need to run the jupyternotebook
This commit is contained in:
		| @@ -13,6 +13,7 @@ import torch | ||||
| import torch.nn.functional as F | ||||
| from rdkit import Chem, RDLogger | ||||
| from rdkit.Chem.rdchem import BondType as BT | ||||
| from rdkit.Chem import rdchem | ||||
| from tqdm import tqdm | ||||
| import numpy as np | ||||
| import pandas as pd | ||||
| @@ -24,6 +25,9 @@ import utils as utils | ||||
| from datasets.abstract_dataset import AbstractDatasetInfos, AbstractDataModule | ||||
| from diffusion.distributions import DistributionNodes | ||||
|  | ||||
| import networkx as nx | ||||
|  | ||||
|  | ||||
| bonds = {BT.SINGLE: 1, BT.DOUBLE: 2, BT.TRIPLE: 3, BT.AROMATIC: 4} | ||||
|  | ||||
| op_to_atom = { | ||||
| @@ -111,8 +115,74 @@ class DataModule(AbstractDataModule): | ||||
|         print(self.task, ' dataset len', len(dataset), 'train len', len(train_index), 'val len', len(val_index), 'test len', len(test_index)) | ||||
|         return train_index, val_index, test_index, [] | ||||
|  | ||||
|     def parse_architecture_string(arch_str): | ||||
|             stages = arch_str.split('+') | ||||
|             nodes = ['input'] | ||||
|             edges = [] | ||||
|              | ||||
|             for stage in stages: | ||||
|                 operations = stage.strip('|').split('|') | ||||
|                 for op in operations: | ||||
|                     operation, idx = op.split('~') | ||||
|                     idx = int(idx) | ||||
|                     edges.append((idx, len(nodes)))  # Add edge from idx to the new node | ||||
|                     nodes.append(operation) | ||||
|             nodes.append('output')  # Add the output node | ||||
|             return nodes, edges | ||||
|  | ||||
|     def create_molecule_from_graph(nodes, edges): | ||||
|         mol = Chem.RWMol()  # RWMol allows for building the molecule step by step | ||||
|         atom_indices = {} | ||||
|          | ||||
|         # Add atoms to the molecule | ||||
|         for i, node in enumerate(nodes): | ||||
|             atom_symbol = op_to_atom[node] | ||||
|             atom = Chem.Atom(atom_symbol) | ||||
|             atom_idx = mol.AddAtom(atom) | ||||
|             atom_indices[i] = atom_idx | ||||
|          | ||||
|         # Add bonds to the molecule | ||||
|         for start, end in edges: | ||||
|             mol.AddBond(atom_indices[start], atom_indices[end], rdchem.BondType.SINGLE) | ||||
|          | ||||
|         return mol | ||||
|  | ||||
|     def arch_str_to_smiles(self, arch_str): | ||||
|         nodes, edges = self.parse_architecture_string(arch_str) | ||||
|         mol = self.create_molecule_from_graph(nodes, edges) | ||||
|         smiles = Chem.MolToSmiles(mol) | ||||
|         return smiles | ||||
|  | ||||
|     def get_train_smiles(self): | ||||
|         raise NotImplementedError("This method is not applicable for NAS-Bench-201 data.") | ||||
|         # raise NotImplementedError("This method is not applicable for NAS-Bench-201 data.") | ||||
|         # train_arch_strs = [] | ||||
|         # test_arch_strs = [] | ||||
|  | ||||
|         # for idx in self.train_index: | ||||
|         #     arch_info = self.train_dataset[idx] | ||||
|         #     arch_str = arch_info.arch_str | ||||
|         #     train_arch_strs.append(arch_str) | ||||
|         # for idx in self.test_index: | ||||
|         #     arch_info = self.train_dataset[idx] | ||||
|         #     arch_str = arch_info.arch_str | ||||
|         #     test_arch_strs.append(arch_str) | ||||
|  | ||||
|         train_smiles = []    | ||||
|         test_smiles = [] | ||||
|  | ||||
|         for idx in self.train_index: | ||||
|             graph = self.train_dataset[idx] | ||||
|             mol = self.create_molecule_from_graph(graph.x, graph.edge_index) | ||||
|             train_smiles.append(Chem.MolToSmiles(mol)) | ||||
|          | ||||
|         for idx in self.test_index: | ||||
|             graph = self.train_dataset[idx] | ||||
|             mol = self.create_molecule_from_graph(graph.x, graph.edge_index) | ||||
|             test_smiles.append(Chem.MolToSmiles(mol)) | ||||
|          | ||||
|         # train_smiles = [self.arch_str_to_smiles(arch_str) for arch_str in train_arch_strs] | ||||
|         # test_smiles = [self.arch_str_to_smiles(arch_str) for arch_str in test_arch_strs] | ||||
|         return train_smiles, test_smiles | ||||
|  | ||||
|     def get_data_split(self): | ||||
|         raise NotImplementedError("This method is not applicable for NAS-Bench-201 data.") | ||||
| @@ -543,6 +613,96 @@ def graphs_to_json(graphs, filename): | ||||
|         json.dump(meta_dict, f) | ||||
|     return meta_dict | ||||
|  | ||||
| class Dataset(InMemoryDataset): | ||||
|     def __init__(self, source, root, target_prop=None, transform=None, pre_transform=None, pre_filter=None): | ||||
|         self.target_prop = target_prop | ||||
|         source = '/home/stud/hanzhang/Graph-DiT/graph_dit/NAS-Bench-201-v1_1-096897.pth' | ||||
|         self.source = source | ||||
|         self.api = API(source)  # Initialize NAS-Bench-201 API | ||||
|         super().__init__(root, transform, pre_transform, pre_filter) | ||||
|         self.data, self.slices = torch.load(self.processed_paths[0]) | ||||
|  | ||||
|     @property | ||||
|     def raw_file_names(self): | ||||
|         return []  # NAS-Bench-201 data is loaded via the API, no raw files needed | ||||
|      | ||||
|     @property | ||||
|     def processed_file_names(self): | ||||
|         return [f'{self.source}.pt'] | ||||
|  | ||||
|     def process(self): | ||||
|         def parse_architecture_string(arch_str): | ||||
|             stages = arch_str.split('+') | ||||
|             nodes = ['input'] | ||||
|             edges = [] | ||||
|              | ||||
|             for stage in stages: | ||||
|                 operations = stage.strip('|').split('|') | ||||
|                 for op in operations: | ||||
|                     operation, idx = op.split('~') | ||||
|                     idx = int(idx) | ||||
|                     edges.append((idx, len(nodes)))  # Add edge from idx to the new node | ||||
|                     nodes.append(operation) | ||||
|             nodes.append('output')  # Add the output node | ||||
|             return nodes, edges | ||||
|  | ||||
|         def create_graph(nodes, edges): | ||||
|             G = nx.DiGraph() | ||||
|             for i, node in enumerate(nodes): | ||||
|                 G.add_node(i, label=node) | ||||
|             G.add_edges_from(edges) | ||||
|             return G | ||||
|  | ||||
|         def arch_to_graph(arch_str, sa, sc, target, target2=None, target3=None): | ||||
|             nodes, edges = parse_architecture_string(arch_str) | ||||
|             node_labels = [bonds[node] for node in nodes]  # Replace with appropriate encoding if necessary | ||||
|             x = torch.LongTensor(node_labels) | ||||
|  | ||||
|             edges_list = [(start, end) for start, end in edges] | ||||
|             edge_type = [bonds[nodes[end]] for start, end in edges]  # Example: using end node type as edge type | ||||
|             edge_index = torch.tensor(edges_list, dtype=torch.long).t().contiguous() | ||||
|             edge_type = torch.tensor(edge_type, dtype=torch.long) | ||||
|             edge_attr = edge_type.view(-1, 1) | ||||
|  | ||||
|             if target3 is not None: | ||||
|                 y = torch.tensor([sa, sc, target, target2, target3], dtype=torch.float).view(1, -1) | ||||
|             elif target2 is not None: | ||||
|                 y = torch.tensor([sa, sc, target, target2], dtype=torch.float).view(1, -1) | ||||
|             else: | ||||
|                 y = torch.tensor([sa, sc, target], dtype=torch.float).view(1, -1) | ||||
|  | ||||
|             data = Data(x=x, edge_index=edge_index, edge_attr=edge_attr, y=y) | ||||
|             return data, nodes | ||||
|  | ||||
|         bonds = { | ||||
|             'nor_conv_1x1': 1, | ||||
|             'nor_conv_3x3': 2, | ||||
|             'avg_pool_3x3': 3, | ||||
|             'skip_connect': 4, | ||||
|             'input': 7, | ||||
|             'output': 5, | ||||
|             'none': 6 | ||||
|         } | ||||
|  | ||||
|         # Prepare to process NAS-Bench-201 data | ||||
|         data_list = [] | ||||
|         len_data = len(self.api)  # Number of architectures | ||||
|         with tqdm(total=len_data) as pbar: | ||||
|             for arch_index in range(len_data): | ||||
|                 arch_info = self.api.query_meta_info_by_index(arch_index) | ||||
|                 arch_str = arch_info.arch_str | ||||
|                 sa = np.random.rand()  # Placeholder for synthetic accessibility | ||||
|                 sc = np.random.rand()  # Placeholder for substructure count | ||||
|                 target = np.random.rand()  # Placeholder for target value | ||||
|                 target2 = np.random.rand()  # Placeholder for second target value | ||||
|                 target3 = np.random.rand()  # Placeholder for third target value | ||||
|  | ||||
|                 data, active_nodes = arch_to_graph(arch_str, sa, sc, target, target2, target3) | ||||
|                 data_list.append(data) | ||||
|                 pbar.update(1) | ||||
|  | ||||
|         torch.save(self.collate(data_list), self.processed_paths[0]) | ||||
|  | ||||
| class Dataset_origin(InMemoryDataset): | ||||
|     def __init__(self, source, root, target_prop=None, | ||||
|                  transform=None, pre_transform=None, pre_filter=None): | ||||
| @@ -671,7 +831,7 @@ class DataInfos(AbstractDatasetInfos): | ||||
|         length = 15625 | ||||
|         ops_type = {} | ||||
|         len_ops = set() | ||||
|         api = API('../NAS-Bench-201-v1_0-e61699.pth') | ||||
|         api = API('/home/stud/hanzhang/Graph-DiT/graph_dit/NAS-Bench-201-v1_1-096897.pth') | ||||
|         for i in range(length): | ||||
|             arch_info = api.query_meta_info_by_index(i) | ||||
|             nodes, edges = parse_architecture_string(arch_info.arch_str) | ||||
|   | ||||
										
											
												File diff suppressed because one or more lines are too long
											
										
									
								
							
		Reference in New Issue
	
	Block a user