Graph-DiT/graph_dit/utils.py
2024-05-25 15:32:36 -04:00

136 lines
4.2 KiB
Python

import os
from omegaconf import OmegaConf, open_dict
import torch
import torch_geometric.utils
from torch_geometric.utils import to_dense_adj, to_dense_batch
def create_folders(args):
try:
os.makedirs('graphs')
os.makedirs('chains')
except OSError:
pass
try:
os.makedirs('graphs/' + args.general.name)
os.makedirs('chains/' + args.general.name)
except OSError:
pass
def normalize(X, E, y, norm_values, norm_biases, node_mask):
X = (X - norm_biases[0]) / norm_values[0]
E = (E - norm_biases[1]) / norm_values[1]
y = (y - norm_biases[2]) / norm_values[2]
diag = torch.eye(E.shape[1], dtype=torch.bool).unsqueeze(0).expand(E.shape[0], -1, -1)
E[diag] = 0
return PlaceHolder(X=X, E=E, y=y).mask(node_mask)
def unnormalize(X, E, y, norm_values, norm_biases, node_mask, collapse=False):
"""
X : node features
E : edge features
y : global features`
norm_values : [norm value X, norm value E, norm value y]
norm_biases : same order
node_mask
"""
X = (X * norm_values[0] + norm_biases[0])
E = (E * norm_values[1] + norm_biases[1])
y = y * norm_values[2] + norm_biases[2]
return PlaceHolder(X=X, E=E, y=y).mask(node_mask, collapse)
def to_dense(x, edge_index, edge_attr, batch, max_num_nodes=None):
X, node_mask = to_dense_batch(x=x, batch=batch, max_num_nodes=max_num_nodes)
# node_mask = node_mask.float()
edge_index, edge_attr = torch_geometric.utils.remove_self_loops(edge_index, edge_attr)
if max_num_nodes is None:
max_num_nodes = X.size(1)
E = to_dense_adj(edge_index=edge_index, batch=batch, edge_attr=edge_attr, max_num_nodes=max_num_nodes)
E = encode_no_edge(E)
return PlaceHolder(X=X, E=E, y=None), node_mask
def encode_no_edge(E):
assert len(E.shape) == 4
if E.shape[-1] == 0:
return E
no_edge = torch.sum(E, dim=3) == 0
first_elt = E[:, :, :, 0]
first_elt[no_edge] = 1
E[:, :, :, 0] = first_elt
diag = torch.eye(E.shape[1], dtype=torch.bool).unsqueeze(0).expand(E.shape[0], -1, -1)
E[diag] = 0
return E
def update_config_with_new_keys(cfg, saved_cfg):
saved_general = saved_cfg.general
saved_train = saved_cfg.train
saved_model = saved_cfg.model
saved_dataset = saved_cfg.dataset
for key, val in saved_dataset.items():
OmegaConf.set_struct(cfg.dataset, True)
with open_dict(cfg.dataset):
if key not in cfg.dataset.keys():
setattr(cfg.dataset, key, val)
for key, val in saved_general.items():
OmegaConf.set_struct(cfg.general, True)
with open_dict(cfg.general):
if key not in cfg.general.keys():
setattr(cfg.general, key, val)
OmegaConf.set_struct(cfg.train, True)
with open_dict(cfg.train):
for key, val in saved_train.items():
if key not in cfg.train.keys():
setattr(cfg.train, key, val)
OmegaConf.set_struct(cfg.model, True)
with open_dict(cfg.model):
for key, val in saved_model.items():
if key not in cfg.model.keys():
setattr(cfg.model, key, val)
return cfg
class PlaceHolder:
def __init__(self, X, E, y):
self.X = X
self.E = E
self.y = y
def type_as(self, x: torch.Tensor, categorical: bool = False):
""" Changes the device and dtype of X, E, y. """
self.X = self.X.type_as(x)
self.E = self.E.type_as(x)
if categorical:
self.y = self.y.type_as(x)
return self
def mask(self, node_mask, collapse=False):
x_mask = node_mask.unsqueeze(-1) # bs, n, 1
e_mask1 = x_mask.unsqueeze(2) # bs, n, 1, 1
e_mask2 = x_mask.unsqueeze(1) # bs, 1, n, 1
if collapse:
self.X = torch.argmax(self.X, dim=-1)
self.E = torch.argmax(self.E, dim=-1)
self.X[node_mask == 0] = - 1
self.E[(e_mask1 * e_mask2).squeeze(-1) == 0] = - 1
else:
self.X = self.X * x_mask
self.E = self.E * e_mask1 * e_mask2
assert torch.allclose(self.E, torch.transpose(self.E, 1, 2))
return self