comment some output statements
This commit is contained in:
		| @@ -46,13 +46,17 @@ def unnormalize(X, E, y, norm_values, norm_biases, node_mask, collapse=False): | ||||
|  | ||||
|  | ||||
| def to_dense(x, edge_index, edge_attr, batch, max_num_nodes=None): | ||||
|     # print(f"to dense X: {x.shape}, edge_index: {edge_index.shape}, edge_attr: {edge_attr.shape}, batch: {batch}, max_num_nodes: {max_num_nodes}") | ||||
|     X, node_mask = to_dense_batch(x=x, batch=batch, max_num_nodes=max_num_nodes) | ||||
|     # node_mask = node_mask.float() | ||||
|     edge_index, edge_attr = torch_geometric.utils.remove_self_loops(edge_index, edge_attr) | ||||
|     if max_num_nodes is None: | ||||
|         max_num_nodes = X.size(1) | ||||
|     # print(f"to dense X: {X.shape}, edge_index: {edge_index.shape}, edge_attr: {edge_attr.shape}, batch: {batch}, max_num_nodes: {max_num_nodes}") | ||||
|     E = to_dense_adj(edge_index=edge_index, batch=batch, edge_attr=edge_attr, max_num_nodes=max_num_nodes) | ||||
|     E = encode_no_edge(E) | ||||
|     # print(f"to dense X: {X.shape}, edge_index: {edge_index.shape}, edge_attr: {edge_attr.shape}, batch: {batch}, max_num_nodes: {max_num_nodes}") | ||||
|     # print(f"to dense X: {X.shape}, E: {E.shape}, batch: {batch}, lenE: {len(E)}") | ||||
|     return PlaceHolder(X=X, E=E, y=None), node_mask | ||||
|  | ||||
|  | ||||
| @@ -119,6 +123,7 @@ class PlaceHolder: | ||||
|         x_mask = node_mask.unsqueeze(-1)          # bs, n, 1 | ||||
|         e_mask1 = x_mask.unsqueeze(2)             # bs, n, 1, 1 | ||||
|         e_mask2 = x_mask.unsqueeze(1)             # bs, 1, n, 1 | ||||
|         # print(f"mask X: {self.X.shape}, E: {self.E.shape}, node_mask: {node_mask.shape}, x_mask: {x_mask.shape}, e_mask1: {e_mask1.shape}, e_mask2: {e_mask2.shape}") | ||||
|  | ||||
|         if collapse: | ||||
|             self.X = torch.argmax(self.X, dim=-1) | ||||
| @@ -127,8 +132,13 @@ class PlaceHolder: | ||||
|             self.X[node_mask == 0] = - 1 | ||||
|             self.E[(e_mask1 * e_mask2).squeeze(-1) == 0] = - 1 | ||||
|         else: | ||||
|             # print(f"X: {self.X.shape}, E: {self.E.shape}") | ||||
|             # print(f"X: {self.X}, E: {self.E}") | ||||
|             # print(f"x_mask: {x_mask}, e_mask1: {e_mask1}, e_mask2: {e_mask2}") | ||||
|             self.X = self.X * x_mask | ||||
|             self.E = self.E * e_mask1 * e_mask2 | ||||
|             # print(f"X: {self.X.shape}, E: {self.E.shape}") | ||||
|             # print(f"X: {self.X}, E: {self.E}") | ||||
|             assert torch.allclose(self.E, torch.transpose(self.E, 1, 2)) | ||||
|         return self | ||||
|  | ||||
|   | ||||
		Reference in New Issue
	
	Block a user