303 lines
		
	
	
		
			9.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			303 lines
		
	
	
		
			9.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import math, os
 | |
| import pickle
 | |
| import os.path as op
 | |
| 
 | |
| import numpy as np
 | |
| import pandas as pd
 | |
| from joblib import dump, load
 | |
| from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor
 | |
| from sklearn.metrics import mean_absolute_error, roc_auc_score
 | |
| 
 | |
| 
 | |
| from rdkit import Chem
 | |
| from rdkit import rdBase
 | |
| from rdkit.Chem import AllChem
 | |
| from rdkit import DataStructs
 | |
| from rdkit.Chem import rdMolDescriptors
 | |
| rdBase.DisableLog('rdApp.error')
 | |
| import json
 | |
| 
 | |
| op_type = {
 | |
|     'nor_conv_1x1': 1,
 | |
|     'nor_conv_3x3': 2,
 | |
|     'avg_pool_3x3': 3,
 | |
|     'skip_connect': 4,
 | |
|     'output': 5,
 | |
|     'none': 6,
 | |
|     'input': 7
 | |
| }
 | |
| 
 | |
| task_to_colname = {
 | |
|     'hiv_b': 'HIV_active',
 | |
|     'bace_b': 'Class',
 | |
|     'bbbp_b': 'p_np',
 | |
|     'O2': 'O2',
 | |
|     'N2': 'N2',
 | |
|     'CO2': 'CO2',
 | |
| }
 | |
| 
 | |
| tasktype_name = {
 | |
|     'hiv_b': 'classification',
 | |
|     'bace_b': 'classification',
 | |
|     'bbbp_b': 'classification',
 | |
|     'O2': 'regression',
 | |
|     'N2': 'regression',
 | |
|     'CO2': 'regression',
 | |
|     'nasbench201': 'regression',
 | |
| }
 | |
| 
 | |
| 
 | |
| class TaskModel():
 | |
|     """Scores based on an ECFP classifier."""
 | |
|     def __init__(self, model_path, task_name):
 | |
|         task_type = tasktype_name[task_name]
 | |
|         self.task_name = task_name
 | |
|         self.task_type = task_type
 | |
|         self.model_path = model_path
 | |
|         self.metric_func = roc_auc_score if 'classification' in self.task_type else mean_absolute_error
 | |
| 
 | |
|         try:
 | |
|             self.model = load(model_path)
 | |
|             print(self.task_name, ' evaluator loaded')
 | |
|         except:
 | |
|             print(self.task_name, ' evaluator not found, training new one...')
 | |
|             if 'classification' in task_type:
 | |
|                 self.model = RandomForestClassifier(random_state=0)
 | |
|             elif 'regression' in task_type:
 | |
|                 self.model = RandomForestRegressor(random_state=0)
 | |
|             perfermance = self.train()
 | |
|             dump(self.model, model_path)
 | |
|             print('Oracle peformance: ', perfermance)
 | |
|     def train(self):
 | |
|         def read_adj_ops_from_json(filename):
 | |
|             with open(filename, 'r') as json_file:
 | |
|                 data = json.load(json_file)
 | |
| 
 | |
|             adj_ops_pairs = []
 | |
|             for item in data:
 | |
|                 adj_matrix = np.array(item['adj_matrix'])
 | |
|                 ops = item['ops']
 | |
|                 acc = item['train'][0]['accuracy']
 | |
|                 adj_ops_pairs.append((adj_matrix, ops, acc))
 | |
|             
 | |
|             return adj_ops_pairs
 | |
|         def feature_from_adj_and_ops(adj, ops):
 | |
|             return np.concatenate([adj.flatten(), ops])
 | |
|         filename = '/home/stud/hanzhang/nasbenchDiT/graph_dit/nasbench-201-graph.json'
 | |
|         graphs = read_adj_ops_from_json(filename)
 | |
|         adjs = []
 | |
|         opss = []
 | |
|         accs = []
 | |
|         features = []
 | |
|         for graph in graphs:
 | |
|             adj, ops, acc=graph
 | |
|             op_code = [op_type[op] for op in ops]
 | |
|             adjs.append(adj)
 | |
|             opss.append(op_code)
 | |
|             accs.append(acc)
 | |
|             features.append(feature_from_adj_and_ops(adj, op_code))
 | |
|         features = np.array(features)
 | |
|         labels = np.array(accs)
 | |
| 
 | |
|         mask = ~np.isnan(labels)
 | |
|         labels = labels[mask]
 | |
|         features = features[mask]
 | |
|         # features = str(features)
 | |
|         self.model.fit(features, labels)
 | |
|         y_pred = self.model.predict(features)
 | |
|         perf = self.metric_func(labels, y_pred)
 | |
|         print(f'{self.task_name} performance: {perf}')
 | |
|         return perf
 | |
| 
 | |
|     def train__(self):
 | |
|         data_path = os.path.dirname(self.model_path)
 | |
|         data_path = os.path.join(os.path.dirname(self.model_path), '..', f'raw/{self.task_name}.csv.gz')
 | |
|         df = pd.read_csv(data_path)
 | |
|         col_name = task_to_colname[self.task_name]
 | |
|         y = df[col_name].to_numpy()
 | |
|         x_smiles = df['smiles'].to_numpy()
 | |
|         mask = ~np.isnan(y)
 | |
|         y = y[mask]
 | |
| 
 | |
|         if 'classification' in self.task_type:
 | |
|             y = y.astype(int)
 | |
| 
 | |
|         x_smiles = x_smiles[mask]
 | |
|         x_fps = []
 | |
|         mask = []
 | |
|         for i,smiles in enumerate(x_smiles):
 | |
|             mol = Chem.MolFromSmiles(smiles)
 | |
|             mask.append( int(mol is not None) )
 | |
|             fp = TaskModel.fingerprints_from_mol(mol) if mol else np.zeros((1, 2048))
 | |
|             x_fps.append(fp)
 | |
|         x_fps = np.concatenate(x_fps, axis=0)
 | |
|         self.model.fit(x_fps, y)
 | |
|         y_pred = self.model.predict(x_fps)
 | |
|         perf = self.metric_func(y, y_pred)
 | |
|         print(f'{self.task_name} performance: {perf}')
 | |
|         return perf
 | |
| 
 | |
|     def __call(self, smiles_list):
 | |
|         fps = []
 | |
|         mask = []
 | |
|         for i,smiles in enumerate(smiles_list):
 | |
|             mol = Chem.MolFromSmiles(smiles)
 | |
|             mask.append( int(mol is not None) )
 | |
|             fp = TaskModel.fingerprints_from_mol(mol) if mol else np.zeros((1, 2048))
 | |
|             fps.append(fp)
 | |
| 
 | |
|         fps = np.concatenate(fps, axis=0)
 | |
|         if 'classification' in self.task_type:
 | |
|             scores = self.model.predict_proba(fps)[:, 1]
 | |
|         else:
 | |
|             scores = self.model.predict(fps)
 | |
|         scores = scores * np.array(mask)
 | |
|         return np.float32(scores)
 | |
| 
 | |
|     def __call__(self, graph_list):
 | |
|         # def read_adj_ops_from_json(filename):
 | |
|         #     with open(filename, 'r') as json_file:
 | |
|         #         data = json.load(json_file)
 | |
| 
 | |
|         #     adj_ops_pairs = []
 | |
|         #     for item in data:
 | |
|         #         adj_matrix = np.array(item['adj_matrix'])
 | |
|         #         ops = item['ops']
 | |
|         #         acc = item['train'][0]['accuracy']
 | |
|         #         adj_ops_pairs.append((adj_matrix, ops, acc))
 | |
|             
 | |
|         #     return adj_ops_pairs
 | |
|         def feature_from_adj_and_ops(ops, adj):
 | |
|             return np.concatenate([adj.flatten(), ops])
 | |
|         # filename = '/home/stud/hanzhang/nasbenchDiT/graph_dit/nasbench-201-graph.json'
 | |
|         # graphs = read_adj_ops_from_json(filename)
 | |
|         # adjs = []
 | |
|         # opss = []
 | |
|         # accs = []
 | |
|         # features = []
 | |
|         # for graph in graphs:
 | |
|         #     adj, ops, acc=graph
 | |
|         #     op_code = [op_type[op] for op in ops]
 | |
|         #     adjs.append(adj)
 | |
|         #     opss.append(op_code)
 | |
|         #     accs.append(acc)
 | |
|         features = []
 | |
|         print(f"graphlist: {graph_list[0]}")
 | |
|         print(f"len graphlist: {len(graph_list)}") 
 | |
|         for op_code, adj in graph_list:
 | |
|             features.append(feature_from_adj_and_ops(op_code, adj))
 | |
|         print(f"len features: {len(features)}")
 | |
|         # print(f"features: {features[0].shape}")
 | |
|         features = np.stack(features)
 | |
|         features = features.astype(np.float32)
 | |
|         print(f"features shape: {features.shape}")
 | |
| 
 | |
| 
 | |
|         fps = features
 | |
|         if 'classification' in self.task_type:
 | |
|             scores = self.model.predict_proba(fps)[:, 1]
 | |
|         else:
 | |
|             scores = self.model.predict(fps)
 | |
|         # scores = scores * np.array(mask)
 | |
|         return np.float32(scores)
 | |
| 
 | |
| 
 | |
|     @classmethod
 | |
|     def fingerprints_from_mol(cls, mol):  # use ECFP4
 | |
|         features_vec = AllChem.GetMorganFingerprintAsBitVect(mol, 2, nBits=2048)
 | |
|         features = np.zeros((1,))
 | |
|         DataStructs.ConvertToNumpyArray(features_vec, features)
 | |
|         return features.reshape(1, -1)
 | |
| 
 | |
| ###### SAS Score ######
 | |
| _fscores = None
 | |
| 
 | |
| def readFragmentScores(name='fpscores'):
 | |
|     import gzip
 | |
|     global _fscores
 | |
|     # generate the full path filename:
 | |
|     if name == "fpscores":
 | |
|         name = op.join(op.dirname(__file__), name)
 | |
|     data = pickle.load(gzip.open('%s.pkl.gz' % name))
 | |
|     outDict = {}
 | |
|     for i in data:
 | |
|         for j in range(1, len(i)):
 | |
|             outDict[i[j]] = float(i[0])
 | |
|     _fscores = outDict
 | |
| 
 | |
| def numBridgeheadsAndSpiro(mol, ri=None):
 | |
|     nSpiro = rdMolDescriptors.CalcNumSpiroAtoms(mol)
 | |
|     nBridgehead = rdMolDescriptors.CalcNumBridgeheadAtoms(mol)
 | |
|     return nBridgehead, nSpiro
 | |
| 
 | |
| def calculateSAS(smiles_list):
 | |
|     scores = []
 | |
|     for i, smiles in enumerate(smiles_list):
 | |
|         mol = Chem.MolFromSmiles(smiles)
 | |
|         score = calculateScore(mol)
 | |
|         scores.append(score)
 | |
|     return np.float32(scores)
 | |
| 
 | |
| def calculateScore(m):
 | |
|     if _fscores is None:
 | |
|         readFragmentScores()
 | |
| 
 | |
|     # fragment score
 | |
|     fp = rdMolDescriptors.GetMorganFingerprint(m,
 | |
|                                                2)  # <- 2 is the *radius* of the circular fingerprint
 | |
|     fps = fp.GetNonzeroElements()
 | |
|     score1 = 0.
 | |
|     nf = 0
 | |
|     for bitId, v in fps.items():
 | |
|         nf += v
 | |
|         sfp = bitId
 | |
|         score1 += _fscores.get(sfp, -4) * v
 | |
|     score1 /= nf
 | |
| 
 | |
|     # features score
 | |
|     nAtoms = m.GetNumAtoms()
 | |
|     nChiralCenters = len(Chem.FindMolChiralCenters(m, includeUnassigned=True))
 | |
|     ri = m.GetRingInfo()
 | |
|     nBridgeheads, nSpiro = numBridgeheadsAndSpiro(m, ri)
 | |
|     nMacrocycles = 0
 | |
|     for x in ri.AtomRings():
 | |
|         if len(x) > 8:
 | |
|             nMacrocycles += 1
 | |
| 
 | |
|     sizePenalty = nAtoms**1.005 - nAtoms
 | |
|     stereoPenalty = math.log10(nChiralCenters + 1)
 | |
|     spiroPenalty = math.log10(nSpiro + 1)
 | |
|     bridgePenalty = math.log10(nBridgeheads + 1)
 | |
|     macrocyclePenalty = 0.
 | |
|     # ---------------------------------------
 | |
|     # This differs from the paper, which defines:
 | |
|     #  macrocyclePenalty = math.log10(nMacrocycles+1)
 | |
|     # This form generates better results when 2 or more macrocycles are present
 | |
|     if nMacrocycles > 0:
 | |
|         macrocyclePenalty = math.log10(2)
 | |
| 
 | |
|     score2 = 0. - sizePenalty - stereoPenalty - spiroPenalty - bridgePenalty - macrocyclePenalty
 | |
| 
 | |
|     # correction for the fingerprint density
 | |
|     # not in the original publication, added in version 1.1
 | |
|     # to make highly symmetrical molecules easier to synthetise
 | |
|     score3 = 0.
 | |
|     if nAtoms > len(fps):
 | |
|         score3 = math.log(float(nAtoms) / len(fps)) * .5
 | |
| 
 | |
|     sascore = score1 + score2 + score3
 | |
| 
 | |
|     # need to transform "raw" value into scale between 1 and 10
 | |
|     min = -4.0
 | |
|     max = 2.5
 | |
|     sascore = 11. - (sascore - min + 1) / (max - min) * 9.
 | |
|     # smooth the 10-end
 | |
|     if sascore > 8.:
 | |
|         sascore = 8. + math.log(sascore + 1. - 9.)
 | |
|     if sascore > 10.:
 | |
|         sascore = 10.0
 | |
|     elif sascore < 1.:
 | |
|         sascore = 1.0
 | |
| 
 | |
|     return sascore
 |