use trainer but has bugs

This commit is contained in:
mhz 2024-09-19 14:11:19 +02:00
parent d36e1d1077
commit be178bc5ee
6 changed files with 750 additions and 580 deletions

View File

@ -2,20 +2,23 @@ general:
name: 'graph_dit' name: 'graph_dit'
wandb: 'disabled' wandb: 'disabled'
gpus: 1 gpus: 1
gpu_number: 2 gpu_number: 0
resume: null resume: null
test_only: null test_only: null
sample_every_val: 2500 sample_every_val: 2500
samples_to_generate: 512 samples_to_generate: 1000
samples_to_save: 3 samples_to_save: 3
chains_to_save: 1 chains_to_save: 1
log_every_steps: 50 log_every_steps: 50
number_chain_steps: 8 number_chain_steps: 8
final_model_samples_to_generate: 100 final_model_samples_to_generate: 1000
final_model_samples_to_save: 20 final_model_samples_to_save: 20
final_model_chains_to_save: 1 final_model_chains_to_save: 1
enable_progress_bar: False enable_progress_bar: False
save_model: True save_model: True
log_dir: '/nfs/data3/hanzhang/nasbenchDiT'
number_checkpoint_limit: 3
type: 'Trainer'
model: model:
type: 'discrete' type: 'discrete'
transition: 'marginal' transition: 'marginal'
@ -32,7 +35,7 @@ model:
ensure_connected: True ensure_connected: True
train: train:
# n_epochs: 5000 # n_epochs: 5000
n_epochs: 500 n_epochs: 10
batch_size: 1200 batch_size: 1200
lr: 0.0002 lr: 0.0002
clip_grad: null clip_grad: null
@ -41,8 +44,11 @@ train:
seed: 0 seed: 0
val_check_interval: null val_check_interval: null
check_val_every_n_epoch: 1 check_val_every_n_epoch: 1
gradient_accumulation_steps: 1
dataset: dataset:
datadir: 'data/' datadir: 'data/'
task_name: 'nasbench-201' task_name: 'nasbench-201'
guidance_target: 'nasbench-201' guidance_target: 'nasbench-201'
pin_memory: False pin_memory: False
ppo:
clip_param: 1

View File

@ -54,7 +54,9 @@ class BasicGraphMetrics(object):
covered_nodes = set() covered_nodes = set()
direct_valid_count = 0 direct_valid_count = 0
print(f"generated number: {len(generated)}") print(f"generated number: {len(generated)}")
print(f"generated: {generated}")
for graph in generated: for graph in generated:
print(f"graph: {graph}")
node_types, edge_types = graph node_types, edge_types = graph
direct_valid_flag = True direct_valid_flag = True
direct_valid_count += 1 direct_valid_count += 1

View File

@ -815,8 +815,8 @@ class Dataset(InMemoryDataset):
train_loader = dt.get_data(args.dataset, args.data_loc, args.trainval, args.batch_size, args.augtype, args.repeat, args) train_loader = dt.get_data(args.dataset, args.data_loc, args.trainval, args.batch_size, args.augtype, args.repeat, args)
self.swap_scores = [] self.swap_scores = []
import csv import csv
# with open('/nfs/data3/hanzhang/nasbenchDiT/graph_dit/swap_results.csv', 'r') as f: with open('/nfs/data3/hanzhang/nasbenchDiT/graph_dit/swap_results.csv', 'r') as f:
with open('/nfs/data3/hanzhang/nasbenchDiT/graph_dit/swap_results_cifar100.csv', 'r') as f: # with open('/nfs/data3/hanzhang/nasbenchDiT/graph_dit/swap_results_cifar100.csv', 'r') as f:
reader = csv.reader(f) reader = csv.reader(f)
header = next(reader) header = next(reader)
data = [row for row in reader] data = [row for row in reader]

View File

@ -23,6 +23,9 @@ class Graph_DiT(pl.LightningModule):
self.test_only = cfg.general.test_only self.test_only = cfg.general.test_only
self.guidance_target = getattr(cfg.dataset, 'guidance_target', None) self.guidance_target = getattr(cfg.dataset, 'guidance_target', None)
from nas_201_api import NASBench201API as API
self.api = API('/nfs/data3/hanzhang/nasbenchDiT/graph_dit/NAS-Bench-201-v1_1-096897.pth')
input_dims = dataset_infos.input_dims input_dims = dataset_infos.input_dims
output_dims = dataset_infos.output_dims output_dims = dataset_infos.output_dims
nodes_dist = dataset_infos.nodes_dist nodes_dist = dataset_infos.nodes_dist
@ -79,6 +82,7 @@ class Graph_DiT(pl.LightningModule):
self.node_dist = nodes_dist self.node_dist = nodes_dist
self.active_index = active_index self.active_index = active_index
self.dataset_info = dataset_infos self.dataset_info = dataset_infos
self.cur_epoch = 0
self.train_loss = TrainLossDiscrete(self.cfg.model.lambda_train) self.train_loss = TrainLossDiscrete(self.cfg.model.lambda_train)
@ -162,25 +166,81 @@ class Graph_DiT(pl.LightningModule):
return pred return pred
def training_step(self, data, i): def training_step(self, data, i):
data_x = F.one_hot(data.x, num_classes=12).float()[:, self.active_index] if self.cfg.general.type != 'accelerator' and self.current_epoch > self.cfg.train.n_epochs / 5 * 4:
data_edge_attr = F.one_hot(data.edge_attr, num_classes=2).float() samples_left_to_generate = self.cfg.general.samples_to_generate
samples_left_to_save = self.cfg.general.samples_to_save
chains_left_to_save = self.cfg.general.chains_to_save
dense_data, node_mask = utils.to_dense(data_x, data.edge_index, data_edge_attr, data.batch, self.max_n_nodes) samples, all_ys, batch_id = [], [], 0
dense_data = dense_data.mask(node_mask)
X, E = dense_data.X, dense_data.E def graph_reward_fn(graphs, true_graphs=None, device=None, reward_model='swap'):
noisy_data = self.apply_noise(X, E, data.y, node_mask) rewards = []
pred = self.forward(noisy_data) if reward_model == 'swap':
loss = self.train_loss(masked_pred_X=pred.X, masked_pred_E=pred.E, pred_y=pred.y, import csv
true_X=X, true_E=E, true_y=data.y, node_mask=node_mask, with open('/nfs/data3/hanzhang/nasbenchDiT/graph_dit/swap_results.csv', 'r') as f:
reader = csv.reader(f)
header = next(reader)
data = [row for row in reader]
swap_scores = [float(row[0]) for row in data]
for graph in graphs:
node_tensor = graph[0]
node = node_tensor.cpu().numpy().tolist()
def nodes_to_arch_str(nodes):
num_to_op = ['input', 'nor_conv_1x1', 'nor_conv_3x3', 'avg_pool_3x3', 'skip_connect', 'none', 'output']
nodes_str = [num_to_op[node] for node in nodes]
arch_str = '|' + nodes_str[1] + '~0|+' + \
'|' + nodes_str[2] + '~0|' + nodes_str[3] + '~1|+' +\
'|' + nodes_str[4] + '~0|' + nodes_str[5] + '~1|' + nodes_str[6] + '~2|'
return arch_str
arch_str = nodes_to_arch_str(node)
reward = swap_scores[self.api.query_index_by_arch(arch_str)]
rewards.append(reward)
return torch.tensor(rewards, dtype=torch.float32, requires_grad=True).unsqueeze(0).to(device)
old_log_probs = None
bs = 1 * self.cfg.train.batch_size
to_generate = min(samples_left_to_generate, bs)
to_save = min(samples_left_to_save, bs)
chains_save = min(chains_left_to_save, bs)
# batch_y = test_y_collection[batch_id : batch_id + to_generate]
batch_y = torch.ones(to_generate, self.ydim_output, device=self.device)
cur_sample, log_probs = self.sample_batch(batch_id, to_generate, batch_y, save_final=to_save,
keep_chain=chains_save, number_chain_steps=self.number_chain_steps)
# samples = samples + cur_sample
samples.append(cur_sample)
reward = graph_reward_fn(cur_sample, device=self.device)
advantages = (reward - torch.mean(reward)) / (torch.std(reward) + 1e-6) #
if old_log_probs is None:
old_log_probs = log_probs.clone()
ratio = torch.exp(log_probs - old_log_probs)
print(f"ratio: {ratio.shape}, advantages: {advantages.shape}")
unclipped_loss = -advantages * ratio
clipped_loss = -advantages * torch.clamp(ratio, 1.0 - self.cfg.ppo.clip_param, 1.0 + self.cfg.ppo.clip_param)
loss = torch.mean(torch.max(unclipped_loss, clipped_loss))
return {'loss': loss}
else:
data_x = F.one_hot(data.x, num_classes=12).float()[:, self.active_index]
data_edge_attr = F.one_hot(data.edge_attr, num_classes=2).float()
dense_data, node_mask = utils.to_dense(data_x, data.edge_index, data_edge_attr, data.batch, self.max_n_nodes)
dense_data = dense_data.mask(node_mask)
X, E = dense_data.X, dense_data.E
noisy_data = self.apply_noise(X, E, data.y, node_mask)
pred = self.forward(noisy_data)
loss = self.train_loss(masked_pred_X=pred.X, masked_pred_E=pred.E, pred_y=pred.y,
true_X=X, true_E=E, true_y=data.y, node_mask=node_mask,
log=i % self.log_every_steps == 0)
# print(f'training loss: {loss}, epoch: {self.current_epoch}, batch: {i}\n, pred type: {type(pred)}, pred.X shape: {type(pred.X)}, {pred.X.shape}, pred.E shape: {type(pred.E)}, {pred.E.shape}')
self.train_metrics(masked_pred_X=pred.X, masked_pred_E=pred.E, true_X=X, true_E=E,
log=i % self.log_every_steps == 0) log=i % self.log_every_steps == 0)
# print(f'training loss: {loss}, epoch: {self.current_epoch}, batch: {i}\n, pred type: {type(pred)}, pred.X shape: {type(pred.X)}, {pred.X.shape}, pred.E shape: {type(pred.E)}, {pred.E.shape}') self.log(f'loss', loss, batch_size=X.size(0), sync_dist=True)
self.train_metrics(masked_pred_X=pred.X, masked_pred_E=pred.E, true_X=X, true_E=E, print(f"training loss: {loss}")
log=i % self.log_every_steps == 0) with open("training-loss.csv", "a") as f:
self.log(f'loss', loss, batch_size=X.size(0), sync_dist=True) f.write(f"{loss}, {i}\n")
print(f"training loss: {loss}") return {'loss': loss}
with open("training-loss.csv", "a") as f:
f.write(f"{loss}, {i}\n")
return {'loss': loss}
def configure_optimizers(self): def configure_optimizers(self):
@ -196,14 +256,15 @@ class Graph_DiT(pl.LightningModule):
def on_train_epoch_start(self) -> None: def on_train_epoch_start(self) -> None:
if self.current_epoch / self.trainer.max_epochs in [0.25, 0.5, 0.75, 1.0]: if self.current_epoch / self.trainer.max_epochs in [0.25, 0.5, 0.75, 1.0]:
print("Starting train epoch {}/{}...".format(self.current_epoch, self.trainer.max_epochs)) # if self.cur_epoch / self.cfg.train.n_epochs in [0.25, 0.5, 0.75, 1.0]:
print("Starting train epoch {}/{}...".format(self.cur_epoch, self.cfg.train.n_epochs))
self.start_epoch_time = time.time() self.start_epoch_time = time.time()
self.train_loss.reset() self.train_loss.reset()
self.train_metrics.reset() self.train_metrics.reset()
def on_train_epoch_end(self) -> None: def on_train_epoch_end(self) -> None:
if self.current_epoch / self.trainer.max_epochs in [0.25, 0.5, 0.75, 1.0]: if self.current_epoch / self.cfg.train.n_epochs in [0.25, 0.5, 0.75, 1.0]:
log = True log = True
else: else:
log = False log = False
@ -240,6 +301,7 @@ class Graph_DiT(pl.LightningModule):
self.val_X_logp.compute(), self.val_E_logp.compute()] self.val_X_logp.compute(), self.val_E_logp.compute()]
if self.current_epoch / self.trainer.max_epochs in [0.25, 0.5, 0.75, 1.0]: if self.current_epoch / self.trainer.max_epochs in [0.25, 0.5, 0.75, 1.0]:
# if self.cur_epoch / self.cfg.train.n_epochs in [0.25, 0.5, 0.75, 1.0]:
print(f"Epoch {self.current_epoch}: Val NLL {metrics[0] :.2f} -- Val Atom type KL {metrics[1] :.2f} -- ", print(f"Epoch {self.current_epoch}: Val NLL {metrics[0] :.2f} -- Val Atom type KL {metrics[1] :.2f} -- ",
f"Val Edge type KL: {metrics[2] :.2f}", 'Val loss: %.2f \t Best : %.2f\n' % (metrics[0], self.best_val_nll)) f"Val Edge type KL: {metrics[2] :.2f}", 'Val loss: %.2f \t Best : %.2f\n' % (metrics[0], self.best_val_nll))
with open("validation-metrics.csv", "a") as f: with open("validation-metrics.csv", "a") as f:
@ -336,7 +398,7 @@ class Graph_DiT(pl.LightningModule):
print(f"Epoch {self.current_epoch}: Test NLL {metrics[0] :.2f} -- Test Atom type KL {metrics[1] :.2f} -- ", print(f"Epoch {self.current_epoch}: Test NLL {metrics[0] :.2f} -- Test Atom type KL {metrics[1] :.2f} -- ",
f"Test Edge type KL: {metrics[2] :.2f}") f"Test Edge type KL: {metrics[2] :.2f}")
## final epcoh ## final epoch
samples_left_to_generate = self.cfg.general.final_model_samples_to_generate samples_left_to_generate = self.cfg.general.final_model_samples_to_generate
samples_left_to_save = self.cfg.general.final_model_samples_to_save samples_left_to_save = self.cfg.general.final_model_samples_to_save
chains_left_to_save = self.cfg.general.final_model_chains_to_save chains_left_to_save = self.cfg.general.final_model_chains_to_save
@ -359,9 +421,9 @@ class Graph_DiT(pl.LightningModule):
# batch_y = test_y_collection[batch_id : batch_id + to_generate] # batch_y = test_y_collection[batch_id : batch_id + to_generate]
batch_y = torch.ones(to_generate, self.ydim_output, device=self.device) batch_y = torch.ones(to_generate, self.ydim_output, device=self.device)
cur_sample = self.sample_batch(batch_id, to_generate, batch_y, save_final=to_save, cur_sample, log_probs = self.sample_batch(batch_id, to_generate, batch_y, save_final=to_save,
keep_chain=chains_save, number_chain_steps=self.number_chain_steps) keep_chain=chains_save, number_chain_steps=self.number_chain_steps)
samples = samples + cur_sample samples.append(cur_sample)
all_ys.append(batch_y) all_ys.append(batch_y)
batch_id += to_generate batch_id += to_generate
@ -601,6 +663,12 @@ class Graph_DiT(pl.LightningModule):
assert (E == torch.transpose(E, 1, 2)).all() assert (E == torch.transpose(E, 1, 2)).all()
if self.cfg.general.type != 'accelerator':
if self.trainer.training or self.trainer.validating:
total_log_probs = torch.zeros([self.cfg.general.samples_to_generate, 10], device=self.device)
elif self.trainer.testing:
total_log_probs = torch.zeros([self.cfg.general.final_model_samples_to_generate, 10], device=self.device)
# Iteratively sample p(z_s | z_t) for t = 1, ..., T, with s = t - 1. # Iteratively sample p(z_s | z_t) for t = 1, ..., T, with s = t - 1.
for s_int in reversed(range(0, self.T)): for s_int in reversed(range(0, self.T)):
s_array = s_int * torch.ones((batch_size, 1)).type_as(y) s_array = s_int * torch.ones((batch_size, 1)).type_as(y)
@ -609,21 +677,24 @@ class Graph_DiT(pl.LightningModule):
t_norm = t_array / self.T t_norm = t_array / self.T
# Sample z_s # Sample z_s
sampled_s, discrete_sampled_s = self.sample_p_zs_given_zt(s_norm, t_norm, X, E, y, node_mask) sampled_s, discrete_sampled_s, log_probs = self.sample_p_zs_given_zt(s_norm, t_norm, X, E, y, node_mask)
X, E, y = sampled_s.X, sampled_s.E, sampled_s.y X, E, y = sampled_s.X, sampled_s.E, sampled_s.y
total_log_probs += log_probs
# Sample # Sample
sampled_s = sampled_s.mask(node_mask, collapse=True) sampled_s = sampled_s.mask(node_mask, collapse=True)
X, E, y = sampled_s.X, sampled_s.E, sampled_s.y X, E, y = sampled_s.X, sampled_s.E, sampled_s.y
molecule_list = [] graph_list = []
for i in range(batch_size): for i in range(batch_size):
n = n_nodes[i] n = n_nodes[i]
atom_types = X[i, :n].cpu() node_types = X[i, :n].cpu()
edge_types = E[i, :n, :n].cpu() edge_types = E[i, :n, :n].cpu()
molecule_list.append([atom_types, edge_types]) graph_list.append((node_types , edge_types))
return molecule_list total_log_probs = torch.sum(total_log_probs, dim=-1)
return graph_list, total_log_probs
def sample_p_zs_given_zt(self, s, t, X_t, E_t, y_t, node_mask): def sample_p_zs_given_zt(self, s, t, X_t, E_t, y_t, node_mask):
"""Samples from zs ~ p(zs | zt). Only used during sampling. """Samples from zs ~ p(zs | zt). Only used during sampling.
@ -675,6 +746,14 @@ class Graph_DiT(pl.LightningModule):
# with condition = P_t(A_{t-1} |A_t, y) # with condition = P_t(A_{t-1} |A_t, y)
prob_X, prob_E, pred = get_prob(noisy_data) prob_X, prob_E, pred = get_prob(noisy_data)
log_prob_X = torch.log(torch.gather(prob_X, -1, X_t.long()).squeeze(-1)) # bs, n
log_prob_E = torch.log(torch.gather(prob_E, -1, E_t.long()).squeeze(-1)) # bs, n, n
# Sum the log_prob across dimensions for total log_prob
log_prob_X = log_prob_X.sum(dim=-1)
log_prob_E = log_prob_E.sum(dim=(1, 2))
log_probs = torch.cat([log_prob_X, log_prob_E], dim=-1)
### Guidance ### Guidance
if self.guidance_target is not None and self.guide_scale is not None and self.guide_scale != 1: if self.guidance_target is not None and self.guide_scale is not None and self.guide_scale != 1:
uncon_prob_X, uncon_prob_E, pred = get_prob(noisy_data, unconditioned=True) uncon_prob_X, uncon_prob_E, pred = get_prob(noisy_data, unconditioned=True)
@ -810,4 +889,4 @@ class Graph_DiT(pl.LightningModule):
out_one_hot = utils.PlaceHolder(X=X_s, E=E_s, y=y_t) out_one_hot = utils.PlaceHolder(X=X_s, E=E_s, y=y_t)
out_discrete = utils.PlaceHolder(X=X_s, E=E_s, y=y_t) out_discrete = utils.PlaceHolder(X=X_s, E=E_s, y=y_t)
return out_one_hot.mask(node_mask).type_as(y_t), out_discrete.mask(node_mask, collapse=True).type_as(y_t) return out_one_hot.mask(node_mask).type_as(y_t), out_discrete.mask(node_mask, collapse=True).type_as(y_t), log_probs

View File

@ -177,32 +177,92 @@ def test(cfg: DictConfig):
os.chdir(cfg.general.resume.split("checkpoints")[0]) os.chdir(cfg.general.resume.split("checkpoints")[0])
# os.environ["CUDA_VISIBLE_DEVICES"] = cfg.general.gpu_number # os.environ["CUDA_VISIBLE_DEVICES"] = cfg.general.gpu_number
model = Graph_DiT(cfg=cfg, **model_kwargs) model = Graph_DiT(cfg=cfg, **model_kwargs)
trainer = Trainer(
gradient_clip_val=cfg.train.clip_grad,
# accelerator="cpu",
accelerator="gpu"
if torch.cuda.is_available() and cfg.general.gpus > 0
else "cpu",
devices=[cfg.general.gpu_number]
if torch.cuda.is_available() and cfg.general.gpus > 0
else None,
max_epochs=cfg.train.n_epochs,
enable_checkpointing=False,
check_val_every_n_epoch=cfg.train.check_val_every_n_epoch,
val_check_interval=cfg.train.val_check_interval,
strategy="ddp" if cfg.general.gpus > 1 else "auto",
enable_progress_bar=cfg.general.enable_progress_bar,
callbacks=[],
reload_dataloaders_every_n_epochs=0,
logger=[],
)
if not cfg.general.test_only: if cfg.general.type == "accelerator":
print("start testing fit method") graph_dit_model = model
trainer.fit(model, datamodule=datamodule, ckpt_path=cfg.general.resume)
if cfg.general.save_model: from accelerate import Accelerator
trainer.save_checkpoint(f"checkpoints/{cfg.general.name}/last.ckpt") from accelerate.utils import set_seed, ProjectConfiguration
trainer.test(model, datamodule=datamodule)
accelerator_config = ProjectConfiguration(
project_dir=os.path.join(cfg.general.log_dir, cfg.general.name),
automatic_checkpoint_naming=True,
total_limit=cfg.general.number_checkpoint_limit,
)
accelerator = Accelerator(
mixed_precision='no',
project_config=accelerator_config,
# gradient_accumulation_steps=cfg.train.gradient_accumulation_steps * cfg.train.n_epochs,
gradient_accumulation_steps=cfg.train.gradient_accumulation_steps,
)
optimizer = graph_dit_model.configure_optimizers()
train_dataloader = datamodule.train_dataloader()
train_dataloader = accelerator.prepare(train_dataloader)
val_dataloader = datamodule.val_dataloader()
val_dataloader = accelerator.prepare(val_dataloader)
test_dataloader = datamodule.test_dataloader()
test_dataloader = accelerator.prepare(test_dataloader)
optimizer, graph_dit_model = accelerator.prepare(optimizer, graph_dit_model)
# train_epoch
from pytorch_lightning import seed_everything
seed_everything(cfg.train.seed)
for epoch in range(cfg.train.n_epochs):
print(f"Epoch {epoch}")
graph_dit_model.train()
graph_dit_model.cur_epoch = epoch
graph_dit_model.on_train_epoch_start()
for batch in train_dataloader:
optimizer.zero_grad()
loss = graph_dit_model.training_step(batch, epoch)['loss']
accelerator.backward(loss)
optimizer.step()
graph_dit_model.on_train_epoch_end()
for batch in val_dataloader:
if epoch % cfg.train.check_val_every_n_epoch == 0:
graph_dit_model.eval()
graph_dit_model.on_validation_epoch_start()
graph_dit_model.validation_step(batch, epoch)
graph_dit_model.on_validation_epoch_end()
# test_epoch
graph_dit_model.test()
graph_dit_model.on_test_epoch_start()
for batch in test_dataloader:
graph_dit_model.test_step(batch, epoch)
graph_dit_model.on_test_epoch_end()
elif cfg.general.type == "Trainer":
trainer = Trainer(
gradient_clip_val=cfg.train.clip_grad,
# accelerator="cpu",
accelerator="gpu"
if torch.cuda.is_available() and cfg.general.gpus > 0
else "cpu",
devices=[cfg.general.gpu_number]
if torch.cuda.is_available() and cfg.general.gpus > 0
else None,
max_epochs=cfg.train.n_epochs,
enable_checkpointing=False,
check_val_every_n_epoch=cfg.train.check_val_every_n_epoch,
val_check_interval=cfg.train.val_check_interval,
strategy="ddp" if cfg.general.gpus > 1 else "auto",
enable_progress_bar=cfg.general.enable_progress_bar,
callbacks=[],
reload_dataloaders_every_n_epochs=0,
logger=[],
)
if not cfg.general.test_only:
print("start testing fit method")
trainer.fit(model, datamodule=datamodule, ckpt_path=cfg.general.resume)
if cfg.general.save_model:
trainer.save_checkpoint(f"checkpoints/{cfg.general.name}/last.ckpt")
trainer.test(model, datamodule=datamodule)
if __name__ == "__main__": if __name__ == "__main__":
test() test()

File diff suppressed because one or more lines are too long