414 lines
18 KiB
Python
414 lines
18 KiB
Python
|
|
import sys
|
|
sys.path.append('../')
|
|
|
|
import os
|
|
import os.path as osp
|
|
import pathlib
|
|
import json
|
|
|
|
import torch
|
|
import torch.nn.functional as F
|
|
from rdkit import Chem, RDLogger
|
|
from rdkit.Chem.rdchem import BondType as BT
|
|
from tqdm import tqdm
|
|
import numpy as np
|
|
import pandas as pd
|
|
from torch_geometric.data import Data, InMemoryDataset
|
|
from torch_geometric.loader import DataLoader
|
|
from sklearn.model_selection import train_test_split
|
|
|
|
import utils as utils
|
|
from datasets.abstract_dataset import AbstractDatasetInfos, AbstractDataModule
|
|
from diffusion.distributions import DistributionNodes
|
|
|
|
bonds = {BT.SINGLE: 1, BT.DOUBLE: 2, BT.TRIPLE: 3, BT.AROMATIC: 4}
|
|
|
|
class DataModule(AbstractDataModule):
|
|
def __init__(self, cfg):
|
|
self.datadir = cfg.dataset.datadir
|
|
self.task = cfg.dataset.task_name
|
|
print("DataModule")
|
|
print("task", self.task)
|
|
print("datadir`",self.datadir)
|
|
super().__init__(cfg)
|
|
|
|
def prepare_data(self) -> None:
|
|
target = getattr(self.cfg.dataset, 'guidance_target', None)
|
|
print("target", target)
|
|
base_path = pathlib.Path(os.path.realpath(__file__)).parents[2]
|
|
root_path = os.path.join(base_path, self.datadir)
|
|
self.root_path = root_path
|
|
|
|
batch_size = self.cfg.train.batch_size
|
|
|
|
num_workers = self.cfg.train.num_workers
|
|
pin_memory = self.cfg.dataset.pin_memory
|
|
|
|
# Load the dataset to the memory
|
|
# Dataset has target property, root path, and transform
|
|
dataset = Dataset(source=self.task, root=root_path, target_prop=target, transform=None)
|
|
print("len dataset", len(dataset))
|
|
def print_data(dataset):
|
|
print("dataset", dataset)
|
|
print("dataset keys", dataset.keys)
|
|
print("dataset x", dataset.x)
|
|
print("dataset edge_index", dataset.edge_index)
|
|
print("dataset edge_attr", dataset.edge_attr)
|
|
print("dataset y", dataset.y)
|
|
print("")
|
|
print_data(dataset=dataset[0])
|
|
print_data(dataset=dataset[1])
|
|
|
|
|
|
if len(self.task.split('-')) == 2:
|
|
train_index, val_index, test_index, unlabeled_index = self.fixed_split(dataset)
|
|
else:
|
|
train_index, val_index, test_index, unlabeled_index = self.random_data_split(dataset)
|
|
|
|
self.train_index, self.val_index, self.test_index, self.unlabeled_index = train_index, val_index, test_index, unlabeled_index
|
|
train_index, val_index, test_index, unlabeled_index = torch.LongTensor(train_index), torch.LongTensor(val_index), torch.LongTensor(test_index), torch.LongTensor(unlabeled_index)
|
|
if len(unlabeled_index) > 0:
|
|
train_index = torch.cat([train_index, unlabeled_index], dim=0)
|
|
|
|
train_dataset, val_dataset, test_dataset = dataset[train_index], dataset[val_index], dataset[test_index]
|
|
self.train_dataset = train_dataset
|
|
print('train len', len(train_dataset), 'val len', len(val_dataset), 'test len', len(test_dataset))
|
|
print('train len', len(train_index), 'val len', len(val_index), 'test len', len(test_index))
|
|
print('dataset len', len(dataset) , 'train len', len(train_dataset), 'val len', len(val_dataset), 'test len', len(test_dataset))
|
|
self.train_loader = DataLoader(train_dataset, batch_size=batch_size, num_workers=num_workers, shuffle=True, pin_memory=pin_memory)
|
|
|
|
self.val_loader = DataLoader(val_dataset, batch_size=batch_size, num_workers=num_workers, shuffle=False, pin_memory=False)
|
|
self.test_loader = DataLoader(test_dataset, batch_size=batch_size, num_workers=num_workers, shuffle=False, pin_memory=False)
|
|
|
|
training_iterations = len(train_dataset) // batch_size
|
|
self.training_iterations = training_iterations
|
|
|
|
def random_data_split(self, dataset):
|
|
nan_count = torch.isnan(dataset.y[:, 0]).sum().item()
|
|
labeled_len = len(dataset) - nan_count
|
|
full_idx = list(range(labeled_len))
|
|
train_ratio, valid_ratio, test_ratio = 0.6, 0.2, 0.2
|
|
train_index, test_index, _, _ = train_test_split(full_idx, full_idx, test_size=test_ratio, random_state=42)
|
|
train_index, val_index, _, _ = train_test_split(train_index, train_index, test_size=valid_ratio/(valid_ratio+train_ratio), random_state=42)
|
|
unlabeled_index = list(range(labeled_len, len(dataset)))
|
|
print(self.task, ' dataset len', len(dataset), 'train len', len(train_index), 'val len', len(val_index), 'test len', len(test_index), 'unlabeled len', len(unlabeled_index))
|
|
return train_index, val_index, test_index, unlabeled_index
|
|
|
|
def fixed_split(self, dataset):
|
|
if self.task == 'O2-N2':
|
|
test_index = [42,43,92,122,197,198,251,254,257,355,511,512,549,602,603,604]
|
|
else:
|
|
raise ValueError('Invalid task name: {}'.format(self.task))
|
|
full_idx = list(range(len(dataset)))
|
|
full_idx = list(set(full_idx) - set(test_index))
|
|
train_ratio = 0.8
|
|
train_index, val_index, _, _ = train_test_split(full_idx, full_idx, test_size=1-train_ratio, random_state=42)
|
|
print(self.task, ' dataset len', len(dataset), 'train len', len(train_index), 'val len', len(val_index), 'test len', len(test_index))
|
|
return train_index, val_index, test_index, []
|
|
|
|
def get_train_smiles(self):
|
|
filename = f'{self.task}.csv.gz'
|
|
df = pd.read_csv(f'{self.root_path}/raw/{filename}')
|
|
df_test = df.iloc[self.test_index]
|
|
df = df.iloc[self.train_index]
|
|
smiles_list = df['smiles'].tolist()
|
|
smiles_list_test = df_test['smiles'].tolist()
|
|
smiles_list = [Chem.MolToSmiles(Chem.MolFromSmiles(smi)) for smi in smiles_list]
|
|
smiles_list_test = [Chem.MolToSmiles(Chem.MolFromSmiles(smi)) for smi in smiles_list_test]
|
|
return smiles_list, smiles_list_test
|
|
|
|
def get_data_split(self):
|
|
filename = f'{self.task}.csv.gz'
|
|
df = pd.read_csv(f'{self.root_path}/raw/{filename}')
|
|
df_val = df.iloc[self.val_index]
|
|
df_test = df.iloc[self.test_index]
|
|
df_train = df.iloc[self.train_index]
|
|
return df_train, df_val, df_test
|
|
|
|
def example_batch(self):
|
|
return next(iter(self.val_loader))
|
|
|
|
def train_dataloader(self):
|
|
return self.train_loader
|
|
|
|
def val_dataloader(self):
|
|
return self.val_loader
|
|
|
|
def test_dataloader(self):
|
|
return self.test_loader
|
|
|
|
|
|
class Dataset(InMemoryDataset):
|
|
def __init__(self, source, root, target_prop=None,
|
|
transform=None, pre_transform=None, pre_filter=None):
|
|
self.target_prop = target_prop
|
|
self.source = source
|
|
super().__init__(root, transform, pre_transform, pre_filter)
|
|
self.data, self.slices = torch.load(self.processed_paths[0])
|
|
|
|
@property
|
|
def raw_file_names(self):
|
|
return [f'{self.source}.csv.gz']
|
|
|
|
@property
|
|
def processed_file_names(self):
|
|
return [f'{self.source}.pt']
|
|
|
|
def process(self):
|
|
RDLogger.DisableLog('rdApp.*')
|
|
data_path = osp.join(self.raw_dir, self.raw_file_names[0])
|
|
data_df = pd.read_csv(data_path)
|
|
|
|
def mol_to_graph(mol, sa, sc, target, target2=None, target3=None, valid_atoms=None):
|
|
type_idx = []
|
|
heavy_atom_indices, active_atoms = [], []
|
|
for atom in mol.GetAtoms():
|
|
if atom.GetAtomicNum() != 1:
|
|
type_idx.append(119-2) if atom.GetSymbol() == '*' else type_idx.append(atom.GetAtomicNum()-2)
|
|
heavy_atom_indices.append(atom.GetIdx())
|
|
active_atoms.append(atom.GetSymbol())
|
|
if valid_atoms is not None:
|
|
if not atom.GetSymbol() in valid_atoms:
|
|
return None, None
|
|
x = torch.LongTensor(type_idx)
|
|
|
|
edges_list = []
|
|
edge_type = []
|
|
for bond in mol.GetBonds():
|
|
start, end = bond.GetBeginAtomIdx(), bond.GetEndAtomIdx()
|
|
if start in heavy_atom_indices and end in heavy_atom_indices:
|
|
start_new, end_new = heavy_atom_indices.index(start), heavy_atom_indices.index(end)
|
|
edges_list.append((start_new, end_new))
|
|
edge_type.append(bonds[bond.GetBondType()])
|
|
edges_list.append((end_new, start_new))
|
|
edge_type.append(bonds[bond.GetBondType()])
|
|
edge_index = torch.tensor(edges_list, dtype=torch.long).t()
|
|
edge_type = torch.tensor(edge_type, dtype=torch.long)
|
|
edge_attr = edge_type
|
|
|
|
if target3 is not None:
|
|
y = torch.tensor([sa, sc, target, target2, target3], dtype=torch.float).view(1,-1)
|
|
elif target2 is not None:
|
|
y = torch.tensor([sa, sc, target, target2], dtype=torch.float).view(1,-1)
|
|
else:
|
|
y = torch.tensor([sa, sc, target], dtype=torch.float).view(1,-1)
|
|
|
|
data = Data(x=x, edge_index=edge_index, edge_attr=edge_attr, y=y, idx=i)
|
|
if self.pre_transform is not None:
|
|
data = self.pre_transform(data)
|
|
return data, active_atoms
|
|
|
|
# Loop through every row in the DataFrame and apply the function
|
|
data_list = []
|
|
len_data = len(data_df)
|
|
with tqdm(total=len_data) as pbar:
|
|
# --- data processing start ---
|
|
active_atoms = set()
|
|
for i, (sms, df_row) in enumerate(data_df.iterrows()):
|
|
if i == sms:
|
|
sms = df_row['smiles']
|
|
mol = Chem.MolFromSmiles(sms, sanitize=False)
|
|
if len(self.target_prop.split('-')) == 2:
|
|
target1, target2 = self.target_prop.split('-')
|
|
data, cur_active_atoms = mol_to_graph(mol, df_row['SA'], df_row['SC'], df_row[target1], target2=df_row[target2])
|
|
elif len(self.target_prop.split('-')) == 3:
|
|
target1, target2, target3 = self.target_prop.split('-')
|
|
data, cur_active_atoms = mol_to_graph(mol, df_row['SA'], df_row['SC'], df_row[target1], target2=df_row[target2], target3=df_row[target3])
|
|
else:
|
|
data, cur_active_atoms = mol_to_graph(mol, df_row['SA'], df_row['SC'], df_row[self.target_prop])
|
|
active_atoms.update(cur_active_atoms)
|
|
data_list.append(data)
|
|
pbar.update(1)
|
|
|
|
torch.save(self.collate(data_list), self.processed_paths[0])
|
|
|
|
|
|
class DataInfos(AbstractDatasetInfos):
|
|
def __init__(self, datamodule, cfg):
|
|
tasktype_dict = {
|
|
'hiv_b': 'classification',
|
|
'bace_b': 'classification',
|
|
'bbbp_b': 'classification',
|
|
'O2': 'regression',
|
|
'N2': 'regression',
|
|
'CO2': 'regression',
|
|
}
|
|
task_name = cfg.dataset.task_name
|
|
self.task = task_name
|
|
self.task_type = tasktype_dict.get(task_name, "regression")
|
|
self.ensure_connected = cfg.model.ensure_connected
|
|
|
|
datadir = cfg.dataset.datadir
|
|
|
|
base_path = pathlib.Path(os.path.realpath(__file__)).parents[2]
|
|
meta_filename = os.path.join(base_path, datadir, 'raw', f'{task_name}.meta.json')
|
|
data_root = os.path.join(base_path, datadir, 'raw')
|
|
if os.path.exists(meta_filename):
|
|
with open(meta_filename, 'r') as f:
|
|
meta_dict = json.load(f)
|
|
else:
|
|
meta_dict = compute_meta(data_root, task_name, datamodule.train_index, datamodule.test_index)
|
|
|
|
self.base_path = base_path
|
|
self.active_atoms = meta_dict['active_atoms']
|
|
self.max_n_nodes = meta_dict['max_node']
|
|
self.original_max_n_nodes = meta_dict['max_node']
|
|
self.n_nodes = torch.Tensor(meta_dict['n_atoms_per_mol_dist'])
|
|
self.edge_types = torch.Tensor(meta_dict['bond_type_dist'])
|
|
self.transition_E = torch.Tensor(meta_dict['transition_E'])
|
|
|
|
self.atom_decoder = meta_dict['active_atoms']
|
|
node_types = torch.Tensor(meta_dict['atom_type_dist'])
|
|
active_index = (node_types > 0).nonzero().squeeze()
|
|
self.node_types = torch.Tensor(meta_dict['atom_type_dist'])[active_index]
|
|
self.nodes_dist = DistributionNodes(self.n_nodes)
|
|
self.active_index = active_index
|
|
|
|
val_len = 3 * self.original_max_n_nodes - 2
|
|
meta_val = torch.Tensor(meta_dict['valencies'])
|
|
self.valency_distribution = torch.zeros(val_len)
|
|
val_len = min(val_len, len(meta_val))
|
|
self.valency_distribution[:val_len] = meta_val[:val_len]
|
|
self.y_prior = None
|
|
self.train_ymin = []
|
|
self.train_ymax = []
|
|
|
|
|
|
def compute_meta(root, source_name, train_index, test_index):
|
|
# initialize the periodic table
|
|
# 118 elements + 1 for *
|
|
# Initializes arrays to count the number of atoms per molecule, bond types, valencies, and transition probabilities between atom types.
|
|
pt = Chem.GetPeriodicTable()
|
|
atom_name_list = []
|
|
atom_count_list = []
|
|
for i in range(2, 119):
|
|
atom_name_list.append(pt.GetElementSymbol(i))
|
|
atom_count_list.append(0)
|
|
atom_name_list.append('*')
|
|
atom_count_list.append(0)
|
|
n_atoms_per_mol = [0] * 500
|
|
bond_count_list = [0, 0, 0, 0, 0]
|
|
bond_type_to_index = {BT.SINGLE: 1, BT.DOUBLE: 2, BT.TRIPLE: 3, BT.AROMATIC: 4}
|
|
valencies = [0] * 500
|
|
tansition_E = np.zeros((118, 118, 5))
|
|
|
|
# Load the data from the source file
|
|
filename = f'{source_name}.csv.gz'
|
|
df = pd.read_csv(f'{root}/{filename}')
|
|
all_index = list(range(len(df)))
|
|
non_test_index = list(set(all_index) - set(test_index))
|
|
df = df.iloc[non_test_index]
|
|
# extract the smiles from the dataframe
|
|
tot_smiles = df['smiles'].tolist()
|
|
|
|
n_atom_list = []
|
|
n_bond_list = []
|
|
for i, sms in enumerate(tot_smiles):
|
|
try:
|
|
mol = Chem.MolFromSmiles(sms)
|
|
except:
|
|
continue
|
|
|
|
n_atom = mol.GetNumHeavyAtoms()
|
|
n_bond = mol.GetNumBonds()
|
|
n_atom_list.append(n_atom)
|
|
n_bond_list.append(n_bond)
|
|
|
|
n_atoms_per_mol[n_atom] += 1
|
|
cur_atom_count_arr = np.zeros(118)
|
|
for atom in mol.GetAtoms():
|
|
symbol = atom.GetSymbol()
|
|
if symbol == 'H':
|
|
continue
|
|
elif symbol == '*':
|
|
atom_count_list[-1] += 1
|
|
cur_atom_count_arr[-1] += 1
|
|
else:
|
|
atom_count_list[atom.GetAtomicNum()-2] += 1
|
|
cur_atom_count_arr[atom.GetAtomicNum()-2] += 1
|
|
try:
|
|
valencies[int(atom.GetExplicitValence())] += 1
|
|
except:
|
|
print('src', source_name,'int(atom.GetExplicitValence())', int(atom.GetExplicitValence()))
|
|
|
|
tansition_E_temp = np.zeros((118, 118, 5))
|
|
for bond in mol.GetBonds():
|
|
start_atom, end_atom = bond.GetBeginAtom(), bond.GetEndAtom()
|
|
if start_atom.GetSymbol() == 'H' or end_atom.GetSymbol() == 'H':
|
|
continue
|
|
|
|
if start_atom.GetSymbol() == '*':
|
|
start_index = 117
|
|
else:
|
|
start_index = start_atom.GetAtomicNum() - 2
|
|
if end_atom.GetSymbol() == '*':
|
|
end_index = 117
|
|
else:
|
|
end_index = end_atom.GetAtomicNum() - 2
|
|
|
|
bond_type = bond.GetBondType()
|
|
bond_index = bond_type_to_index[bond_type]
|
|
bond_count_list[bond_index] += 2
|
|
|
|
# Update the transition matrix
|
|
# The transition matrix is symmetric, so we update both directions
|
|
# We also update the temporary transition matrix to check for errors
|
|
# in the atom count
|
|
|
|
tansition_E[start_index, end_index, bond_index] += 2
|
|
tansition_E[end_index, start_index, bond_index] += 2
|
|
tansition_E_temp[start_index, end_index, bond_index] += 2
|
|
tansition_E_temp[end_index, start_index, bond_index] += 2
|
|
|
|
bond_count_list[0] += n_atom * (n_atom - 1) - n_bond * 2
|
|
cur_tot_bond = cur_atom_count_arr.reshape(-1,1) * cur_atom_count_arr.reshape(1,-1) * 2 # 118 * 118
|
|
cur_tot_bond = cur_tot_bond - np.diag(cur_atom_count_arr) * 2 # 118 * 118
|
|
tansition_E[:, :, 0] += cur_tot_bond - tansition_E_temp.sum(axis=-1)
|
|
assert (cur_tot_bond > tansition_E_temp.sum(axis=-1)).sum() >= 0, f'i:{i}, sms:{sms}'
|
|
|
|
n_atoms_per_mol = np.array(n_atoms_per_mol) / np.sum(n_atoms_per_mol)
|
|
n_atoms_per_mol = n_atoms_per_mol.tolist()[:51]
|
|
|
|
atom_count_list = np.array(atom_count_list) / np.sum(atom_count_list)
|
|
print('processed meta info: ------', filename, '------')
|
|
print('len atom_count_list', len(atom_count_list))
|
|
print('len atom_name_list', len(atom_name_list))
|
|
active_atoms = np.array(atom_name_list)[atom_count_list > 0]
|
|
active_atoms = active_atoms.tolist()
|
|
atom_count_list = atom_count_list.tolist()
|
|
|
|
bond_count_list = np.array(bond_count_list) / np.sum(bond_count_list)
|
|
bond_count_list = bond_count_list.tolist()
|
|
valencies = np.array(valencies) / np.sum(valencies)
|
|
valencies = valencies.tolist()
|
|
|
|
no_edge = np.sum(tansition_E, axis=-1) == 0
|
|
first_elt = tansition_E[:, :, 0]
|
|
first_elt[no_edge] = 1
|
|
tansition_E[:, :, 0] = first_elt
|
|
|
|
tansition_E = tansition_E / np.sum(tansition_E, axis=-1, keepdims=True)
|
|
|
|
meta_dict = {
|
|
'source': source_name,
|
|
'num_graph': len(n_atom_list),
|
|
'n_atoms_per_mol_dist': n_atoms_per_mol,
|
|
'max_node': max(n_atom_list),
|
|
'max_bond': max(n_bond_list),
|
|
'atom_type_dist': atom_count_list,
|
|
'bond_type_dist': bond_count_list,
|
|
'valencies': valencies,
|
|
'active_atoms': active_atoms,
|
|
'num_atom_type': len(active_atoms),
|
|
'transition_E': tansition_E.tolist(),
|
|
}
|
|
|
|
with open(f'{root}/{source_name}.meta.json', "w") as f:
|
|
json.dump(meta_dict, f)
|
|
|
|
return meta_dict
|
|
|
|
|
|
if __name__ == "__main__":
|
|
pass |