utils.sample_discrete_features(prob_X, prob_E, node_mask=node_mask, step=s[0,0].item()) | ||||
|  | ||||
|         # sample multiple times and get the best score arch... | ||||
|  | ||||
|         sample_num = 100 | ||||
|         num_to_op = ['input', 'nor_conv_1x1', 'nor_conv_3x3', 'avg_pool_3x3', 'skip_connect', 'none', 'output'] | ||||
|         op_type = { | ||||
|             'input': 0, | ||||
|             'nor_conv_1x1': 1, | ||||
|             'nor_conv_3x3': 2, | ||||
|             'avg_pool_3x3': 3, | ||||
|             'skip_connect': 4, | ||||
|             'none': 5, | ||||
|             'output': 6, | ||||
|         } | ||||
|         def check_valid_graph(nodes, edges): | ||||
|             nodes = [num_to_op[i] for i in nodes] | ||||
|             if len(nodes) != edges.shape[0] or len(nodes) != edges.shape[1]: | ||||
|                 return False | ||||
|             if nodes[0] != 'input' or nodes[-1] != 'output': | ||||
|                 return False | ||||
|             for i in range(0, len(nodes)): | ||||
|                 if edges[i][i] == 1: | ||||
|                     return False | ||||
|             for i in range(1, len(nodes) - 1): | ||||
|                 if nodes[i] not in op_type or nodes[i] == 'input' or nodes[i] == 'output': | ||||
|                     return False | ||||
|             for i in range(0, len(nodes)): | ||||
|                 for j in range(i, len(nodes)): | ||||
|                     if edges[i, j] == 1 and nodes[j] == 'input': | ||||
|                         return False | ||||
|             for i in range(0, len(nodes)): | ||||
|                 for j in range(i, len(nodes)): | ||||
|                     if edges[i, j] == 1 and nodes[i] == 'output': | ||||
|                         return False | ||||
|             flag = 0 | ||||
|             for i in range(0,len(nodes)): | ||||
|                 if edges[i,-1] == 1: | ||||
|                     flag = 1 | ||||
|                     break | ||||
|             if flag == 0: return False | ||||
|             return True | ||||
|  | ||||
|         class Args: | ||||
|             pass | ||||
|  | ||||
|         def get_score(sampled_s): | ||||
|             x_list = sampled_s.X.unbind(dim=0) | ||||
|             e_list = sampled_s.E.unbind(dim=0) | ||||
|             valid_rlt = [check_valid_graph(x_list[i].cpu().numpy(), e_list[i].cpu().numpy()) for i in range(len(x_list))] | ||||
|             from graph_dit.naswot.naswot.score_networks import get_nasbench201_nodes_score | ||||
|             score = [] | ||||
|              | ||||
|             for i in range(len(x_list)): | ||||
|                 if valid_rlt[i]: | ||||
|                     nodes = [num_to_op[j] for j in x_list[i].cpu().numpy()] | ||||
|                     # edges = e_list[i].cpu().numpy() | ||||
|                     score.append(get_nasbench201_nodes_score(nodes,train_loader=self.train_loader,searchspace=self.searchspace,device=torch.device("cuda:0" if torch.cuda.is_available() else "cpu") , args=self.args)) | ||||
|                 else: | ||||
|                     score.append(-1) | ||||
|             return torch.tensor(score, dtype=torch.float32, requires_grad=True).to(x_list[0].device) | ||||
|  | ||||
|         sample_num = 10 | ||||
|         best_arch = None | ||||
|         best_score = -1e8 | ||||
|         best_score_int = -1e8 | ||||
|         score = torch.ones(100, dtype=torch.float32, requires_grad=True) * -1e8 | ||||
|  | ||||
|         for i in range(sample_num): | ||||
|             sampled_s = diffusion_utils.sample_discrete_features(prob_X, prob_E, node_mask=node_mask, step=s[0,0].item()) | ||||
|             score = get_score(sampled_s) | ||||
|             if score > best_score: | ||||
|             print(f'score: {score}') | ||||
|             print(f'score.shape: {score.shape}') | ||||
|             print(f'torch.sum(score): {torch.sum(score)}') | ||||
|             sum_score = torch.sum(score) | ||||
|             print(f'sum_score: {sum_score}') | ||||
|             if sum_score > best_score_int: | ||||
|                 best_score_int = sum_score | ||||
|                 best_score = score | ||||
|                 best_arch = sampled_s | ||||
|  | ||||
|         X_s = F.one_hot(sampled_s.X, num_classes=self.Xdim_output).float() | ||||
|         E_s = F.one_hot(sampled_s.E, num_classes=self.Edim_output).float() | ||||
|         # print(f'prob_X: {prob_X.shape}, prob_E: {prob_E.shape}') | ||||
|          | ||||
|         # best_arch = diffusion_utils.sample_discrete_features(prob_X, prob_E, node_mask=node_mask, step=s[0,0].item()) | ||||
|  | ||||
|         # X_s = F.one_hot(sampled_s.X, num_classes=self.Xdim_output).float() | ||||
|         # E_s = F.one_hot(sampled_s.E, num_classes=self.Edim_output).float() | ||||
|         print(f'best_arch.X: {best_arch.X.shape}, best_arch.E: {best_arch.E.shape}') # 100 8 8, bs n n, 100 8 8 2, bs n n 2 | ||||
|  | ||||
|         print(f'best_arch.X: {best_arch.X}, best_arch.E: {best_arch.E}') | ||||
|         X_s = F.one_hot(best_arch.X, num_classes=self.Xdim_output).float() | ||||
|         E_s = F.one_hot(best_arch.E, num_classes=self.Edim_output).float() | ||||
|         print(f'X_s: {X_s}, E_s: {E_s}') | ||||
|  | ||||
|         # NASWOT score | ||||
|         target_score = torch.tensor([3000.0]) | ||||
|         target_score = torch.ones(100, requires_grad=True) * 2000.0 | ||||
|         target_score = target_score.to(X_s.device) | ||||
|  | ||||
|         # compute loss mse(cur_score - target_score) | ||||
|         mse_loss = torch.nn.MSELoss() | ||||
|         print(f'best_score: {best_score.shape}, target_score: {target_score.shape}') | ||||
|         print(f'best_score.requires_grad: {best_score.requires_grad}, target_score.requires_grad: {target_score.requires_grad}') | ||||
|         loss = mse_loss(best_score, target_score) | ||||
|         loss.backward(retain_graph=True) | ||||
|  | ||||
|         # loss backward = gradient | ||||
|  | ||||
|         # get prob.X, prob_E gradient | ||||
|         x_grad = pred.X.grad | ||||
|         e_grad = pred.E.grad | ||||
|  | ||||
|         beta_ratio = 0.5 | ||||
|         # x_current = pred.X - beta_ratio * x_grad | ||||
|         # e_current = pred.E - beta_ratio * e_grad | ||||
|         E_s = pred.X - beta_ratio * x_grad | ||||
|         X_s = pred.E - beta_ratio * e_grad | ||||
|  | ||||
|         # update prob.X prob_E with using gradient | ||||
|  | ||||
|   | ||||
		Reference in New Issue
	
	Block a user