update the main function
This commit is contained in:
parent
f5911be781
commit
ba008ae54c
@ -11,9 +11,13 @@ import utils
|
|||||||
from datasets import dataset
|
from datasets import dataset
|
||||||
from diffusion_model import Graph_DiT
|
from diffusion_model import Graph_DiT
|
||||||
from metrics.molecular_metrics_train import TrainMolecularMetricsDiscrete
|
from metrics.molecular_metrics_train import TrainMolecularMetricsDiscrete
|
||||||
|
from metrics.molecular_metrics_train import TrainGraphMetricsDiscrete
|
||||||
from metrics.molecular_metrics_sampling import SamplingMolecularMetrics
|
from metrics.molecular_metrics_sampling import SamplingMolecularMetrics
|
||||||
|
from metrics.molecular_metrics_sampling import SamplingGraphMetrics
|
||||||
|
|
||||||
|
|
||||||
from analysis.visualization import MolecularVisualization
|
from analysis.visualization import MolecularVisualization
|
||||||
|
from analysis.visualization import GraphVisualization
|
||||||
|
|
||||||
warnings.filterwarnings("ignore", category=UserWarning)
|
warnings.filterwarnings("ignore", category=UserWarning)
|
||||||
torch.set_float32_matmul_precision("medium")
|
torch.set_float32_matmul_precision("medium")
|
||||||
@ -79,19 +83,20 @@ def main(cfg: DictConfig):
|
|||||||
datamodule = dataset.DataModule(cfg)
|
datamodule = dataset.DataModule(cfg)
|
||||||
datamodule.prepare_data()
|
datamodule.prepare_data()
|
||||||
dataset_infos = dataset.DataInfos(datamodule=datamodule, cfg=cfg, dataset=datamodule.dataset)
|
dataset_infos = dataset.DataInfos(datamodule=datamodule, cfg=cfg, dataset=datamodule.dataset)
|
||||||
# train_smiles, reference_smiles = datamodule.get_train_smiles()
|
train_smiles, reference_smiles = datamodule.get_train_smiles()
|
||||||
train_graphs, reference_graphs = datamodule.get_train_graphs()
|
# train_graphs, reference_graphs = datamodule.get_train_graphs()
|
||||||
|
|
||||||
# get input output dimensions
|
# get input output dimensions
|
||||||
dataset_infos.compute_input_output_dims(datamodule=datamodule)
|
dataset_infos.compute_input_output_dims(datamodule=datamodule)
|
||||||
train_metrics = TrainMolecularMetricsDiscrete(dataset_infos)
|
train_metrics = TrainMolecularMetricsDiscrete(dataset_infos)
|
||||||
|
# train_metrics = TrainGraphMetricsDiscrete(dataset_infos)
|
||||||
|
|
||||||
# sampling_metrics = SamplingMolecularMetrics(
|
sampling_metrics = SamplingMolecularMetrics(
|
||||||
# dataset_infos, train_smiles, reference_smiles
|
dataset_infos, train_smiles, reference_smiles
|
||||||
# )
|
|
||||||
sampling_metrics = SamplingGraphMetrics(
|
|
||||||
dataset_infos, train_graphs, reference_graphs
|
|
||||||
)
|
)
|
||||||
|
# sampling_metrics = SamplingGraphMetrics(
|
||||||
|
# dataset_infos, train_graphs, reference_graphs
|
||||||
|
# )
|
||||||
visualization_tools = MolecularVisualization(dataset_infos)
|
visualization_tools = MolecularVisualization(dataset_infos)
|
||||||
|
|
||||||
model_kwargs = {
|
model_kwargs = {
|
||||||
@ -149,6 +154,54 @@ def test(cfg: DictConfig):
|
|||||||
train_graphs, reference_graphs = datamodule.get_train_graphs()
|
train_graphs, reference_graphs = datamodule.get_train_graphs()
|
||||||
|
|
||||||
dataset_infos.compute_input_output_dims(datamodule=datamodule)
|
dataset_infos.compute_input_output_dims(datamodule=datamodule)
|
||||||
|
train_metrics = TrainGraphMetricsDiscrete(dataset_infos)
|
||||||
|
|
||||||
|
sampling_metrics = SamplingGraphMetrics(
|
||||||
|
dataset_infos, train_graphs, reference_graphs
|
||||||
|
)
|
||||||
|
|
||||||
|
visulization_tools = GraphVisualization(dataset_infos)
|
||||||
|
|
||||||
|
model_kwargs = {
|
||||||
|
"dataset_infos": dataset_infos,
|
||||||
|
"train_metrics": train_metrics,
|
||||||
|
"sampling_metrics": sampling_metrics,
|
||||||
|
"visualization_tools": visulization_tools,
|
||||||
|
}
|
||||||
|
|
||||||
|
if cfg.general.test_only:
|
||||||
|
cfg, _ = get_resume(cfg, model_kwargs)
|
||||||
|
os.chdir(cfg.general.test_only.split("checkpoints")[0])
|
||||||
|
elif cfg.general.resume is not None:
|
||||||
|
cfg, _ = get_resume_adaptive(cfg, model_kwargs)
|
||||||
|
os.chdir(cfg.general.resume.split("checkpoints")[0])
|
||||||
|
model = Graph_DiT(cfg=cfg, **model_kwargs)
|
||||||
|
trainer = Trainer(
|
||||||
|
gradient_clip_val=cfg.train.clip_grad,
|
||||||
|
# accelerator="cpu",
|
||||||
|
accelerator="gpu"
|
||||||
|
if torch.cuda.is_available() and cfg.general.gpus > 0
|
||||||
|
else "cpu",
|
||||||
|
devices=cfg.general.gpus
|
||||||
|
if torch.cuda.is_available() and cfg.general.gpus > 0
|
||||||
|
else None,
|
||||||
|
max_epochs=cfg.train.n_epochs,
|
||||||
|
enable_checkpointing=False,
|
||||||
|
check_val_every_n_epoch=cfg.train.check_val_every_n_epoch,
|
||||||
|
val_check_interval=cfg.train.val_check_interval,
|
||||||
|
strategy="ddp" if cfg.general.gpus > 1 else "auto",
|
||||||
|
enable_progress_bar=cfg.general.enable_progress_bar,
|
||||||
|
callbacks=[],
|
||||||
|
reload_dataloaders_every_n_epochs=0,
|
||||||
|
logger=[],
|
||||||
|
)
|
||||||
|
|
||||||
|
if not cfg.general.test_only:
|
||||||
|
print("start testing fit method")
|
||||||
|
trainer.fit(model, datamodule=datamodule, ckpt_path=cfg.general.resume)
|
||||||
|
if cfg.general.save_model:
|
||||||
|
trainer.save_checkpoint(f"checkpoints/{cfg.general.name}/last.ckpt")
|
||||||
|
trainer.test(model, datamodule=datamodule)
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
test()
|
test()
|
||||||
|
Loading…
Reference in New Issue
Block a user