Graph-DiT/graph_dit/models/layers.py
2024-05-25 15:32:36 -04:00

115 lines
3.3 KiB
Python

from torch.jit import Final
import torch.nn.functional as F
from itertools import repeat
import collections.abc
import torch
import torch.nn as nn
class Attention(nn.Module):
fast_attn: Final[bool]
def __init__(
self,
dim,
num_heads=8,
qkv_bias=False,
qk_norm=False,
attn_drop=0,
proj_drop=0,
norm_layer=nn.LayerNorm,
):
super().__init__()
assert dim % num_heads == 0, 'dim should be divisible by num_heads'
self.num_heads = num_heads
self.head_dim = dim // num_heads
self.scale = self.head_dim ** -0.5
self.fast_attn = hasattr(torch.nn.functional, 'scaled_dot_product_attention') # FIXME
assert self.fast_attn, "scaled_dot_product_attention Not implemented"
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def dot_product_attention(self, q, k, v):
q = q * self.scale
attn = q @ k.transpose(-2, -1)
attn_sfmx = attn.softmax(dim=-1)
attn_sfmx = self.attn_drop(attn_sfmx)
x = attn_sfmx @ v
return x, attn
def forward(self, x, node_mask):
B, N, D = x.shape
# B, head, N, head_dim
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4)
q, k, v = qkv.unbind(0) # B, head, N, head_dim
q, k = self.q_norm(q), self.k_norm(k)
attn_mask = (node_mask[:, None, :, None] & node_mask[:, None, None, :]).expand(-1, self.num_heads, N, N)
attn_mask[attn_mask.sum(-1) == 0] = True
x = F.scaled_dot_product_attention(
q, k, v,
dropout_p=self.attn_drop.p,
attn_mask=attn_mask,
)
x = x.transpose(1, 2).reshape(B, N, -1)
x = self.proj(x)
x = self.proj_drop(x)
return x
class Mlp(nn.Module):
def __init__(
self,
in_features,
hidden_features=None,
out_features=None,
act_layer=nn.GELU,
bias=True,
drop=0.,
):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
bias = to_2tuple(bias)
drop_probs = to_2tuple(drop)
linear_layer = nn.Linear
self.fc1 = linear_layer(in_features, hidden_features, bias=bias[0])
self.act = act_layer()
self.drop1 = nn.Dropout(drop_probs[0])
self.fc2 = linear_layer(hidden_features, out_features, bias=bias[1])
self.drop2 = nn.Dropout(drop_probs[1])
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop1(x)
x = self.fc2(x)
x = self.drop2(x)
return x
# From PyTorch internals
def _ntuple(n):
def parse(x):
if isinstance(x, collections.abc.Iterable) and not isinstance(x, str):
return tuple(x)
return tuple(repeat(x, n))
return parse
to_2tuple = _ntuple(2)