add a test performance script.
This commit is contained in:
		
							
								
								
									
										136
									
								
								graph_dit/test_perf.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										136
									
								
								graph_dit/test_perf.py
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,136 @@
 | 
				
			|||||||
 | 
					from nas_201_api import NASBench201API as API
 | 
				
			||||||
 | 
					import re
 | 
				
			||||||
 | 
					import pandas as pd
 | 
				
			||||||
 | 
					import json
 | 
				
			||||||
 | 
					import numpy as np
 | 
				
			||||||
 | 
					import argparse
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					api = API('./NAS-Bench-201-v1_1-096897.pth')
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					parser = argparse.ArgumentParser(description='Process some integers.')
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					parser.add_argument('--file_path', type=str, default='211035.txt',)
 | 
				
			||||||
 | 
					args = parser.parse_args()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def process_graph_data(text):
 | 
				
			||||||
 | 
					    # Split the input text into sections for each graph
 | 
				
			||||||
 | 
					    graph_sections = text.strip().split('nodes:')
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					    # Prepare lists to store data
 | 
				
			||||||
 | 
					    nodes_list = []
 | 
				
			||||||
 | 
					    edges_list = []
 | 
				
			||||||
 | 
					    results_list = []
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					    for section in graph_sections[1:]:
 | 
				
			||||||
 | 
					        # Extract nodes
 | 
				
			||||||
 | 
					        nodes_section = section.split('edges:')[0]
 | 
				
			||||||
 | 
					        nodes_match = re.search(r'(tensor\(\d+\) ?)+', section)
 | 
				
			||||||
 | 
					        if nodes_match:
 | 
				
			||||||
 | 
					            nodes = re.findall(r'tensor\((\d+)\)', nodes_match.group(0))
 | 
				
			||||||
 | 
					            nodes_list.append(nodes)
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					        # Extract edges
 | 
				
			||||||
 | 
					        edge_section = section.split('edges:')[1]
 | 
				
			||||||
 | 
					        edges_match = re.search(r'edges:', section)
 | 
				
			||||||
 | 
					        if edges_match:
 | 
				
			||||||
 | 
					            edges = re.findall(r'tensor\((\d+)\)', edge_section)
 | 
				
			||||||
 | 
					            edges_list.append(edges)
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					        # Extract the last floating point number as a result
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					    # Create a DataFrame to store the extracted data
 | 
				
			||||||
 | 
					    data = {
 | 
				
			||||||
 | 
					        'nodes': nodes_list,
 | 
				
			||||||
 | 
					        'edges': edges_list,
 | 
				
			||||||
 | 
					    }
 | 
				
			||||||
 | 
					    data['nodes'] = [[int(x) for x in node] for node in data['nodes']]
 | 
				
			||||||
 | 
					    data['edges'] = [[int(x) for x in edge] for edge in data['edges']]
 | 
				
			||||||
 | 
					    def split_list(input_list, chunk_size):
 | 
				
			||||||
 | 
					        return [input_list[i:i + chunk_size] for i in range(0, len(input_list), chunk_size)]
 | 
				
			||||||
 | 
					    data['edges'] = [split_list(edge, 8) for edge in data['edges']]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    print(data)
 | 
				
			||||||
 | 
					    df = pd.DataFrame(data)
 | 
				
			||||||
 | 
					    print('df')
 | 
				
			||||||
 | 
					    print(df['nodes'][0], df['edges'][0])
 | 
				
			||||||
 | 
					    return df
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def is_valid_nasbench201(adj, ops):
 | 
				
			||||||
 | 
					    print(ops)
 | 
				
			||||||
 | 
					    if ops[0] != 0 or ops[-1] != 6:
 | 
				
			||||||
 | 
					        return False
 | 
				
			||||||
 | 
					    for i in range(2, len(ops) - 1):
 | 
				
			||||||
 | 
					        if ops[i] not in [1, 2, 3, 4, 5]:
 | 
				
			||||||
 | 
					            return False
 | 
				
			||||||
 | 
					    adj_mat = [ [0, 1, 1, 0, 1, 0, 0, 0],
 | 
				
			||||||
 | 
					                [0, 0, 0, 1, 0, 1 ,0 ,0],
 | 
				
			||||||
 | 
					                [0, 0, 0, 0, 0, 0, 1, 0],
 | 
				
			||||||
 | 
					                [0, 0, 0, 0, 0, 0, 1, 0],
 | 
				
			||||||
 | 
					                [0, 0, 0, 0, 0, 0, 0, 1],
 | 
				
			||||||
 | 
					                [0, 0, 0, 0, 0, 0, 0, 1],
 | 
				
			||||||
 | 
					                [0, 0, 0, 0, 0, 0, 0, 1],
 | 
				
			||||||
 | 
					                [0, 0, 0, 0, 0, 0, 0, 0]]
 | 
				
			||||||
 | 
					 
 | 
				
			||||||
 | 
					    for i in range(len(adj)):
 | 
				
			||||||
 | 
					        for j in range(len(adj[i])):
 | 
				
			||||||
 | 
					            if adj[i][j] not in [0, 1]:
 | 
				
			||||||
 | 
					                return False
 | 
				
			||||||
 | 
					            if j > i:
 | 
				
			||||||
 | 
					                if adj[i][j] != adj_mat[i][j]:
 | 
				
			||||||
 | 
					                    return False
 | 
				
			||||||
 | 
					    return True
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					num_to_op = ['input', 'nor_conv_1x1', 'nor_conv_3x3', 'avg_pool_3x3', 'skip_connect', 'none', 'output']
 | 
				
			||||||
 | 
					def nodes_to_arch_str(nodes):
 | 
				
			||||||
 | 
					    nodes_str = [num_to_op[node] for node in nodes]
 | 
				
			||||||
 | 
					    arch_str = '|' + nodes_str[1] + '~0|+' + \
 | 
				
			||||||
 | 
					               '|' + nodes_str[2] + '~0|' + nodes_str[3] + '~1|+' +\
 | 
				
			||||||
 | 
					               '|' + nodes_str[4] + '~0|' + nodes_str[5] + '~1|' + nodes_str[6] + '~2|' 
 | 
				
			||||||
 | 
					    return arch_str
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					filename = args.file_path
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					with open('./output_graphs/' + filename, 'r') as f:
 | 
				
			||||||
 | 
					    texts = f.read()
 | 
				
			||||||
 | 
					    df = process_graph_data(texts)
 | 
				
			||||||
 | 
					    valid = 0
 | 
				
			||||||
 | 
					    not_valid = 0
 | 
				
			||||||
 | 
					    scores = []
 | 
				
			||||||
 | 
					    dist = {'<90':0, '<91':0, '<92':0, '<93':0, '<94':0, '>94':0}
 | 
				
			||||||
 | 
					    for i in range(len(df)):
 | 
				
			||||||
 | 
					        nodes = df['nodes'][i]
 | 
				
			||||||
 | 
					        edges = df['edges'][i]
 | 
				
			||||||
 | 
					        result = is_valid_nasbench201(edges, nodes)
 | 
				
			||||||
 | 
					        if result:
 | 
				
			||||||
 | 
					            valid += 1
 | 
				
			||||||
 | 
					            arch_str = nodes_to_arch_str(nodes)
 | 
				
			||||||
 | 
					            index = api.query_index_by_arch(arch_str)
 | 
				
			||||||
 | 
					            # results = api.query_by_index(index, 'cifar10', hp='200')
 | 
				
			||||||
 | 
					            # print(results)
 | 
				
			||||||
 | 
					            # result = results[888].get_eval('ori-test')
 | 
				
			||||||
 | 
					            res = api.get_more_info(index, 'cifar10', None, hp=200, is_random=False)
 | 
				
			||||||
 | 
					            acc = res['test-accuracy']
 | 
				
			||||||
 | 
					            scores.append((index, acc))
 | 
				
			||||||
 | 
					            if acc < 90:
 | 
				
			||||||
 | 
					                dist['<90'] += 1
 | 
				
			||||||
 | 
					            elif acc < 91 and acc >= 90:
 | 
				
			||||||
 | 
					                dist['<91'] += 1
 | 
				
			||||||
 | 
					            elif acc < 92 and acc >= 91:
 | 
				
			||||||
 | 
					                dist['<92'] += 1
 | 
				
			||||||
 | 
					            elif acc < 93 and acc >= 92: 
 | 
				
			||||||
 | 
					                dist['<93'] += 1
 | 
				
			||||||
 | 
					            elif acc < 94 and acc >= 93:
 | 
				
			||||||
 | 
					                dist['<94'] += 1
 | 
				
			||||||
 | 
					            else:    
 | 
				
			||||||
 | 
					                dist['>94'] += 1
 | 
				
			||||||
 | 
					        else:
 | 
				
			||||||
 | 
					            not_valid += 1
 | 
				
			||||||
 | 
					    with open('./output_graphs/' + filename + '.json', 'w') as f:
 | 
				
			||||||
 | 
					        json.dump(scores, f)
 | 
				
			||||||
 | 
					    print(scores)
 | 
				
			||||||
 | 
					    print(valid, not_valid)
 | 
				
			||||||
 | 
					    print(dist)
 | 
				
			||||||
 | 
					    print("mean: ", np.mean([x[1] for x in scores]))
 | 
				
			||||||
 | 
					    print("max: ", np.max([x[1] for x in scores]))
 | 
				
			||||||
 | 
					    print("min: ", np.min([x[1] for x in scores]))
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
		Reference in New Issue
	
	Block a user