Graph-DiT/graph_dit/analysis/rdkit_functions.py
2024-05-25 15:32:36 -04:00

412 lines
17 KiB
Python

from rdkit import Chem, RDLogger
RDLogger.DisableLog('rdApp.*')
from fcd_torch import FCD as FCDMetric
from mini_moses.metrics.metrics import FragMetric, internal_diversity
from mini_moses.metrics.utils import get_mol, mapper
import re
import time
import random
random.seed(0)
import numpy as np
from multiprocessing import Pool
import torch
from metrics.property_metric import calculateSAS
bond_dict = [None, Chem.rdchem.BondType.SINGLE, Chem.rdchem.BondType.DOUBLE, Chem.rdchem.BondType.TRIPLE,
Chem.rdchem.BondType.AROMATIC]
ATOM_VALENCY = {6: 4, 7: 3, 8: 2, 9: 1, 15: 3, 16: 2, 17: 1, 35: 1, 53: 1}
bd_dict_x = {'O2-N2': [5.00E+04, 1.00E-03]}
bd_dict_y = {'O2-N2': [5.00E+04/2.78E+04, 1.00E-03/2.43E-05]}
selectivity = ['O2-N2']
a_dict = {}
b_dict = {}
for prop_name in selectivity:
x1, x2 = np.log10(bd_dict_x[prop_name][0]), np.log10(bd_dict_x[prop_name][1])
y1, y2 = np.log10(bd_dict_y[prop_name][0]), np.log10(bd_dict_y[prop_name][1])
a = (y1-y2)/(x1-x2)
b = y1-a*x1
a_dict[prop_name] = a
b_dict[prop_name] = b
def selectivity_evaluation(gas1, gas2, prop_name):
x = np.log10(np.array(gas1))
y = np.log10(np.array(gas1) / np.array(gas2))
upper = (y - (a_dict[prop_name] * x + b_dict[prop_name])) > 0
return upper
class BasicMolecularMetrics(object):
def __init__(self, atom_decoder, train_smiles=None, stat_ref=None, task_evaluator=None, n_jobs=8, device='cpu', batch_size=512):
self.dataset_smiles_list = train_smiles
self.atom_decoder = atom_decoder
self.n_jobs = n_jobs
self.device = device
self.batch_size = batch_size
self.stat_ref = stat_ref
self.task_evaluator = task_evaluator
def compute_relaxed_validity(self, generated, ensure_connected):
valid = []
num_components = []
all_smiles = []
valid_mols = []
covered_atoms = set()
direct_valid_count = 0
for graph in generated:
atom_types, edge_types = graph
mol = build_molecule_with_partial_charges(atom_types, edge_types, self.atom_decoder)
direct_valid_flag = True if check_mol(mol, largest_connected_comp=True) is not None else False
if direct_valid_flag:
direct_valid_count += 1
if not ensure_connected:
mol_conn, _ = correct_mol(mol, connection=True)
mol = mol_conn if mol_conn is not None else correct_mol(mol, connection=False)[0]
else: # ensure fully connected
mol, _ = correct_mol(mol, connection=True)
smiles = mol2smiles(mol)
mol = get_mol(smiles)
try:
mol_frags = Chem.rdmolops.GetMolFrags(mol, asMols=True, sanitizeFrags=True)
num_components.append(len(mol_frags))
largest_mol = max(mol_frags, default=mol, key=lambda m: m.GetNumAtoms())
smiles = mol2smiles(largest_mol)
if smiles is not None and largest_mol is not None and len(smiles) > 1 and Chem.MolFromSmiles(smiles) is not None:
valid_mols.append(largest_mol)
valid.append(smiles)
for atom in largest_mol.GetAtoms():
covered_atoms.add(atom.GetSymbol())
all_smiles.append(smiles)
else:
all_smiles.append(None)
except Exception as e:
# print(f"An error occurred: {e}")
all_smiles.append(None)
return valid, len(valid) / len(generated), direct_valid_count / len(generated), np.array(num_components), all_smiles, covered_atoms
def evaluate(self, generated, targets, ensure_connected, active_atoms=None):
""" generated: list of pairs (positions: n x 3, atom_types: n [int])
the positions and atom types should already be masked. """
valid, validity, nc_validity, num_components, all_smiles, covered_atoms = self.compute_relaxed_validity(generated, ensure_connected=ensure_connected)
nc_mu = num_components.mean() if len(num_components) > 0 else 0
nc_min = num_components.min() if len(num_components) > 0 else 0
nc_max = num_components.max() if len(num_components) > 0 else 0
len_active = len(active_atoms) if active_atoms is not None else 1
cover_str = f"Cover {len(covered_atoms)} ({len(covered_atoms)/len_active * 100:.2f}%) atoms: {covered_atoms}"
print(f"Validity over {len(generated)} molecules: {validity * 100 :.2f}% (w/o correction: {nc_validity * 100 :.2f}%), cover {len(covered_atoms)} ({len(covered_atoms)/len_active * 100:.2f}%) atoms: {covered_atoms}")
print(f"Number of connected components of {len(generated)} molecules: min:{nc_min:.2f} mean:{nc_mu:.2f} max:{nc_max:.2f}")
if validity > 0:
dist_metrics = {'cover_str': cover_str ,'validity': validity, 'validity_nc': nc_validity}
unique = list(set(valid))
close_pool = False
if self.n_jobs != 1:
pool = Pool(self.n_jobs)
close_pool = True
else:
pool = 1
valid_mols = mapper(pool)(get_mol, valid)
dist_metrics['interval_diversity'] = internal_diversity(valid_mols, pool, device=self.device)
start_time = time.time()
if self.stat_ref is not None:
kwargs = {'n_jobs': pool, 'device': self.device, 'batch_size': self.batch_size}
kwargs_fcd = {'n_jobs': self.n_jobs, 'device': self.device, 'batch_size': self.batch_size}
try:
dist_metrics['sim/Frag'] = FragMetric(**kwargs)(gen=valid_mols, pref=self.stat_ref['Frag'])
except:
print('error: ', 'pool', pool)
print('valid_mols: ', valid_mols)
dist_metrics['dist/FCD'] = FCDMetric(**kwargs_fcd)(gen=valid, pref=self.stat_ref['FCD'])
if self.task_evaluator is not None:
evaluation_list = list(self.task_evaluator.keys())
evaluation_list = evaluation_list.copy()
assert 'meta_taskname' in evaluation_list
meta_taskname = self.task_evaluator['meta_taskname']
evaluation_list.remove('meta_taskname')
meta_split = meta_taskname.split('-')
valid_index = np.array([True if smiles else False for smiles in all_smiles])
targets_log = {}
for i, name in enumerate(evaluation_list):
targets_log[f'input_{name}'] = np.array([float('nan')] * len(valid_index))
targets_log[f'input_{name}'] = targets[:, i]
targets = targets[valid_index]
if len(meta_split) == 2:
cached_perm = {meta_split[0]: None, meta_split[1]: None}
for i, name in enumerate(evaluation_list):
if name == 'scs':
continue
elif name == 'sas':
scores = calculateSAS(valid)
else:
scores = self.task_evaluator[name](valid)
targets_log[f'output_{name}'] = np.array([float('nan')] * len(valid_index))
targets_log[f'output_{name}'][valid_index] = scores
if name in ['O2', 'N2', 'CO2']:
if len(meta_split) == 2:
cached_perm[name] = scores
scores, cur_targets = np.log10(scores), np.log10(targets[:, i])
dist_metrics[f'{name}/mae'] = np.mean(np.abs(scores - cur_targets))
elif name == 'sas':
dist_metrics[f'{name}/mae'] = np.mean(np.abs(scores - targets[:, i]))
else:
true_y = targets[:, i]
predicted_labels = (scores >= 0.5).astype(int)
acc = (predicted_labels == true_y).sum() / len(true_y)
dist_metrics[f'{name}/acc'] = acc
if len(meta_split) == 2:
if cached_perm[meta_split[0]] is not None and cached_perm[meta_split[1]] is not None:
task_name = self.task_evaluator['meta_taskname']
upper = selectivity_evaluation(cached_perm[meta_split[0]], cached_perm[meta_split[1]], task_name)
dist_metrics[f'selectivity/{task_name}'] = np.sum(upper)
end_time = time.time()
elapsed_time = end_time - start_time
max_key_length = max(len(key) for key in dist_metrics)
print(f'Details over {len(valid)} ({len(generated)}) valid (total) molecules, calculating metrics using {elapsed_time:.2f} s:')
strs = ''
for i, (key, value) in enumerate(dist_metrics.items()):
if isinstance(value, (int, float, np.floating, np.integer)):
strs = strs + f'{key:>{max_key_length}}:{value:<7.4f}\t'
if i % 4 == 3:
strs = strs + '\n'
print(strs)
if close_pool:
pool.close()
pool.join()
else:
unique = []
dist_metrics = {}
targets_log = None
return unique, dict(nc_min=nc_min, nc_max=nc_max, nc_mu=nc_mu), all_smiles, dist_metrics, targets_log
def mol2smiles(mol):
if mol is None:
return None
try:
Chem.SanitizeMol(mol)
except ValueError:
return None
return Chem.MolToSmiles(mol)
def build_molecule_with_partial_charges(atom_types, edge_types, atom_decoder, verbose=False):
if verbose:
print("\nbuilding new molecule")
mol = Chem.RWMol()
for atom in atom_types:
a = Chem.Atom(atom_decoder[atom.item()])
mol.AddAtom(a)
if verbose:
print("Atom added: ", atom.item(), atom_decoder[atom.item()])
edge_types = torch.triu(edge_types)
all_bonds = torch.nonzero(edge_types)
for i, bond in enumerate(all_bonds):
if bond[0].item() != bond[1].item():
mol.AddBond(bond[0].item(), bond[1].item(), bond_dict[edge_types[bond[0], bond[1]].item()])
if verbose:
print("bond added:", bond[0].item(), bond[1].item(), edge_types[bond[0], bond[1]].item(),
bond_dict[edge_types[bond[0], bond[1]].item()])
# add formal charge to atom: e.g. [O+], [N+], [S+]
# not support [O-], [N-], [S-], [NH+] etc.
flag, atomid_valence = check_valency(mol)
if verbose:
print("flag, valence", flag, atomid_valence)
if flag:
continue
else:
if len(atomid_valence) == 2:
idx = atomid_valence[0]
v = atomid_valence[1]
an = mol.GetAtomWithIdx(idx).GetAtomicNum()
if verbose:
print("atomic num of atom with a large valence", an)
if an in (7, 8, 16) and (v - ATOM_VALENCY[an]) == 1:
mol.GetAtomWithIdx(idx).SetFormalCharge(1)
# print("Formal charge added")
else:
continue
return mol
def check_valency(mol):
try:
Chem.SanitizeMol(mol, sanitizeOps=Chem.SanitizeFlags.SANITIZE_PROPERTIES)
return True, None
except ValueError as e:
e = str(e)
p = e.find('#')
e_sub = e[p:]
atomid_valence = list(map(int, re.findall(r'\d+', e_sub)))
return False, atomid_valence
def correct_mol(mol, connection=False):
#####
no_correct = False
flag, _ = check_valency(mol)
if flag:
no_correct = True
while True:
if connection:
mol_conn = connect_fragments(mol)
# if mol_conn is not None:
mol = mol_conn
if mol is None:
return None, no_correct
flag, atomid_valence = check_valency(mol)
if flag:
break
else:
try:
assert len(atomid_valence) == 2
idx = atomid_valence[0]
v = atomid_valence[1]
queue = []
check_idx = 0
for b in mol.GetAtomWithIdx(idx).GetBonds():
type = int(b.GetBondType())
queue.append((b.GetIdx(), type, b.GetBeginAtomIdx(), b.GetEndAtomIdx()))
if type == 12:
check_idx += 1
queue.sort(key=lambda tup: tup[1], reverse=True)
if queue[-1][1] == 12:
return None, no_correct
elif len(queue) > 0:
start = queue[check_idx][2]
end = queue[check_idx][3]
t = queue[check_idx][1] - 1
mol.RemoveBond(start, end)
if t >= 1:
mol.AddBond(start, end, bond_dict[t])
except Exception as e:
# print(f"An error occurred in correction: {e}")
return None, no_correct
return mol, no_correct
def check_mol(m, largest_connected_comp=True):
if m is None:
return None
sm = Chem.MolToSmiles(m, isomericSmiles=True)
if largest_connected_comp and '.' in sm:
vsm = [(s, len(s)) for s in sm.split('.')] # 'C.CC.CCc1ccc(N)cc1CCC=O'.split('.')
vsm.sort(key=lambda tup: tup[1], reverse=True)
mol = Chem.MolFromSmiles(vsm[0][0])
else:
mol = Chem.MolFromSmiles(sm)
return mol
##### connect fragements
def select_atom_with_available_valency(frag):
atoms = list(frag.GetAtoms())
random.shuffle(atoms)
for atom in atoms:
if atom.GetAtomicNum() > 1 and atom.GetImplicitValence() > 0:
return atom
return None
def select_atoms_with_available_valency(frag):
return [atom for atom in frag.GetAtoms() if atom.GetAtomicNum() > 1 and atom.GetImplicitValence() > 0]
def try_to_connect_fragments(combined_mol, frag, atom1, atom2):
# Make copies of the molecules to try the connection
trial_combined_mol = Chem.RWMol(combined_mol)
trial_frag = Chem.RWMol(frag)
# Add the new fragment to the combined molecule with new indices
new_indices = {atom.GetIdx(): trial_combined_mol.AddAtom(atom) for atom in trial_frag.GetAtoms()}
# Add the bond between the suitable atoms from each fragment
trial_combined_mol.AddBond(atom1.GetIdx(), new_indices[atom2.GetIdx()], Chem.BondType.SINGLE)
# Adjust the hydrogen count of the connected atoms
for atom_idx in [atom1.GetIdx(), new_indices[atom2.GetIdx()]]:
atom = trial_combined_mol.GetAtomWithIdx(atom_idx)
num_h = atom.GetTotalNumHs()
atom.SetNumExplicitHs(max(0, num_h - 1))
# Add bonds for the new fragment
for bond in trial_frag.GetBonds():
trial_combined_mol.AddBond(new_indices[bond.GetBeginAtomIdx()], new_indices[bond.GetEndAtomIdx()], bond.GetBondType())
# Convert to a Mol object and try to sanitize it
new_mol = Chem.Mol(trial_combined_mol)
try:
Chem.SanitizeMol(new_mol)
return new_mol # Return the new valid molecule
except Chem.MolSanitizeException:
return None # If the molecule is not valid, return None
def connect_fragments(mol):
# Get the separate fragments
frags = Chem.GetMolFrags(mol, asMols=True, sanitizeFrags=False)
if len(frags) < 2:
return mol
combined_mol = Chem.RWMol(frags[0])
for frag in frags[1:]:
# Select all atoms with available valency from both molecules
atoms1 = select_atoms_with_available_valency(combined_mol)
atoms2 = select_atoms_with_available_valency(frag)
# Try to connect using all combinations of available valency atoms
for atom1 in atoms1:
for atom2 in atoms2:
new_mol = try_to_connect_fragments(combined_mol, frag, atom1, atom2)
if new_mol is not None:
# If a valid connection is made, update the combined molecule and break
combined_mol = new_mol
break
else:
# Continue if the inner loop didn't break (no valid connection found for atom1)
continue
# Break if the inner loop did break (valid connection found)
break
else:
# If no valid connections could be made with any of the atoms, return None
return None
return combined_mol
#### connect fragements
def compute_molecular_metrics(molecule_list, targets, train_smiles, stat_ref, dataset_info, task_evaluator, comput_config):
""" molecule_list: (dict) """
atom_decoder = dataset_info.atom_decoder
active_atoms = dataset_info.active_atoms
ensure_connected = dataset_info.ensure_connected
metrics = BasicMolecularMetrics(atom_decoder, train_smiles, stat_ref, task_evaluator, **comput_config)
evaluated_res = metrics.evaluate(molecule_list, targets, ensure_connected, active_atoms)
all_smiles = evaluated_res[-3]
all_metrics = evaluated_res[-2]
targets_log = evaluated_res[-1]
unique_smiles = evaluated_res[0]
return unique_smiles, all_smiles, all_metrics, targets_log
if __name__ == '__main__':
smiles_mol = 'C1CCC1'
print("Smiles mol %s" % smiles_mol)
chem_mol = Chem.MolFromSmiles(smiles_mol)
print(block_mol)