Graph-DiT/graph_dit/metrics/molecular_metrics_train.py
2024-05-25 15:32:36 -04:00

127 lines
3.9 KiB
Python

import torch
from torchmetrics import Metric, MetricCollection
from torch import Tensor
import torch.nn as nn
class CEPerClass(Metric):
full_state_update = False
def __init__(self, class_id):
super().__init__()
self.class_id = class_id
self.add_state('total_ce', default=torch.tensor(0.), dist_reduce_fx="sum")
self.add_state('total_samples', default=torch.tensor(0.), dist_reduce_fx="sum")
self.softmax = torch.nn.Softmax(dim=-1)
self.binary_cross_entropy = torch.nn.BCELoss(reduction='sum')
def update(self, preds: Tensor, target: Tensor) -> None:
"""Update state with predictions and targets.
Args:
preds: Predictions from model (bs, n, d) or (bs, n, n, d)
target: Ground truth values (bs, n, d) or (bs, n, n, d)
"""
target = target.reshape(-1, target.shape[-1])
mask = (target != 0.).any(dim=-1)
prob = self.softmax(preds)[..., self.class_id]
prob = prob.flatten()[mask]
target = target[:, self.class_id]
target = target[mask]
output = self.binary_cross_entropy(prob, target)
self.total_ce += output
self.total_samples += prob.numel()
def compute(self):
return self.total_ce / self.total_samples
class AtomCE(CEPerClass):
def __init__(self, i):
super().__init__(i)
class NoBondCE(CEPerClass):
def __init__(self, i):
super().__init__(i)
class SingleCE(CEPerClass):
def __init__(self, i):
super().__init__(i)
class DoubleCE(CEPerClass):
def __init__(self, i):
super().__init__(i)
class TripleCE(CEPerClass):
def __init__(self, i):
super().__init__(i)
class AromaticCE(CEPerClass):
def __init__(self, i):
super().__init__(i)
class AtomMetricsCE(MetricCollection):
def __init__(self, active_atoms):
metrics_list = []
for i, atom_type in enumerate(active_atoms):
metrics_list.append(type(f'{atom_type}_CE', (AtomCE,), {})(i))
super().__init__(metrics_list)
class BondMetricsCE(MetricCollection):
def __init__(self):
ce_no_bond = NoBondCE(0)
ce_SI = SingleCE(1)
ce_DO = DoubleCE(2)
ce_TR = TripleCE(3)
super().__init__([ce_no_bond, ce_SI, ce_DO, ce_TR])
class TrainMolecularMetricsDiscrete(nn.Module):
def __init__(self, dataset_infos):
super().__init__()
active_atoms = dataset_infos.active_atoms
self.train_atom_metrics = AtomMetricsCE(active_atoms=active_atoms)
self.train_bond_metrics = BondMetricsCE()
def forward(self, masked_pred_X, masked_pred_E, true_X, true_E, log: bool):
self.train_atom_metrics(masked_pred_X, true_X)
self.train_bond_metrics(masked_pred_E, true_E)
if log:
to_log = {}
for key, val in self.train_atom_metrics.compute().items():
to_log['train/' + key] = val.item()
for key, val in self.train_bond_metrics.compute().items():
to_log['train/' + key] = val.item()
def reset(self):
for metric in [self.train_atom_metrics, self.train_bond_metrics]:
metric.reset()
def log_epoch_metrics(self, current_epoch, log=True):
epoch_atom_metrics = self.train_atom_metrics.compute()
epoch_bond_metrics = self.train_bond_metrics.compute()
to_log = {}
for key, val in epoch_atom_metrics.items():
to_log['train_epoch/' + key] = val.item()
for key, val in epoch_bond_metrics.items():
to_log['train_epoch/' + key] = val.item()
for key, val in epoch_atom_metrics.items():
epoch_atom_metrics[key] = round(val.item(),4)
for key, val in epoch_bond_metrics.items():
epoch_bond_metrics[key] = round(val.item(),4)
if log:
print(f"Epoch {current_epoch}: {epoch_atom_metrics} -- {epoch_bond_metrics}")