MasterThesis/diffusion.ipynb

2721 lines
6.6 MiB
Plaintext
Raw Normal View History

2024-03-31 14:51:57 +02:00
{
"cells": [
{
"cell_type": "code",
2024-04-16 14:33:51 +02:00
"execution_count": 139,
2024-03-31 14:51:57 +02:00
"metadata": {},
"outputs": [],
"source": [
"import gc\n",
"import os\n",
"import cv2\n",
"import math\n",
"import base64\n",
"import random\n",
"import numpy as np\n",
"from PIL import Image \n",
"from tqdm import tqdm\n",
"from datetime import datetime\n",
"import matplotlib.pyplot as plt\n",
"\n",
"import torch\n",
"import torch.nn as nn\n",
"from torch.cuda import amp\n",
"import torch.nn.functional as F\n",
"from torch.optim import Adam, AdamW\n",
"from torch.utils.data import Dataset, DataLoader\n",
"\n",
"import torchvision\n",
"import torchvision.transforms as TF\n",
"import torchvision.datasets as datasets\n",
"from torchvision.utils import make_grid\n",
"\n",
"from torchmetrics import MeanMetric\n",
"\n",
"from IPython.display import display, HTML, clear_output\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Helper functions"
]
},
{
"cell_type": "code",
2024-04-16 14:33:51 +02:00
"execution_count": 140,
2024-03-31 14:51:57 +02:00
"metadata": {},
"outputs": [],
"source": [
"def to_device(data, device):\n",
" \"\"\"将张量移动到选择的设备\"\"\"\n",
" \"\"\"Move tensor(s) to chosen device\"\"\"\n",
" if isinstance(data, (list, tuple)):\n",
" return [to_device(x, device) for x in data]\n",
2024-04-01 12:38:50 +02:00
" return data.to(device, non_blocking=True)"
2024-03-31 14:51:57 +02:00
]
},
{
"cell_type": "code",
2024-04-16 14:33:51 +02:00
"execution_count": 141,
2024-04-01 00:16:59 +02:00
"metadata": {},
"outputs": [],
"source": [
"class DeviceDataLoader:\n",
" \"\"\"包装一个数据加载器,来把数据移动到另一个设备上\"\"\"\n",
" \"\"\"Wrap a dataloader to move data to a device\"\"\"\n",
"\n",
" def __init__(self, dl, device):\n",
" self.dl = dl\n",
" self.device = device\n",
"\n",
" def __iter__(self):\n",
" \"\"\"在移动到设备后生成一个批次的数据\"\"\"\n",
" \"\"\"Yield a batch of data after moving it to device\"\"\"\n",
" for b in self.dl:\n",
" yield to_device(b, self.device)\n",
"\n",
" def __len__(self):\n",
" \"\"\"批次的数量\"\"\"\n",
" \"\"\"Number of batches\"\"\"\n",
" return len(self.dl)"
]
},
{
"cell_type": "code",
2024-04-16 14:33:51 +02:00
"execution_count": 142,
2024-04-01 00:16:59 +02:00
"metadata": {},
"outputs": [],
"source": [
"def get_default_device():\n",
" return torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")"
]
},
{
"cell_type": "code",
2024-04-16 14:33:51 +02:00
"execution_count": 143,
2024-04-01 00:16:59 +02:00
"metadata": {},
"outputs": [],
"source": [
"def save_images(images, path, **kwargs):\n",
" grid = make_grid(images, **kwargs)\n",
" ndarr = grid.permute(1,2,0).to(\"cpu\").numpy()\n",
" im = Image.fromarray(ndarr)\n",
" im.save(path)"
]
},
{
"cell_type": "code",
2024-04-16 14:33:51 +02:00
"execution_count": 144,
2024-04-01 00:16:59 +02:00
"metadata": {},
"outputs": [],
"source": [
"def get(element: torch.Tensor, t: torch.Tensor):\n",
" \"\"\"\n",
" Get value at index position \"t\" in \"element\" and \n",
" reshape it to have the same dimension as a batch of images\n",
"\n",
" 获得在\"element\"中位置\"t\"并且reshape以和一组照片有相同的维度\n",
" \"\"\"\n",
" ele = element.gather(-1, t)\n",
" return ele.reshape(-1, 1, 1, 1)"
]
},
{
"cell_type": "code",
2024-04-16 14:33:51 +02:00
"execution_count": 145,
2024-04-01 00:16:59 +02:00
"metadata": {},
"outputs": [],
"source": [
"element = torch.tensor([[1,2,3,4,5],\n",
" [2,3,4,5,6],\n",
" [3,4,5,6,7]])\n",
"t = torch.tensor([1,2,0]).unsqueeze(1)"
]
},
{
"cell_type": "code",
2024-04-16 14:33:51 +02:00
"execution_count": 146,
2024-04-01 00:16:59 +02:00
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"tensor([[1, 2, 3, 4, 5],\n",
" [2, 3, 4, 5, 6],\n",
" [3, 4, 5, 6, 7]])\n",
"tensor([[1],\n",
" [2],\n",
" [0]])\n"
]
}
],
"source": [
"print(element)\n",
"print(t)"
]
},
{
"cell_type": "code",
2024-04-16 14:33:51 +02:00
"execution_count": 147,
2024-03-31 14:51:57 +02:00
"metadata": {},
"outputs": [
{
2024-04-01 00:16:59 +02:00
"name": "stdout",
"output_type": "stream",
"text": [
"tensor([[[[2]]],\n",
"\n",
"\n",
" [[[4]]],\n",
"\n",
"\n",
" [[[3]]]])\n"
2024-03-31 14:51:57 +02:00
]
}
],
2024-04-01 00:16:59 +02:00
"source": [
"extracted_scores = get(element, t)\n",
"print(extracted_scores)"
]
},
{
"cell_type": "code",
2024-04-16 14:33:51 +02:00
"execution_count": 148,
2024-04-01 00:16:59 +02:00
"metadata": {},
"outputs": [],
"source": [
"def setup_log_directory(config):\n",
" \"\"\"\n",
" Log and Model checkpoint directory Setup\n",
" 记录并且建模目录准备\n",
" \"\"\"\n",
"\n",
2024-04-16 14:33:51 +02:00
" if os.path.isdir(config.root_log_d·ir):\n",
2024-04-01 00:16:59 +02:00
" # Get all folders numbers in the root_log_dir\n",
" # 在root_log_dir下获得所有文件夹数目\n",
" folder_numbers = [int(folder.replace(\"version_\", \"\")) for folder in os.listdir(config.root_log_dir)]\n",
"\n",
" # Find the latest version number present in the log_dir\n",
" # 找到在log_dir下的最新版本数字\n",
" last_version_number = max(folder_numbers)\n",
"\n",
" # New version name\n",
2024-04-16 14:33:51 +02:00
" version_name = f\"version_{last_version_number + 1}\"\n",
2024-04-01 00:16:59 +02:00
"\n",
" else:\n",
" version_name = config.log_dir\n",
"\n",
" # Update the training config default directory\n",
" # 更新训练config默认目录\n",
" log_dir = os.path.join(config.root_log_dir, version_name)\n",
" checkpoint_dir = os.path.join(config.root_checkpoint_dir, version_name) \n",
"\n",
" # Create new directory for saving new experiment version\n",
" # 创建一个新目录来保存新的实验版本\n",
" os.makedirs(log_dir, exist_ok=True)\n",
" os.makedirs(checkpoint_dir, exist_ok=True)\n",
"\n",
" print(f\"Logging at: {log_dir}\")\n",
" print(f\"Model Checkpoint at: {checkpoint_dir}\")\n",
"\n",
" return log_dir, checkpoint_dir\n"
]
},
{
"cell_type": "code",
2024-04-16 14:33:51 +02:00
"execution_count": 149,
2024-04-01 12:38:50 +02:00
"metadata": {},
"outputs": [],
"source": [
"def frames2vid(images, save_path):\n",
"\n",
" WIDTH = images[0].shape[1]\n",
" HEIGHT = images[0].shape[0]\n",
"\n",
" # fourcc = cv2.VideoWriter_fourcc(*'XVID')\n",
" fourcc = cv2.VideoWriter_fourcc(*'mp4v')\n",
" video = cv2.VideoWriter(save_path, fourcc, 25, (WIDTH, HEIGHT))\n",
"\n",
" # Appending the images to the video one by one\n",
" # 一个接一个的将照片追加到视频\n",
" for image in images:\n",
" video.write(image)\n",
" \n",
" # Deallocating memories taken for window creation\n",
" # 释放创建window占用的内存\n",
" \n",
" video.release()\n",
" return\n",
"\n",
"def display_gif(gif_path):\n",
" b64 = base64.b64encode(open(gif_path,'rb').read()).decode('ascii')\n",
" display(HTML(f'<img src=\"data:image/gif;base64,{b64}\" />'))\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Configurations"
]
},
{
"cell_type": "code",
2024-04-16 14:33:51 +02:00
"execution_count": 150,
2024-04-01 00:16:59 +02:00
"metadata": {},
"outputs": [],
2024-03-31 14:51:57 +02:00
"source": [
"from dataclasses import dataclass\n",
"\n",
"@dataclass\n",
"class BaseConfig:\n",
" DEVICE = get_default_device()\n",
" DATASET = \"Flowers\" #MNIST \"cifar-10\" \"Flowers\"\n",
"\n",
" # 记录推断日志信息并保存存档点\n",
" root_log_dir = os.path.join(\"Logs_Checkpoints\", \"Inference\")\n",
" root_checkpoint_dir = os.path.join(\"Logs_Checkpoints\",\"checkpoints\")\n",
"\n",
" #目前的日志和存档点目录\n",
" log_dir = \"version_0\"\n",
" checkpoint_dir = \"version_0\"\n",
"\n",
"@dataclass\n",
"class TrainingConfig:\n",
" TIMESTEPS = 1000\n",
" IMG_SHAPE = (1,32,32) if BaseConfig.DATASET == \"MNIST\" else (3,32,32)\n",
" NUM_EPOCHS = 800\n",
" BATCH_SIZE = 32\n",
" LR = 2e-4\n",
" NUM_WORKERS = 2"
]
2024-04-01 12:38:50 +02:00
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Load Dataset & Build Dataloader"
]
},
{
"cell_type": "code",
2024-04-16 14:33:51 +02:00
"execution_count": 151,
2024-04-01 12:38:50 +02:00
"metadata": {},
"outputs": [],
"source": [
"def get_dataset(dataset_name='MNIST'):\n",
" \"\"\"\n",
" Returns the dataset class object that will be passed to the Dataloader\n",
" Three preprocessing transforms,\n",
" and one augmentation are applied to every image in the dataset\n",
" 返回数据集的类对象\n",
" 这个类对象将会被传递给DataLoader\n",
" 数据集中的每个图象将会应用三个预处理转换\n",
" 和一个增强\n",
" \"\"\"\n",
" transforms = TF.Compose(\n",
" [\n",
" TF.ToTensor(),\n",
" TF.Resize((32,32),\n",
" interpolation=TF.InterpolationMode.BICUBIC,\n",
" antialias=True),\n",
" TF.RandomHorizontalFlip(),\n",
" TF.Lambda(lambda t: (t * 2) - 1) # scale between [-1, 1]\n",
" ]\n",
" )\n",
"\n",
" if dataset_name.upper() == \"MNIST\":\n",
" dataset = datasets.MNIST(root=\"data\", train=True, download=True, transform=transforms)\n",
" elif dataset_name == \"Cifar-10\":\n",
" dataset = datasets.CIFAR10(root=\"data\", train=True,download=True, transform=transforms)\n",
" elif dataset_name == \"Cifar-100\":\n",
" dataset = datasets.CIFAR10(root=\"data\", train=True,download=True, transform=transforms)\n",
" elif dataset_name == \"Flowers\":\n",
" dataset = datasets.ImageFolder(root=\"data/flowers\", transform=transforms)\n",
" return dataset"
]
},
{
"cell_type": "code",
2024-04-16 14:33:51 +02:00
"execution_count": 152,
2024-04-01 12:38:50 +02:00
"metadata": {},
"outputs": [],
"source": [
"def get_dataloader(dataset_name='MNIST',\n",
" batch_size=32,\n",
" pin_memory=False,\n",
" shuffle=True,\n",
" num_workers=0,\n",
" device=\"cpu\"\n",
" ):\n",
" dataset = get_dataset(dataset_name=dataset_name)\n",
" dataLoader = DataLoader(dataset, batch_size=batch_size,\n",
" pin_memory=pin_memory,\n",
" num_workers=num_workers,\n",
" shuffle=shuffle\n",
" )\n",
" device_dataloader = DeviceDataLoader(dataLoader, device)\n",
" return device_dataloader"
]
},
{
"cell_type": "code",
2024-04-16 14:33:51 +02:00
"execution_count": 153,
2024-04-01 12:38:50 +02:00
"metadata": {},
"outputs": [],
"source": [
"def inverse_transform(tensors):\n",
" \"\"\"\n",
" Convert tensors from [-1., 1.] to [0., 255.]\n",
" \"\"\"\n",
" return ((tensors.clamp(-1, 1) + 1.0) / 2.0) * 255.0"
]
},
{
"cell_type": "code",
2024-04-16 14:33:51 +02:00
"execution_count": 154,
2024-04-01 12:38:50 +02:00
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Dataset ImageFolder\n",
" Number of datapoints: 4317\n",
" Root location: data/flowers\n",
" StandardTransform\n",
"Transform: Compose(\n",
" ToTensor()\n",
" Resize(size=(32, 32), interpolation=bicubic, max_size=None, antialias=True)\n",
" RandomHorizontalFlip(p=0.5)\n",
" Lambda()\n",
" )\n"
]
}
],
"source": [
"dataset = get_dataset(dataset_name='Flowers')\n",
"print(dataset)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Visualize Dataset"
]
},
{
"cell_type": "code",
2024-04-16 14:33:51 +02:00
"execution_count": 155,
2024-04-01 12:38:50 +02:00
"metadata": {},
"outputs": [],
"source": [
"loader = get_dataloader(\n",
" dataset_name=BaseConfig.DATASET,\n",
" batch_size=128,\n",
" device='cpu'\n",
")"
]
},
{
"cell_type": "code",
2024-04-16 14:33:51 +02:00
"execution_count": 156,
2024-04-01 12:38:50 +02:00
"metadata": {},
"outputs": [
{
"data": {
2024-04-16 14:33:51 +02:00
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA64AAAHiCAYAAADoA5FMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9aaxu25rfB/1GN5u3W+3uzj79vffce6tuNS5XxTYK5UhpaAR8CHGQhQgfIiJCLCBSviBBEFiycBAREkR8SAJCJICwArIhUYLixKrYLnfVuMrXdes2pz/77G61bzOb0Tx8GGO+a+1zbt2618ZyIdaz9e611tvMd845xnjG83+a/6NERLiTO7mTO7mTO7mTO7mTO7mTO7mTO/kDKvof9gncyZ3cyZ3cyZ3cyZ3cyZ3cyZ3cyZ38KLkDrndyJ3dyJ3dyJ3dyJ3dyJ3dyJ3fyB1rugOud3Mmd3Mmd3Mmd3Mmd3Mmd3Mmd/IGWO+B6J3dyJ3dyJ3dyJ3dyJ3dyJ3dyJ3+g5Q643smd3Mmd3Mmd3Mmd3Mmd3Mmd3MkfaLkDrndyJ3dyJ3dyJ3dyJ3dyJ3dyJ3fyB1rugOud3Mmd3Mmd3Mmd3Mmd3Mmd3Mmd/IGWO+B6J3dyJ3dyJ3dyJ3dyJ3dyJ3dyJ3+g5Q643smd3Mmd3Mmd3Mmd3Mmd3Mmd3MkfaLkDrndyJ3dyJ3dyJ3dyJ3dyJ3dyJ3fyB1rsT/Lmq6szfvDBbyOSAEEphVKgFQhCigmtHEpZZrMjnGto2yUgpBQIYcSHkTCOiCSMNWitMcYQQ09MIykFQCGqxWiLszXB74ixZwwdSivm82Pa9oDl8gG7bsc49IzDlhhHgt+SUiSmACQUgrUVoIgpkVI+TyE/jM7XEqJw794bvP7ae3zvd36DsxefowAUKKXQSpef+ZrLSwAIgAgi+T5M79FaoRAo9wtAawPlWCofnOmL8nOw/4L9N+SPiwhJ0nQoBDV9+c05IPm58lEp703l/JTSfO1bfxjXzHh2/oLR9wzDFk2LVjVNO8MYg9GKYezYddfocg/aao7SgugNWlcYM2M1W1C7ulwLqL0vZDoJQVJEKN+vNVqZm8uSESEgqSOVU8/nLsRU5lm+0vL+hCCUO5vvh5LyPflrkySsmTGr7/PZk+/y+dMf4D2kCDHmeyLp5h7tx7ncemVA6/xQt+6jSD5GSuW+ls9M71NaoXWZJ1rdXL+U8y5jMA3K/v9y7P1LcvN90/hN56kUaFO+Tynee+/nWS1P+Gu/+lfZdR3a5Hl0e17d3FJBCeXelXNBQE2jpphmk3Dz5epmkhOnkVV6P+fz9efvFSClVA6rpssrOqM8N31HuVZV7pW65UZTTN+tWCwW/OIv/hE+353zW89/QJmQZXCmnxqFwV4ZTKdgOEfpEb0cicrglUO8QYJCYn4/zpUbCugEWsC2eQIoW660TBaJkDpQKX//JGmEGFHrgVUtvHMPlq2waF6dW5JAPDzdKp7tFOfJMQpUPiIxEYbIe29+g3cev8t3Pn7OejfcjN2tcdzfH/WFv7/8llt/qi89+YW37p9UX3j15mt+j4OX+emsprKGg1lF7SwiiZgS3of9erBGY7RmPmu5vr7iN3/7t0jTBBfh1lRHK7DaYI2mdgajNc7qcpKaJJCSoHWeu9aAUeWnzo9pXRqtUEqjlUVrgzaGqqpRWiMplSmk93r51kUjt84v72MJSYkYAzFGQgiEkIhJUKpCKYOxFc18wfLomE8++5CLyzOatkYrlfemEPCjpxs9PsR8nlphjNl/59hHohcUhiSCDwGt87VMA9NULQj46IkpFn15MyY3v8oXnp/2i9uDKXvdWbuaw+VBfl7gYn3B6Me9jp+OpbTiF//wL7CYzfj0B98nhpCPXcZSUCgt2FnEaLBKc7BIzFpQ7jAPctqAaMCC36HiANaQRLPrK8bRsusdkzqd9oh4sw3u9WpKqehM2V+lpJvz2eva6XNJUApODyK1TTRVJEo+th88wUcurgLN/Ih3vv7z/OD99/nud7/75TUwqSOddZhSRZe9Yihk2yG/N9tO6PxQWu31bRoTpGluA0qI43QdZY+xer/Pp1Bei/x48sWFr8r2CfzMt36W1x+/vn9JRL6kZ74ocnuDIl/7H9TP3X7P2Yun/OA7fwe117H5Z5JU9JUu+lCRUkIpja0qQJAYmK+W1G2LshUiMOw6vB/xw4A2Fq0VtepQ5H1fa8FqIWEATaM9IsJuELTK+mrS873Pu582N7bKtO+2LuUzTsIYFKPPiyLbD3n++6R59OY7vPbmu/z6b/5tXp6dFXtUUzmz3+WnhbDfXwSsc1jrmM3mGGsREjF4hmGHcw3OVozjQIyBse+zfjUm68EY0Cbt1+lk307/dDYZ8DGitcZpQ0hCEkErjYjgYwDJu/nMQWVhMXNY12DmjxiHkd1uS99tkRT5qW/9HCKJD9//DqMfGYPPOkKgC+U8dLk3KqJ1tiWtKEjktSUTFii3QSuMgVkFfdR0QWMkmwcaMEpTG01l86NLkSDCgEa0QpxCBpBB9mMTiXmhmUSM2Y7Md12wKiJAEM3jE+H0AHa7RO/h2RbunzziW1/9Ob7/8YbPnnXcVvA3v/3o+U+x+V55p3rlAF9eMz/yaNN7ftS7fsSBvvCcUvCzXz/k5LD+/Y/HTwhcf/DBb/Nn/1f/IkkGIGBsXqCVi0iMjL3H6hXOHPDOO/85jo4e89bb3wISfrjm4uoF1+szrs6fE+PIbD6jritm8xnbzRO67gWj35DEIPpN2vqAw9U9ri/fZ7d9wvnmQ2xV8ZWv/qO8+dYv8q2f+a/xwYff5/nzz3n57Hfpdi9Zn3+Xftiy66/RakSryGJxChi63jOOgb7zBOkR8bTtjiSRbRf4L/6T/zz/7f/mn+b/8m/9a/yn/9Gfy+BFKaw1WGuprMPZbESZvTWfN44kEGJERHBGYY2icQZFQEkAAkoJrlqgtcWYCq012mjQJitLY7KBpQ2v7IqSlWdMCT/6/UYtqSjbNIEiIaZYFIEqhogQkxBSIoSEcQ3/6v/m/8HR47f5i7/+V3hx9imfP/0erX6T2tzntTfepZ3NmLWWFy8/5vsf/AaVVVTW8PrJ13BVZGz+Lk19j/nsXX72nZ/mteOHe+PQ6BokZaBSzsH7LSklQhKca6irWTGcEiFdEeM1YfwEnxI+CcqAKKEfO5CEUWGv/ELsSBLR2hJFGOOAqAQqkryQouDHkdXsHd597b/KX/xL/w5/7v/+Z7m6gLEXtpsMXoOf7AnZG7haK4yFqoGqUVQVWJeNjRiE4KHvhHGEEG6wU10prFW4ylDVDucsVeX2m2qMkeCzkZuK8yQDtzJuSUjFWIkhK7UQMkCegDKAMXkza5p8ntZp/uf/03+Xn/3WL/Mv/al/kY8++oB65lDGoq3ZG04TgDRRsvKV4sQp56CVwpppzimihAw8YkAhOFFlfiW6bFehjcvPxYR1Cmc0qrIIMHQ+bz55x8gbUvAIgnUmz8uU52VKYJwt916jVN4hVMoOCy2ab37zp/nzf/4/4j/+4G/y3/kP/iy4CqxFbHECWQvUKJmz+vUZ7Uca/fRXMPUZ9U8/Z2sXXJpj/HlL3FrS2oKu4PAYnIJao+oOnMDqTTAzxC2ACBJQfoA4IOF9UD7vptkDAP1L6LbYbz/nZ+4H/uX/kvCtNxI/9XoqMxbQgowQLuBXvmf58993/Mq44iwYTq+3hPXI9dMtf/q/+2f4H/zJf4V/+z/4m/zW+09Rk4Pri49pTIthpfbjfAt4To6Y/Z+33nODfdi/UhwhewfUD/kebj9XZAIEh/Oa+wczfv7d+zw8mhOCZxhHXl5e4YymriyLtmbeVHzjnbf5zve+y7/wL/8pRj8Wh5zswasCrNas2oaDtuHBwYx5U3GwaNDGgqnogzD4RGMNTisOmkjr4KBVzBpFWymaRrAGmspgTU1tVzTNnLqZcfzgIa6qiH2H0gZdVShboYxDmexBmdZnSpKVRkr4cUcInt32mm634+r6iuv1yK5PGHuCsTNmy1Ne/9o3+Kk/8p/nP/5P/31+9W/8JR6/+RDnDH7csbm
2024-04-01 12:38:50 +02:00
"text/plain": [
"<Figure size 1200x600 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.figure(figsize=(12, 6), facecolor='white')\n",
"\n",
"for b_image, _ in loader:\n",
" b_image = inverse_transform(b_image).cpu()\n",
" grid_img = make_grid(b_image / 255.0, \n",
" nrow = 16, \n",
" padding=True,\n",
" pad_value=1,\n",
" normalize=True \n",
" )\n",
" plt.imshow(grid_img.permute(1, 2, 0))\n",
" plt.axis(\"off\")\n",
" break"
]
2024-04-09 10:14:05 +02:00
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## UNet Model"
]
},
{
"cell_type": "code",
2024-04-16 14:33:51 +02:00
"execution_count": 157,
2024-04-09 10:14:05 +02:00
"metadata": {},
"outputs": [],
"source": [
"### Architecture"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Architecture\n",
"\n",
"Comprises 5 components\n",
"\n",
"1. Encoder\n",
"2. Bottleneck\n",
"3. Decoder\n",
"4. Self-attention\n",
"5. Sinusoidal time embeddings\n",
"\n",
"### Details\n",
"\n",
"1. There are four levels in the encoder and decoder path with bottleneck blocks between them\n",
"2. Each encoder stage comprises two residual blocks with convolutional downsampling except the last level\n",
"3. Each corresponding decoder stage comprises three residual blocks and uses 2x nearest neighbors with convolutions to upsample the input from the previous level.\n",
"4. Each stage in the encoder path is connected to the decoder path with the help of skip connections\n",
"5. The model uses \"Self-Attention\" modules at a single feature map resolution\n",
"6. Every residual block in the model gets the inputs from the previous layer (and others in the decoder path) and the embedding of the current timestep. The timestep embedding informs the model of the input's current position in the Markov chain.\n",
"\n",
"![UNet-architecture](https://learnopencv.com/wp-content/uploads/2023/02/denoising-diffusion-probabilistic-models_UNet_model_architecture-768x307.png)"
]
},
{
"cell_type": "code",
2024-04-16 14:33:51 +02:00
"execution_count": 158,
2024-04-09 10:14:05 +02:00
"metadata": {},
"outputs": [],
"source": [
"class SinusoidalPositionEmbeddings(nn.Module):\n",
" def __init__(self, total_time_steps=1000, time_emb_dims=128, time_emb_dims_exp=512):\n",
" super().__init__()\n",
"\n",
" half_dim = time_emb_dims // 2 # half_dim=64\n",
"\n",
" emb = math.log(10000) / (half_dim - 1) # log_e(10000) = 9.21 / 63 =0.14619 000\n",
" emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb)\n",
"\n",
" ts = torch.arange(total_time_steps, dtype=torch.float32) \n",
"\n",
" emb = torch.unsqueeze(ts, dim=-1) * torch.unsqueeze(emb, dim=0)\n",
" emb = torch.cat((emb.sin(), emb.cos()), dim=-1)\n",
"\n",
" self.time_blocks = nn.Sequential(\n",
" nn.Embedding.from_pretrained(emb),\n",
" nn.Linear(in_features=time_emb_dims, out_features=time_emb_dims_exp),\n",
" nn.SiLU(),\n",
" nn.Linear(in_features=time_emb_dims_exp, out_features=time_emb_dims_exp),\n",
" )\n",
"\n",
" def forward(self, time):\n",
" return self.time_blocks(time)"
]
},
{
"cell_type": "code",
2024-04-16 14:33:51 +02:00
"execution_count": 159,
2024-04-09 10:14:05 +02:00
"metadata": {},
"outputs": [],
"source": [
"class AttentionBlock(nn.Module):\n",
" def __init__(self, channels=64):\n",
" super().__init__()\n",
" self.channels = channels\n",
" self.group_norm = nn.GroupNorm(num_groups=8, num_channels=channels)\n",
" self.mhsa = nn.MultiheadAttention(embed_dim=self.channels, num_heads=4, batch_first=True)\n",
"\n",
" def forward(self, x):\n",
" B, _, H, W = x.shape\n",
" h = self.group_norm(x)\n",
" h = h.reshape(B, self.channels, H * W).swapaxes(1, 2)\n",
" h, _ = self.mhsa(h,h,h)\n",
" h = h.swapaxes(2, 1).view(B, self.channels, H, W)\n",
" return x + h"
]
},
{
"cell_type": "code",
2024-04-16 14:33:51 +02:00
"execution_count": 160,
2024-04-09 10:14:05 +02:00
"metadata": {},
"outputs": [],
"source": [
"class ResnetBlock(nn.Module):\n",
" def __init__(self, *, in_channels, out_channels, dropout_rate=0.1, time_emb_dims=512, apply_attention=False):\n",
" super().__init__()\n",
" self.in_channels = in_channels\n",
" self.out_channels = out_channels\n",
"\n",
" self.act_fn = nn.SiLU()\n",
"\n",
" # Group1\n",
" self.normlize_1 = nn.GroupNorm(num_groups=8, num_channels=self.in_channels)\n",
" self.conv_1 = nn.Conv2d(in_channels=self.in_channels, out_channels=self.out_channels, kernel_size=3, stride=1, padding=\"same\")\n",
"\n",
" # Group2 time embedding\n",
" self.dense_1 = nn.Linear(in_features=time_emb_dims, out_features=self.out_channels)\n",
"\n",
" # Group3 \n",
" self.normlize_2 = nn.GroupNorm(num_groups=8, num_channels=out_channels)\n",
" self.dropout = nn.Dropout2d(p=dropout_rate)\n",
" self.conv_2 = nn.Conv2d(in_channels=self.out_channels, out_channels=self.out_channels, kernel_size=3, stride=1, padding=\"same\")\n",
"\n",
" if self.in_channels != self.out_channels:\n",
" self.match_input = nn.Conv2d(in_channels=self.in_channels,out_channels=self.out_channels, kernel_size=1, stride=1)\n",
" else:\n",
2024-04-16 14:33:51 +02:00
" self.match_input = nn.Identity()\n",
2024-04-09 10:14:05 +02:00
" \n",
" if apply_attention:\n",
" self.attention = AttentionBlock(channels=self.out_channels)\n",
" else:\n",
" self.attention = nn.Identity()\n",
" def forward(self, x, t):\n",
" #group 1\n",
" h = self.act_fn(self.normlize_1(x))\n",
" h = self.conv_1(h)\n",
"\n",
" #group 2\n",
" # add in timestep embedding\n",
" h += self.dense_1(self.act_fn(t))[:, :, None, None]\n",
"\n",
" #group 3\n",
" h = self.act_fn(self.normlize_2(h))\n",
" h = self.dropout(h)\n",
" h = self.conv_2(h)\n",
"\n",
" # Residual and attention\n",
" h = h + self.match_input(x)\n",
" h = self.attention(h)\n",
"\n",
" return h"
]
},
{
"cell_type": "code",
2024-04-16 14:33:51 +02:00
"execution_count": 161,
2024-04-09 10:14:05 +02:00
"metadata": {},
"outputs": [],
"source": [
"class DownSample(nn.Module):\n",
" def __init__(self, channels):\n",
" super().__init__()\n",
" self.downsample = nn.Conv2d(in_channels=channels, out_channels=channels, kernel_size=3, stride=2, padding=1)\n",
"\n",
" def forward(self, x, *args):\n",
" return self.downsample(x)"
]
},
{
"cell_type": "code",
2024-04-16 14:33:51 +02:00
"execution_count": 162,
2024-04-09 10:14:05 +02:00
"metadata": {},
"outputs": [],
"source": [
"class UpSample(nn.Module):\n",
" def __init__(self, in_channels):\n",
" super().__init__()\n",
"\n",
" self.upsample = nn.Sequential(\n",
" nn.Upsample(scale_factor=2, mode=\"nearest\"),\n",
" nn.Conv2d(in_channels=in_channels, out_channels=in_channels, kernel_size=3, stride=1, padding=1),\n",
" )\n",
"\n",
" def forward(self, x, *args):\n",
" return self.upsample(x)"
]
},
{
"cell_type": "code",
2024-04-16 14:33:51 +02:00
"execution_count": 163,
2024-04-09 10:14:05 +02:00
"metadata": {},
"outputs": [],
"source": [
"class UNet(nn.Module):\n",
" def __init__(\n",
" self,\n",
" input_channels=3,\n",
" output_channels=3,\n",
" num_res_blocks=2,\n",
" base_channels=128,\n",
" base_channels_multiples=(1,2,4,8),\n",
" apply_attention=(False,False,True,False),\n",
" dropout_rate=0.1,\n",
" time_multiple=4,\n",
" ):\n",
" super().__init__()\n",
"\n",
" time_emb_dims_exp = base_channels * time_multiple\n",
" self.time_embeddings = SinusoidalPositionEmbeddings(time_emb_dims=base_channels, time_emb_dims_exp=time_emb_dims_exp)\n",
"\n",
" self.first = nn.Conv2d(in_channels=input_channels, out_channels=base_channels, kernel_size=3, stride=1, padding=\"same\")\n",
"\n",
" num_resolutions = len(base_channels_multiples)\n",
"\n",
2024-07-09 14:20:03 +02:00
" # encoder blocks = resnetblock * 3 + \n",
2024-04-09 10:14:05 +02:00
" self.encoder_blocks = nn.ModuleList()\n",
" curr_channels = [base_channels]\n",
" in_channels = base_channels\n",
"\n",
" for level in range(num_resolutions):\n",
" out_channels = base_channels * base_channels_multiples[level]\n",
"\n",
" for _ in range(num_res_blocks):\n",
"\n",
" block = ResnetBlock(\n",
" in_channels = in_channels,\n",
" out_channels=out_channels,\n",
" dropout_rate=dropout_rate,\n",
" time_emb_dims=time_emb_dims_exp,\n",
" apply_attention=apply_attention[level],\n",
" )\n",
" self.encoder_blocks.append(block)\n",
"\n",
" in_channels = out_channels\n",
" curr_channels.append(in_channels)\n",
"\n",
" if level != (num_resolutions - 1):\n",
" self.encoder_blocks.append(DownSample(channels=in_channels))\n",
" curr_channels.append(in_channels)\n",
"\n",
" self.bottleneck_blocks = nn.ModuleList(\n",
" (\n",
" ResnetBlock(\n",
" in_channels=in_channels,\n",
" out_channels=in_channels,\n",
" dropout_rate=dropout_rate,\n",
" time_emb_dims=time_emb_dims_exp,\n",
" apply_attention=True,\n",
" ),\n",
" ResnetBlock(\n",
" in_channels=in_channels,\n",
" out_channels=in_channels,\n",
" dropout_rate=dropout_rate,\n",
" time_emb_dims=time_emb_dims_exp,\n",
" apply_attention=False,\n",
" ),\n",
" )\n",
" )\n",
"\n",
" self.decoder_blocks = nn.ModuleList()\n",
"\n",
" for level in reversed(range(num_resolutions)):\n",
" out_channels = base_channels * base_channels_multiples[level]\n",
"\n",
" for _ in range(num_res_blocks + 1):\n",
" encoder_in_channels = curr_channels.pop()\n",
" block = ResnetBlock(\n",
" in_channels=encoder_in_channels + in_channels,\n",
" out_channels=out_channels,\n",
" dropout_rate=dropout_rate,\n",
" time_emb_dims=time_emb_dims_exp,\n",
" apply_attention=apply_attention[level]\n",
" )\n",
"\n",
" in_channels = out_channels\n",
" self.decoder_blocks.append(block)\n",
" \n",
" if level != 0:\n",
" self.decoder_blocks.append(UpSample(in_channels))\n",
"\n",
" self.final = nn.Sequential(\n",
" nn.GroupNorm(num_groups=8, num_channels=in_channels),\n",
" nn.SiLU(),\n",
" nn.Conv2d(in_channels=in_channels, out_channels=output_channels, kernel_size=3, stride=1, padding=\"same\"),\n",
" )\n",
"\n",
" def forward(self, x, t):\n",
"\n",
" time_emb = self.time_embeddings(t)\n",
"\n",
" h = self.first(x)\n",
" outs = [h]\n",
"\n",
" for layer in self.encoder_blocks:\n",
" h = layer(h, time_emb)\n",
" outs.append(h)\n",
"\n",
" for layer in self.bottleneck_blocks:\n",
" h = layer(h, time_emb)\n",
"\n",
" for layer in self.decoder_blocks:\n",
" if isinstance(layer, ResnetBlock):\n",
" out = outs.pop()\n",
" h = torch.cat([h, out], dim=1)\n",
" h = layer(h, time_emb)\n",
"\n",
" h = self.final(h)\n",
"\n",
" return h\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Diffusion Process"
]
},
{
"cell_type": "code",
2024-04-16 14:33:51 +02:00
"execution_count": 164,
2024-04-09 10:14:05 +02:00
"metadata": {},
"outputs": [],
"source": [
"class SimpleDiffusion:\n",
" def __init__(\n",
" self,\n",
" num_diffusion_timesteps=1000,\n",
" img_shape=(3, 64, 64),\n",
" device=\"cpu\"\n",
" ):\n",
" self.num_diffusion_timesteps = num_diffusion_timesteps\n",
" self.img_shape = img_shape\n",
" self.device=device\n",
"\n",
" self.initialize()\n",
"\n",
" def initialize(self):\n",
" self.beta = self.get_betas()\n",
" self.alpha = 1 - self.beta\n",
"\n",
" self.sqrt_beta = torch.sqrt(self.beta)\n",
" self.alpha_cumulative = torch.cumprod(self.alpha, dim=0)\n",
" self.sqrt_alpha_cumulative = torch.sqrt(self.alpha_cumulative)\n",
" self.one_by_sqrt_alpha = 1. / torch.sqrt(self.alpha)\n",
" self.sqrt_one_minus_alpha_cumulative = torch.sqrt(1-self.alpha_cumulative)\n",
"\n",
" def get_betas(self):\n",
2024-07-09 14:20:03 +02:00
" \"\"\"linear schedule, proposed in original ddpm paper 线性在原ddpm论文中提出\"\"\"\n",
2024-04-09 10:14:05 +02:00
" scale = 1000 / self.num_diffusion_timesteps\n",
" beta_start = scale * 1e-4\n",
" beta_end = scale * 0.02\n",
" return torch.linspace(\n",
" beta_start,\n",
" beta_end,\n",
" self.num_diffusion_timesteps,\n",
" dtype=torch.float32,\n",
" device=self.device,\n",
" )\n",
"\n",
"def forward_diffusion(sd: SimpleDiffusion, x0: torch.Tensor, timesteps: torch.Tensor):\n",
" eps = torch.randn_like(x0) #Noise\n",
" mean = get(sd.sqrt_alpha_cumulative, t=timesteps) * x0 # Image scaled\n",
" std_dev = get(sd.sqrt_one_minus_alpha_cumulative, t=timesteps) # Noise scaled\n",
" sample = mean + std_dev * eps # scaled inputs * scaled noise\n",
"\n",
" return sample, eps # return ... gt noise --> model predicts this)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Sample Forward Diffusion Process"
]
},
{
"cell_type": "code",
2024-04-16 14:33:51 +02:00
"execution_count": 165,
2024-04-09 10:14:05 +02:00
"metadata": {},
"outputs": [],
"source": [
"sd = SimpleDiffusion(num_diffusion_timesteps=TrainingConfig.TIMESTEPS, device=\"cpu\")\n",
"\n",
"loader = iter( # converting dataloader into an iterator for now.\n",
" get_dataloader(\n",
" dataset_name=BaseConfig.DATASET,\n",
" batch_size=6,\n",
" device=\"cpu\",\n",
" )\n",
")"
]
},
{
"cell_type": "code",
2024-04-16 14:33:51 +02:00
"execution_count": 166,
2024-04-09 10:14:05 +02:00
"metadata": {},
"outputs": [
{
"data": {
2024-04-16 14:33:51 +02:00
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAxoAAAF+CAYAAAAFumw3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd5xcZd3//9ep08v23tJ7hZBAEkqAQEB6RxQQUBEQRRFFEfAWQWy3IIi3t4gBRap0SCCEBALpve9utvfd6fWU6/cHX/K7I+idjUHk9jwfj/1jrnPmzHXec83Z+cyc64wkhBA4HA6Hw+FwOBwOx2Ekf9IdcDgcDofD4XA4HP/3OIWGw+FwOBwOh8PhOOycQsPhcDgcDofD4XAcdk6h4XA4HA6Hw+FwOA47p9BwOBwOh8PhcDgch51TaDgcDofD4XA4HI7Dzik0HA6Hw+FwOBwOx2HnFBoOh8PhcDgcDofjsHMKDYfD4XA4HA6Hw3HYOYWGw+FwHEbLly9HkiSWL19+2Ld9++23I0nSAW2maXLzzTdTU1ODLMucddZZACSTSa666irKy8uRJIkbb7zxsPenvr6eyy+//LBv1+FwOBz/NziFhsPh+Fj8/ve/R5Kkj/y75ZZbPunufeL+Oh+3201lZSULFy7kl7/8JYlE4qC287vf/Y57772X8847j0ceeYSvfe1rANx11138/ve/58tf/jKLFy/msssu+zh355/qo7IbM2YM1113Hb29vZ909xwOh8Px/6ifdAccDsf/bXfeeScNDQ0HtE2aNOkT6s2/ng/yMQyDnp4eli9fzo033sjPfvYznn/+eaZMmbJ/3e9+97sfKtKWLVtGVVUVP//5zz/UPnv2bL7//e9/bH3fvXs3svzJfV71QXbZbJa3336bBx98kJdffplt27bh9Xo/sX45HA6H431OoeFwOD5Wp556KkccccRh324qlcLn8x327f5vhBBks1k8Hs9h2d5f5/Ptb3+bZcuWcfrpp3PGGWewc+fO/Y+lqiqqeuBhu6+vj3A4/KHt9vX1MWHChMPSx7/F5XJ9rNv/3/zP7K666iqKior42c9+xnPPPcfFF1/8kff5pMaNw+Fw/DtyTp1yOByfqGXLljFv3jx8Ph/hcJgzzzyTnTt3HrDOB3MTduzYwSWXXEJBQQFz587l+eefR5IktmzZsn/dp59+GkmSOOeccw7Yxvjx47nwwgv333744Yc54YQTKC0txeVyMWHCBB588MEP9a++vp7TTz+d1157jSOOOAKPx8NDDz0EQEdHB2eddRY+n4/S0lK+9rWvkcvl/uFMTjjhBL73ve/R2trKo48++qEcAFpaWpAkiTfffJPt27fvP43ogzki+/bt46WXXtrf3tLSsv+Uo5aWlgMe76Pmlezdu5dzzz2X8vJy3G431dXVXHTRRcRisQOy+es5Gs3NzZx//vkUFhbi9XqZPXs2L7300kc+3hNPPMEPf/hDqqurcbvdLFiwgMbGxn8oN4B9+/YBcPnll+P3+2lqamLRokUEAgEuvfRS4P2C46abbqKmpgaXy8XYsWP5yU9+ghDiQ9t99NFHmTVrFl6vl4KCAubPn8+SJUsOWOeVV17ZP44DgQCnnXYa27dvP2Cdnp4errjiCqqrq3G5XFRUVHDmmWce8HysW7eOhQsXUlxcjMfjoaGhgSuvvPKQM3E4HI5PkvONhsPh+FjFYjEGBgYOaCsuLgbg9ddf59RTT2XEiBHcfvvtZDIZ7rvvPo455hg2bNhAfX39Afc7//zzGT16NHfddRdCCObOnYskSaxYsWL/KUYrV65ElmXefvvt/ffr7+9n165dXHfddfvbHnzwQSZOnMgZZ5yBqqq88MILXHvttdi2zVe+8pUDHnf37t1cfPHFfPGLX+Tqq69m7NixZDIZFixYQFtbGzfccAOVlZUsXryYZcuWHZbcLrvsMr7zne+wZMkSrr766g8tLykpYfHixfzwhz8kmUzyox/9CHi/oFq8eDFf+9rXqK6u5qabbtq//sHK5/MsXLiQXC7H9ddfT3l5OZ2dnbz44otEo1FCodBH3q+3t5ejjz6adDrNDTfcQFFREY888ghnnHEGTz31FGefffYB6999993Issw3vvENYrEYP/7xj7n00ktZvXr1Qff1f2pqagKgqKhof5tpmixcuJC5c+fyk5/8BK/XixCCM844gzfffJMvfOELTJs2jddee41vfvObdHZ2HnAa2h133MHtt9/O0UcfzZ133omu66xevZply5Zx8sknA7B48WI+//nPs3DhQu655x7S6TQPPvggc+fOZePGjfvH8bnnnsv27du5/vrrqa+vp6+vj6VLl9LW1rb/9sknn0xJSQm33HIL4XCYlpYWnnnmmUPKw+FwOD5xwuFwOD4GDz/8sAA+8u8D06ZNE6WlpWJwcHB/2+bNm4Usy+Jzn/vc/rbvf//7AhAXX3zxhx5n4sSJ4oILLth/e8aMGeL8888XgNi5c6cQQohnnnlGAGLz5s3710un0x/a1sKFC8WIESMOaKurqxOAePXVVw9o/8UvfiEA8cQTT+xvS6VSYtSoUQIQb7755kHls3bt2r+5TigUEtOnT99/+4Mc/qdjjz1WTJw48UP3raurE6eddtpHPua+ffsOaH/zzTcP6PPGjRsFIJ588sm/uw91dXXi85///P7bN954owDEypUr97clEgnR0NAg6uvrhWVZBzze+PHjRS6X27/uf/7nfwpAbN269e8+7gf78frrr4v+/n7R3t4uHn/8cVFUVCQ8Ho/o6OgQQgjx+c9/XgDilltuOeD+f/nLXwQg/uM//uOA9vPOO09IkiQaGxuFEELs3btXyLIszj777P19/4Bt2/v3LxwOi6uvvvqA5T09PSIUCu1vj0QiAhD33nvv39yvZ5999n8dEw6Hw/Fp4pw65XA4Pla/+tWvWLp06QF/AN3d3WzatInLL7+cwsLC/etPmTKFk046iZdffvlD2/rSl770obZ58+axcuVKABKJBJs3b+aaa66huLh4f/vKlSsJh8MHTEL/n3MsPvjW5dhjj6W5ufmA04MAGhoaWLhw4QFtL7/8MhUVFZx33nn727xeL9dcc81BZ/O/8fv9B331qcPpg28sXnvtNdLp9EHf7+WXX2bWrFnMnTt3f5vf7+eaa66hpaWFHTt2HLD+FVdcga7r+2/PmzcPeP/0q4Nx4oknUlJSQk1NDRdddBF+v59nn32WqqqqA9b78pe//KF+KorCDTfccED7TTfdhBCCV155BYC//OUv2LbNbbfd9qFJ7x+cwrZ06VKi0SgXX3wxAwMD+/8UReGoo47izTffBN4fb7qus3z5ciKRyEfuzwdzbV588UUMwzioDBwOh+NfmVNoOByOj9WsWbM48cQTD/gDaG1tBWDs2LEfus/48eMZGBgglUod0P7XV6+C99+cdnd309jYyKpVq5AkiTlz5hxQgKxcuZJjjjnmgDeL77zzDieeeOL+uSElJSV85zvfAfjIQuOvtba2MmrUqA/9rsVH7c+hSiaTBAKBw7a9g9XQ0MDXv/51fvvb31JcXMzChQv51a9+9aFc/lpra+vffD4/WP4/1dbWHnC7oKAA4G++Ef9rHxSxb775Jjt27KC5uflDBaGqqlRXV3+on5WVlR/K9q/72dTUhCzLf3dS/d69e4H354eUlJQc8LdkyRL6+vqA9yfO33PPPbzyyiuUlZUxf/58fvzjH9PT07N/W8ceeyznnnsud9xxB8XFxZx55pk8/PDDh2Xej8PhcHwSnELD4XB8anzUlZ4++PR8xYoVrFy5khkzZuDz+fYXGslkko0bN+7/tBzefwO5YMECBgYG+NnPfsZLL73E0qVL9/8GhW3b/+vjftw6OjqIxWKMGjXqsG3zr4uiD1iW9aG2n/70p2zZsoXvfOc7ZDIZbrjhBiZOnEhHR8dh64+iKB/ZLj5iQvZH+aCIPe644xg/fvxHXmrX5XJ9rJfg/WCsLF68+EPf3C1dupTnnntu/7o33ngje/bs4Uc/+hFut5vvfe97jB8/no0bNwLvPz9PPfUU7777Ltdddx2
2024-04-09 10:14:05 +02:00
"text/plain": [
"<Figure size 1000x500 with 12 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"x0s, _ = next(loader)\n",
"\n",
"noisy_images = []\n",
"specific_timesteps = [0, 10, 50, 100, 150, 200, 250, 300, 400, 600, 800, 999]\n",
"\n",
"for timestep in specific_timesteps:\n",
" timestep = torch.as_tensor(timestep, dtype=torch.long)\n",
"\n",
" xts, _ = forward_diffusion(sd, x0s, timestep)\n",
" xts = inverse_transform(xts) / 255.0\n",
" xts = make_grid(xts, nrow=1, padding=1)\n",
"\n",
" noisy_images.append(xts)\n",
"\n",
"# Plot and see samples at different timesteps\n",
"\n",
"_, ax = plt.subplots(1, len(noisy_images), figsize=(10, 5), facecolor=\"white\")\n",
"\n",
"for i, (timestep, noisy_sample) in enumerate(zip(specific_timesteps, noisy_images)):\n",
" ax[i].imshow(noisy_sample.squeeze(0).permute(1, 2, 0))\n",
" ax[i].set_title(f\"t={timestep}\", fontsize=8)\n",
" ax[i].axis(\"off\")\n",
" ax[i].grid(False)\n",
"\n",
"plt.suptitle(\"Forward Diffusion Process\", y=0.9)\n",
"plt.axis(\"off\")\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Training"
]
},
{
"cell_type": "code",
2024-07-09 14:23:53 +02:00
<<<<<<< HEAD
2024-04-09 10:14:05 +02:00
"execution_count": 101,
2024-07-09 14:23:53 +02:00
=======
2024-04-16 14:33:51 +02:00
"execution_count": 167,
2024-04-09 10:14:05 +02:00
"metadata": {},
"outputs": [],
"source": [
"@dataclass\n",
"class ModelConfig:\n",
" BASE_CH = 64 # 64, 128, 256, 256\n",
" BASE_CH_MULT = (1, 2, 4, 4) # 32, 16, 8, 8 \n",
" APPLY_ATTENTION = (False, True, True, False)\n",
" DROPOUT_RATE = 0.1\n",
" TIME_EMB_MULT = 4 # 128"
]
},
{
"cell_type": "code",
2024-04-16 14:33:51 +02:00
"execution_count": 168,
2024-04-09 10:14:05 +02:00
"metadata": {},
"outputs": [],
"source": [
"model = UNet(\n",
" input_channels = TrainingConfig.IMG_SHAPE[0],\n",
" output_channels = TrainingConfig.IMG_SHAPE[0],\n",
" base_channels = ModelConfig.BASE_CH,\n",
" base_channels_multiples = ModelConfig.BASE_CH_MULT,\n",
" apply_attention = ModelConfig.APPLY_ATTENTION,\n",
" dropout_rate = ModelConfig.DROPOUT_RATE,\n",
" time_multiple = ModelConfig.TIME_EMB_MULT,\n",
")\n",
"model.to(BaseConfig.DEVICE)\n",
"\n",
"optimizer = torch.optim.AdamW(model.parameters(), lr=TrainingConfig.LR)\n",
"\n",
"dataloader = get_dataloader(\n",
" dataset_name = BaseConfig.DATASET,\n",
" batch_size = TrainingConfig.BATCH_SIZE,\n",
" device = BaseConfig.DEVICE,\n",
" pin_memory = True,\n",
" num_workers = TrainingConfig.NUM_WORKERS,\n",
")\n",
"\n",
"loss_fn = nn.MSELoss()\n",
"\n",
"sd = SimpleDiffusion(\n",
" num_diffusion_timesteps = TrainingConfig.TIMESTEPS,\n",
" img_shape = TrainingConfig.IMG_SHAPE,\n",
" device = BaseConfig.DEVICE,\n",
")\n",
"\n",
"scaler = amp.GradScaler()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Training"
]
},
{
"cell_type": "code",
2024-04-16 14:33:51 +02:00
"execution_count": 169,
2024-07-09 14:23:53 +02:00
>>>>>>> 37fdde8e83ce6de72d8d7226f22343e79b8a56d0
2024-04-09 10:14:05 +02:00
"metadata": {},
"outputs": [],
"source": [
"@dataclass\n",
"class ModelConfig:\n",
" BASE_CH = 64 # 64, 128, 256, 256\n",
" BASE_CH_MULT = (1, 2, 4, 4) # 32, 16, 8, 8 \n",
" APPLY_ATTENTION = (False, True, True, False)\n",
" DROPOUT_RATE = 0.1\n",
" TIME_EMB_MULT = 4 # 128"
]
},
{
"cell_type": "code",
2024-04-16 14:33:51 +02:00
"execution_count": 170,
2024-04-09 10:14:05 +02:00
"metadata": {},
"outputs": [],
"source": [
"model = UNet(\n",
" input_channels = TrainingConfig.IMG_SHAPE[0],\n",
" output_channels = TrainingConfig.IMG_SHAPE[0],\n",
" base_channels = ModelConfig.BASE_CH,\n",
" base_channels_multiples = ModelConfig.BASE_CH_MULT,\n",
" apply_attention = ModelConfig.APPLY_ATTENTION,\n",
" dropout_rate = ModelConfig.DROPOUT_RATE,\n",
" time_multiple = ModelConfig.TIME_EMB_MULT,\n",
")\n",
"model.to(BaseConfig.DEVICE)\n",
"\n",
"optimizer = torch.optim.AdamW(model.parameters(), lr=TrainingConfig.LR)\n",
"\n",
"dataloader = get_dataloader(\n",
" dataset_name = BaseConfig.DATASET,\n",
" batch_size = TrainingConfig.BATCH_SIZE,\n",
" device = BaseConfig.DEVICE,\n",
" pin_memory = True,\n",
" num_workers = TrainingConfig.NUM_WORKERS,\n",
")\n",
"\n",
"loss_fn = nn.MSELoss()\n",
"\n",
"sd = SimpleDiffusion(\n",
" num_diffusion_timesteps = TrainingConfig.TIMESTEPS,\n",
" img_shape = TrainingConfig.IMG_SHAPE,\n",
" device = BaseConfig.DEVICE,\n",
")\n",
"\n",
"scaler = amp.GradScaler()"
]
},
{
"cell_type": "code",
2024-04-16 14:33:51 +02:00
"execution_count": 171,
2024-04-09 10:14:05 +02:00
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
2024-04-16 14:33:51 +02:00
"Logging at: Logs_Checkpoints/Inference/version_2\n",
"Model Checkpoint at: Logs_Checkpoints/checkpoints/version_2\n"
2024-04-09 10:14:05 +02:00
]
}
],
"source": [
"total_epochs = TrainingConfig.NUM_EPOCHS + 1\n",
"log_dir, checkpoint_dir = setup_log_directory(config=BaseConfig())\n",
"\n",
"generate_video = False\n",
"ext = \".mp4\" if generate_video else \".png\""
]
},
{
"cell_type": "code",
2024-04-16 14:33:51 +02:00
"execution_count": 172,
2024-04-09 10:14:05 +02:00
"metadata": {},
"outputs": [],
"source": [
"# Algorithm 1: Training\n",
"\n",
"def train_one_epoch(model, sd, loader, optimizer, scaler, loss_fn, epoch=800, \n",
" base_config=BaseConfig(), training_config=TrainingConfig()):\n",
" \n",
" loss_record = MeanMetric()\n",
" model.train()\n",
"\n",
" with tqdm(total=len(loader), dynamic_ncols=True) as tq:\n",
" tq.set_description(f\"Train :: Epoch: {epoch}/{training_config.NUM_EPOCHS}\")\n",
" \n",
" for x0s, _ in loader:\n",
" tq.update(1)\n",
" \n",
2024-07-09 14:20:03 +02:00
" # 生成噪声\n",
2024-04-09 10:14:05 +02:00
" ts = torch.randint(low=1, high=training_config.TIMESTEPS, size=(x0s.shape[0],), device=base_config.DEVICE)\n",
" xts, gt_noise = forward_diffusion(sd, x0s, ts)\n",
"\n",
2024-07-09 14:20:03 +02:00
" # forward & get loss\n",
2024-04-09 10:14:05 +02:00
" with amp.autocast():\n",
" pred_noise = model(xts, ts)\n",
" loss = loss_fn(gt_noise, pred_noise)\n",
"\n",
2024-07-09 14:20:03 +02:00
" # 梯度缩放和反向传播\n",
2024-04-09 10:14:05 +02:00
" optimizer.zero_grad(set_to_none=True)\n",
" scaler.scale(loss).backward()\n",
"\n",
" # scaler.unscale_(optimizer)\n",
" # torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)\n",
"\n",
" scaler.step(optimizer)\n",
" scaler.update()\n",
"\n",
" loss_value = loss.detach().item()\n",
" loss_record.update(loss_value)\n",
"\n",
" tq.set_postfix_str(s=f\"Loss: {loss_value:.4f}\")\n",
"\n",
" mean_loss = loss_record.compute().item()\n",
" \n",
" tq.set_postfix_str(s=f\"Epoch Loss: {mean_loss:.4f}\")\n",
" \n",
" return mean_loss "
]
},
{
"cell_type": "code",
2024-04-16 14:33:51 +02:00
"execution_count": 173,
2024-04-09 10:14:05 +02:00
"metadata": {},
"outputs": [],
"source": [
"@torch.no_grad()\n",
"def reverse_diffusion(model, sd, timesteps=1000, img_shape=(3, 64, 64), \n",
" num_images=5, nrow=8, device=\"cpu\", **kwargs):\n",
"\n",
" x = torch.randn((num_images, *img_shape), device=device)\n",
" model.eval()\n",
"\n",
" if kwargs.get(\"generate_video\", False):\n",
" outs = []\n",
"\n",
" for time_step in tqdm(iterable=reversed(range(1, timesteps)), \n",
" total=timesteps-1, dynamic_ncols=False, \n",
" desc=\"Sampling :: \", position=0):\n",
"\n",
" ts = torch.ones(num_images, dtype=torch.long, device=device) * time_step\n",
" z = torch.randn_like(x) if time_step > 1 else torch.zeros_like(x)\n",
"\n",
" predicted_noise = model(x, ts)\n",
"\n",
" beta_t = get(sd.beta, ts)\n",
" one_by_sqrt_alpha_t = get(sd.one_by_sqrt_alpha, ts)\n",
" sqrt_one_minus_alpha_cumulative_t = get(sd.sqrt_one_minus_alpha_cumulative, ts) \n",
"\n",
" x = (\n",
" one_by_sqrt_alpha_t\n",
" * (x - (beta_t / sqrt_one_minus_alpha_cumulative_t) * predicted_noise)\n",
" + torch.sqrt(beta_t) * z\n",
" )\n",
"\n",
" if kwargs.get(\"generate_video\", False):\n",
" x_inv = inverse_transform(x).type(torch.uint8)\n",
" grid = make_grid(x_inv, nrow=nrow, pad_value=255.0).to(\"cpu\")\n",
" ndarr = torch.permute(grid, (1, 2, 0)).numpy()[:, :, ::-1]\n",
" outs.append(ndarr)\n",
"\n",
" if kwargs.get(\"generate_video\", False): # Generate and save video of the entire reverse process. \n",
" frames2vid(outs, kwargs['save_path'])\n",
" display(Image.fromarray(outs[-1][:, :, ::-1])) # Display the image at the final timestep of the reverse process.\n",
" return None\n",
"\n",
" else: # Display and save the image at the final timestep of the reverse process. \n",
" x = inverse_transform(x).type(torch.uint8)\n",
" grid = make_grid(x, nrow=nrow, pad_value=255.0).to(\"cpu\")\n",
" pil_image = TF.functional.to_pil_image(grid)\n",
" pil_image.save(kwargs['save_path'], format=save_path[-3:].upper())\n",
" display(pil_image)\n",
" return None"
]
},
{
"cell_type": "code",
2024-04-16 14:33:51 +02:00
"execution_count": 174,
2024-04-09 10:14:05 +02:00
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
2024-04-16 14:33:51 +02:00
"Train :: Epoch: 1/800: 100%|██████████| 135/135 [00:11<00:00, 11.48it/s, Epoch Loss: 0.1912]\n",
"Train :: Epoch: 2/800: 100%|██████████| 135/135 [00:12<00:00, 10.95it/s, Epoch Loss: 0.0885]\n",
"Train :: Epoch: 3/800: 100%|██████████| 135/135 [00:11<00:00, 11.37it/s, Epoch Loss: 0.0760]\n",
"Train :: Epoch: 4/800: 100%|██████████| 135/135 [00:13<00:00, 10.32it/s, Epoch Loss: 0.0697]\n",
"Train :: Epoch: 5/800: 100%|██████████| 135/135 [00:10<00:00, 12.42it/s, Epoch Loss: 0.0676]\n",
"Train :: Epoch: 6/800: 100%|██████████| 135/135 [00:11<00:00, 11.79it/s, Epoch Loss: 0.0615]\n",
"Train :: Epoch: 7/800: 100%|██████████| 135/135 [00:11<00:00, 11.52it/s, Epoch Loss: 0.0623]\n",
"Train :: Epoch: 8/800: 100%|██████████| 135/135 [00:11<00:00, 11.52it/s, Epoch Loss: 0.0580]\n",
"Train :: Epoch: 9/800: 100%|██████████| 135/135 [00:11<00:00, 11.29it/s, Epoch Loss: 0.0566]\n",
"Train :: Epoch: 10/800: 100%|██████████| 135/135 [00:12<00:00, 11.07it/s, Epoch Loss: 0.0557]\n",
"Train :: Epoch: 11/800: 100%|██████████| 135/135 [00:12<00:00, 11.15it/s, Epoch Loss: 0.0566]\n",
"Train :: Epoch: 12/800: 100%|██████████| 135/135 [00:11<00:00, 11.25it/s, Epoch Loss: 0.0550]\n",
"Train :: Epoch: 13/800: 100%|██████████| 135/135 [00:11<00:00, 11.62it/s, Epoch Loss: 0.0544]\n",
"Train :: Epoch: 14/800: 100%|██████████| 135/135 [00:11<00:00, 11.55it/s, Epoch Loss: 0.0541]\n",
"Train :: Epoch: 15/800: 100%|██████████| 135/135 [00:11<00:00, 11.53it/s, Epoch Loss: 0.0512]\n",
"Train :: Epoch: 16/800: 100%|██████████| 135/135 [00:11<00:00, 11.40it/s, Epoch Loss: 0.0539]\n",
"Train :: Epoch: 17/800: 100%|██████████| 135/135 [00:11<00:00, 11.40it/s, Epoch Loss: 0.0547]\n",
"Train :: Epoch: 18/800: 100%|██████████| 135/135 [00:11<00:00, 11.76it/s, Epoch Loss: 0.0516]\n",
"Train :: Epoch: 19/800: 100%|██████████| 135/135 [00:11<00:00, 11.47it/s, Epoch Loss: 0.0538]\n",
"Train :: Epoch: 20/800: 100%|██████████| 135/135 [00:11<00:00, 11.48it/s, Epoch Loss: 0.0547]\n",
"Sampling :: 100%|██████████| 999/999 [00:17<00:00, 56.53it/s]\n"
]
},
{
"data": {
"image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQgJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCACKARIDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3N5JTcyJHJ0AwuBwfyp8H2gYEpLEjOQBgUojRbtpMjexA/SpwR+HrWjelkjWUlayQ18hR85HqQMk1RnN6H+SXAzjgL+fIrRpCoPUUoyt0FCfL0OF8aa/q+kwaX9huzE03nGU+UrFtpXHUH1Nc4njnXpLcEX+HJPPkpkf+O1p/FIZGiqoc/NMeB6bOD61xEILSKGV8L94n0/8A118hmuIqwxMlGTS8n5H3mWYTD1MFCc4JvXou7Ojbxz4gMLYvCrMSEJhj49D92hvGniMRsRqScAEnyE+Xj/d/zmuYBEkzOELZH3T1UH/PapDJskChHYEA49xgV5v1rEL7b+9/5no/2fhltTj9yOsTxd4gHgzXtRbUQbq2Ft5LeSgCbpSrcbcHI45ziorLxX4mnuNramWjK5LCKLI9BwvsaoRQreeBPFcURLFvsvAwOBLn/GsLw5rEUOCQETGHfB7Ac4xXXiMRiPq8JQk72fXzZ4U8NQWIqe4t1ZW/uo7rUPFHiK0t5J3uPKhVc7vLQkdhniuZl+IuuRXK3MmvyLafxRfZYScnpzs6da7CGKHU9MLkoRLtHX+HtXnfiDwzHbJdSeVmNWDLyMnIJOf8968zA5nVnJ06lSSfr/mFOjh53i4JNeR3XhPxVrms+K7aKTUBJpzBiYzEgY/uyecKCMGvDf8AhdvxD/6GH/ySt/8A43XffDPWbn/hPNN02WFMOZfnIwRtifp+VeA19plvtfZP2jvrprfSyPnszjCNZKCtp/megf8AC7fiH/0MP/klb/8Axuj/AIXb8Q/+hh/8krf/AON15/RXpHmHoH/C7fiH/wBDD/5JW/8A8br6/r4Ar7/oAKKKKACiiigAooooAKa5IXIp1IRkUCexGPMJ+/8ApUg+tIAQPelByKbJj5gelMDNvAzxT+opoGHzQgle6sPooopFhRRRQAUUUUAMKht46Z7/AIUAhNqjnJxVeSYi4ZMcAgk+2KnYrkAPjvwatp9TRxa3JKQjI61H56nG3B4zgGnM6rGWYgAVNmTZo8++IpZE0cIRkvMCSvPVelef/bId8sXzFSxOV43EdQK734k5e30iSNyNrzHCjOeV/wDr15xcIse1kjlQ7txUt1Oea+MzSKeMnfy/JH6RkkVLBwv5/myzBEqyq0iZZTk7up6/4dKfPLwiqcFzgEjgc1BOreScFdxbOM8YP9aRpPMtXdmG8fdCnBx/jXm8t3c9blu1JnUaROtv4P8AElwNh2/ZSBgZ4kOM1y+j6ZDczDUZS0kuWUoB3I5P5VuwXQi+Hnief5A4FoG46Zlxz+ZrntB1a3szDvuNwbIIx36flXXXhP6vGUN7W/Fnzk7fWaqfdf8ApKO10uRbW0QPcgx7cKT1H0/GoruU3MQngO5Ah8yMkfMD0/rXBarrj3txi1l2GIZ2qMA+vFXotVWawMEkmJdmJinVuOP5V5jwE1ao92OKi6jtub/g66sW+IekW8ECtKrTN5ynpmJ8jH4Cvm6voL4eFR8S7JYkfYokRnJ4YmJj/SvDdHa3W9JuY/MXacDGefpX3OUU0qPL5/ofN5nDnxSjfdf5mfWm2iXDWqTwZlVjgjGMVvWWl6ZdxPlVjdHwmf4up5/Kr19OttMLHKRWu35QGAzgdc/hXuxoJK7NKGWQs/bPTo0ckNB1IxPIbVgqdckDP0r7tr4q1bWvLMaRSSFGGdvtX2rWNRRTtE4MbRo0ZKNN3fUKKKKzOAKKKKACiiigAoPSikbpQJi9qQDFKOlFABRRSZGaBi0UUUAFFFFABRRRQB4744+NKeEvGN/oZ8NG8Nt5f+kC/MW/dGr/AHfLOMbsde1YC/tFRu5P/CHfNjH/ACFD0/79VyHxlQP8VtaGB1g/9ER1wIXy5OOBWbqy2R6UMO7KTejPbv8AhoeOPLL4POR/1FD/APGqjl/aOimBSTweSD2/tQj/ANpV4xwwJA5xjmqUybDTjVk3qya9HktOLPsPw1NpfxE8GaTrV3pPkJL53lwfanby8SMp+Ybc52Z6cZrTbwN4cdcPpu4AY5nkPH/fVYPwTH/FotC/7eP/AEfJXfmsZ0Kc5Oc4pv0RjDGYiC5YTaXqzmn8EeGQwLaYODx++k6/99U9PA3hxVIXTuvPNxIf/Zq2yjPJuJIweg7jtUyAgDPpXNCjSlJpwVvRGrx2Kt/Fl97MBvA/hx9LvdNbTf8AQ73Z9ojE0g37G3LzuyMH0xnvWenwr8FxxCNdGIQcAfapv/i67AHkilrtjSp8qVlY53iKzk5Obu/NnGv8KvBTkbtF6DHF1MP5PU1t8M/CFo7NBpG0suw5uZjx+L11lFDo02rOK+4PrFa9+d/eznNN8B+GtI1ODUbHTfJu4Cxjfz5GwWUqeCxB4Y9RXnlv4B+H0oDDwft9/wC07j/4qvZq4GztXWMMV5yfvc/TmvSwVGk4yuu3kVDmqtuTuzITwV4It1LReFmB7g303/xVRXPgTwReuGn8JNIVXgnUZxj/AMerqfLUIAy/NncT+FW4rVPJ3kZJAXkCupwpJbfiztlFtWbdu12cBP4G8CMUEng3cFGARqdxwP8AvqvTdU1LVbFpGtdIiu4gCVK3RVjgA8jYcc5HBPSsC+tAinChg3UHoPeuqj1CGbU7mxRX8yBVZ2I+X5hwPrXBmChGMXT0b/rqcNeNpHLaR49udW0q+uxovlTWhwbdrk7mHc52Vd0DxfJr1xJFHpyxiLHmMJi23IyOqDNdIIY1YsqKC3Ugdaq2Gl2WmRslnbrErtubBJyfxrx+asnuZaGT4m8UzeHUtCNMa7a5crtSUjYB1JO0+orS8P6t/buiW+o+R5HnF/3e/djaxXrgemeneqHiwaYmlfaNUOIoskHdjHBP49OlRfDy6W98D6fcpnbI0xGfTzXp0as5VnFvRIUlazOnooorvJCgjIoooATAowKWigVkFNKKSpxyvI5p1FAWCiiigYUUUUAFFFFAHyb8ZJQPizri8gjyOn/XCOuFLhlA43EdTXa/GRc/GDXOf+ff/wBER1w7usYAwBj0rnklzHr0akvZ3exZt0AbORk8Y7VXuYlLnp1qBblw45471YnZTAHOBU8rjK5s6tOrScUtj6t+Cgx8ItC9vtH/AKUSV356GuA+CfPwi0L/ALeP/R8legVvbc8MTFLRRTUbCEA+YmlpB1pacdgCiiimAVw8EjxQbGAyxAyCDXcV5vFKXZyy7Y1O4fX65r0sDHmUvkdVB2ubyYC7jgkdTjr71a
"image/png": "iVBORw0KGgoAAAANSUhEUgAAARIAAACKCAIAAADpF1LuAACkhUlEQVR4Aez9abAkWZaYhx3fItxj39/+Xu5ZlbV0V+/LNAeYGQwGwIAgIBKQgaAZRJPJxEVmMlKizGSmH/ot6odookSJMi4GUiJAEosADAYzaPRM9/T0VkvXmlm559tfvNhXX8Ld9d0b72VXd033dBW6EkAqj8WL5+F+/a7n3HPuueeca6RpKs/gWQ8864GP0gPmR0n8LO2zHnjWA6oH7LNu+K6+HIg0RFyRqchEP+H5pshC3y+JDPUjEtTP3pPXRHIihkgsUhE5EDkSCQOJDLEyYok4ksQD8y/xTKLfMBxyjkgg8jxFOPJiJJ5IRuROTvyZ7It8WmSmPwWRqkhZ5LbI70r6GTFqIu+L/KbITZGWyJsiVIm6kT4jv/WO/NlHinP+h18yXihKaUdGIwlm8sWy5G3Jbcl4JuO+fPbTYu/oSjJj7Etiq4qfvC1OSV5vyzfflmJZbvfk+aF88WtSXxOqd6Uqv/Oq1Lbkm/ekUpZ/72+rUgyDNn+C8AEpgBYyDJ8EjEWK5JuIPIHp81Egq1lV1siXnCvhWMaR5Iuq6GEoji0FWyxLsqI+DAq9/OFmcx/0mcwkNSTRuVmGNA05jaTlfBJd9EfneV4xUH8kckmj40TjIoNF9cFvvsEeMJtOBk3zihLOYChSE7koEmgy6+v0/OxnFe3R7p560XQry/TOqaZJmg7SU7KRSNuVhq+KTmdnZVGTQ02KVU0PVAASrSnCVENMrV4V8UXuiqyKHCvUV6S1Ib92YVmI9DuysKWWl2Je7Klk89LZl42e3NiWxQ2xyfZIZFeShXRCqa/ISVfMvOSr8q+05MKGvP6mDPblxhfks18Svy5NT6a3pUE13pRXinJIbzxpOB+jX3y5dKgCc/nvE/4uZWWeyHQoviG2LVFWYlNiQxaxlPMKj9QQn8NcpHB+/fg/CAXNMAIpSKKrTbJpKJ2MDOJ/LmSzotkI0zYEAK5TO1CTCl7S2A+LoIJg57Ky+r/iSNzhAyrDVZbzAK9DYMBA01jjnPD0PfUKDYb26JIT2h3LyqY8eKQYDl3CTcaRNJANpMJPkJVkznJOFOlqEqUmO7pERpty13XWDcnwVMPqjhyeypVIXmlKaMijjprePt1QdGJPFPeAWfl9CcuSZiRYqEkuLkrGkpt7srkpf/KGbGblszdkfCRjT6yR1Fbl3YFcbIo3ly8yvM/gY/VAAEbBUqqSicSEsTCqTKmpugYpAj2jPs6Ywf8wLOlqodkj6DaLxHLEtRW9wXmeJJzPZGDtisZ4kH5bIygVb+oZ4Ehzkk2NvrQcbrOsIhdAotPQBy19DVLyFi2b6W+QrKNJaNkmiJDmQjZ00lBPF689kl8VuaeTQauk39WPVvW36hudLXlyDYXQwQ90PSmIqr6i2Q4Xa5rGdClQwiIrxZLcfyitourZyJGZLXlXv34gUU7cC+LOpH8i6VA8VyYjefdAHFceHMmWLS9dlndOJM5I9K7sHsuv/SV5cUcyM9n+kizI5Bl8rB5YZKRgKiEj0jQT6hnM1aRwjoV/fL5MoeY50hWQ//X0ruZcPjqrPz6LX0SK8wof6FKLGhcbGr3AVwhjWRuuwWMApKHWH4S2xuy6foXMKjqHGyLvaI5R1cIY9LCEPb1S8vUSiDsQA6+QktZDeDR7gICnr+keiJOubemb/FxzJI7kPU1yZFvRLPG+/kk9efGYHBWUI2nkJZPIhetSLkn8Q3npq0qGPmvLRXGu6ea0ZYeKTeXON+TmffGzcoHMxvJqW9YuycMTeQiBQcimbH5fKlVZ35ZsSQxmgWfw8XogkrktpqWWJUybzHuMOT2c+RBO/YzseQXgG9QAQBzDFDNRgstPYqZO8Al9gbYa2odSXleiETUaawFprr9B5ZL+LJP9BM1Q64Imj5nmRfTERF/w7pYmp6FuH+SxhJxe5YPlfB5oOiF/MjkUua7nDa6hlh3N+rg50rjOu5DrUaR40UDnwE9qdV+zpk0tQFJtStQQHIvREv9EHg2k5KgFVI48pzrPha4t9eGCmxuq6E5fSWhhX6K55Cw5MSVMZXQsBz3JluXFa7LbkZkpI0e8jlyCTZ2V8+zfR+sBm7nPVCPPIEcaTfhejv/PnxHvgoOM3nI+V1ktpGRLhoyeIJyTTdRQ1DLQZFDSrQG3lo372bWhL8ijrBNxAfouOwaM52ZBY7x/ngV3jnSLeyKf12JYSy+lmCr4UDol1nW/HmiS4A4ZvoCeTYthkCWVXNUERj5kck1T0fu6FErU0MpK90j2DVkryigja9tizDQp8rSha1vUot17Il9Utd2+LoWBPDiR9i05DmViyYOZxAvJ2mKjsQllsS1mT6oVNcN991j+1Fk5z/59tB4IEimaSugGlpgCqoP9XP/8QHqA7+W7XKBJg4o+Yb3mT1bwvM4rGcUsIRi+wXIQlPZRKajiZwCEz5y9bArJuOYDgJd8gI7mP1V9zRfZvqHltM9oxKUI7sz107f1mqqlK3Bb8xkI5sK5zo3rrp5n1jRpDXVnk5jq800XTjVB6pyCgtihlPJy+ZoStNJE8ZNGXcuEJEs0idLTUOOWotWNFTV9rXclKijR7oWaLEJ5fyhmSbKOnhDGkqtKqSxrNbHPiVMX9ezrI/RAw1bYwZgDXDBDMhQMbKwvfjaiPS6Gtxi65Ytcg4BgXxiLTUZPEM7JBsymFrQGFMzo8hGofk7glZ8GCDTkOT5nR1zQbQNNTrwFxvOTBJsi7XNK405FVybQxANd5TVXOdbfv6+z6mnlAZnTZ3u6I/vnr9OVkH0qg6F0umLVlWZ5YSlFpzXRCyGKI0FBNxP2ARlsqPmilUo3J7meGAuZ+LJzQTwttrUplyXsUAozmVxS4twz+Hg9wHDR2X4ijlYMZM5nMGiAYQSgHC5+BjaRkqcMGu+SEpqBhNjq4Saj+iSBojVQbF0jE/j38wOY/UGYf/CHvgY7YTs0bgmrIl/V4hYpeXdNdwC9RS1oOgTT0DRTO//Z0gxwqOUxruktKrnsMFLyCtDUaSAJLjRs1uQzK7IaSiaQQiJ9XzqJHB/p/qZcXj/QpNsy1DKFfCDLG6piresyI09bLn1WrKrU67Jak0cH0tmT+R05fF9uvSZ3f++slGf/PmoPMESLhTjMX5pCGEz7/GLJcECTSI/PT8sZNMlqeZyUSxIi5SJR19DSkwRqrgF0qWhELGupCXT/CaBlH55oacQH4Sd+Pn50jtCKpYw0V76sp/y+LouiISF6AvSl2/b1Iy6gE77vasIjDS+eaLJh+qfLp3rBs6WXOoca7yE2DYkp44XszRSLwDLAisWPZOzKhqcJFZqhLdcpjv0CHuhSciqfoi/ztyXqyvUtGY7kCH5lSmVD+mQ4k5t3JdyXTip/+nG7nl18lB5gDNG4DPVMtXwPhOImSM/4c8GEtsSyDyPaB8tZEht0AhUpgkm0Mu2DKT7563OyAf+o+EzT8vk9VTq147NsB2j3s4F2/ATQDXQGKL589y1NG2vaLgYigUSXQLn8pFyI521NMOu6S9q6b6AuCJJ8SD/SHzIca46R06yGzjvV2K9zY0NtGIi3Je1A7ozkuZIUm4p4FG+hLUWdFXVQhbJxHSjlhCHpe5Jx5FMvSfhA0kgwcK3k5ff3xcMy4FhKDZkvJDCk8sd2wnmbnv3/iR4o8dtQ48zo8a1/nckZoB5TGztsjh7Gn002JAZI4+sLtjuX9KN/PaGvcxK5L3JZY2pHYyfNAk3B15pGXBoKygIgKHX8+QEyCPRqvqHfoVfqeoeH+2RIbsCyGy5pShhrMqD0e5pU6Gm6B5ohJTXtaaYOAXCTt7Z0959qYjvRM5XO76Xr8rAgv/d9yeWkH4ibyElbqdwefl9ZD9zYkcoXdJWqkUpR0S0NxCC3jNrzUTPeK7JxrKju+Qvio/zpyXwg1UR6JKNbnsHH7QF6l2FkeB/DcvC5GTqySJUI93PiFyjADAblgBogyOBxjk/k4rySK1riP9S4C04DVAcsB2jTkma47mvN2M+POpnzxbfOSV7UZMP1F7WWrHK
"text/plain": [
"<PIL.Image.Image image mode=RGB size=274x138>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Train :: Epoch: 21/800: 100%|██████████| 135/135 [00:11<00:00, 11.69it/s, Epoch Loss: 0.0519]\n",
"Train :: Epoch: 22/800: 100%|██████████| 135/135 [00:11<00:00, 11.96it/s, Epoch Loss: 0.0490]\n",
"Train :: Epoch: 23/800: 100%|██████████| 135/135 [00:11<00:00, 11.60it/s, Epoch Loss: 0.0541]\n",
"Train :: Epoch: 24/800: 100%|██████████| 135/135 [00:11<00:00, 12.02it/s, Epoch Loss: 0.0524]\n",
"Train :: Epoch: 25/800: 100%|██████████| 135/135 [00:12<00:00, 11.12it/s, Epoch Loss: 0.0529]\n",
"Train :: Epoch: 26/800: 100%|██████████| 135/135 [00:11<00:00, 11.80it/s, Epoch Loss: 0.0510]\n",
"Train :: Epoch: 27/800: 100%|██████████| 135/135 [00:11<00:00, 11.77it/s, Epoch Loss: 0.0526]\n",
"Train :: Epoch: 28/800: 100%|██████████| 135/135 [00:11<00:00, 11.92it/s, Epoch Loss: 0.0493]\n",
"Train :: Epoch: 29/800: 100%|██████████| 135/135 [00:12<00:00, 10.85it/s, Epoch Loss: 0.0509]\n",
"Train :: Epoch: 30/800: 100%|██████████| 135/135 [00:12<00:00, 10.89it/s, Epoch Loss: 0.0492]\n",
"Train :: Epoch: 31/800: 100%|██████████| 135/135 [00:12<00:00, 11.11it/s, Epoch Loss: 0.0484]\n",
"Train :: Epoch: 32/800: 100%|██████████| 135/135 [00:12<00:00, 10.98it/s, Epoch Loss: 0.0514]\n",
"Train :: Epoch: 33/800: 100%|██████████| 135/135 [00:12<00:00, 11.16it/s, Epoch Loss: 0.0490]\n",
"Train :: Epoch: 34/800: 100%|██████████| 135/135 [00:11<00:00, 11.96it/s, Epoch Loss: 0.0507]\n",
"Train :: Epoch: 35/800: 100%|██████████| 135/135 [00:11<00:00, 11.40it/s, Epoch Loss: 0.0497]\n",
"Train :: Epoch: 36/800: 100%|██████████| 135/135 [00:11<00:00, 12.25it/s, Epoch Loss: 0.0524]\n",
"Train :: Epoch: 37/800: 100%|██████████| 135/135 [00:12<00:00, 11.00it/s, Epoch Loss: 0.0477]\n",
"Train :: Epoch: 38/800: 100%|██████████| 135/135 [00:11<00:00, 11.30it/s, Epoch Loss: 0.0469]\n",
"Train :: Epoch: 39/800: 100%|██████████| 135/135 [00:11<00:00, 11.76it/s, Epoch Loss: 0.0493]\n",
"Train :: Epoch: 40/800: 100%|██████████| 135/135 [00:11<00:00, 11.63it/s, Epoch Loss: 0.0483]\n",
"Sampling :: 100%|██████████| 999/999 [00:17<00:00, 57.58it/s]\n"
]
},
{
"data": {
"image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQgJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCACKARIDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooA8f+OnjbxF4O/sH+wNQ+x/avtHnfuY5N23y9v31OMbm6eteQf8Lt+If/Qw/wDklb//ABuu/wD2mv8AmVv+3v8A9o14BQB6B/wu34h/9DD/AOSVv/8AG6P+F2/EP/oYf/JK3/8Ajdef0UAfRPwx+IPi3xL4f8T3Goan9pubI2f2Zvs8SbN7uH4VQDkAdc4rr/7f1+OVVl1MFf4isKZHH+7XmPwKjaXQPGKIMtmxI4z0eQ16FcRLLcSQK5JUjLDnAx/LNfP5pUqxqLkbSt0fqfQ5XSpTpNzSer6X7GjD4k1aSbb/AGgCmSSxiQYA/Cs691bxbdTCTT/ECxKBloVghYdvVc881G9qYtFZ9q7/ALQYs+uGx+RxWneWiebbP5aJJJje2eQDjiuCniMQvtP7zvlSw97KK+5dA8Oa54huPEdjZ6hfiaFw/mKIkUnCEjoPXHSvRK880aOFPF+niCUuf32/PbCsBXode9l85zpNzd3c8TNYQjVjyKya7W6sKKKK9E8oKKKKACiiigAry/4x+NtV8Gw6SdKumhe6E4ZREj5K7MH5lOMbj9c16hXi/wAfb97CTw2yRoQxudzFclQPK6fXNRNNx0/yNqFvaK/+ZwVh8WfHt4Mp4ltQ4wPKlt4AzH2wnar3/CyfH5l8tPEaSHkErZw8H3+T6Vyc9le6qsTxQI/2UBkAi8sqOODwOnJxXUJb2S2BX99FcbGKiUr83bt68/lU80rcy+46nCnGXK9fPoaDfETxy8apFrrmfYSwWzhIBA5JOzGPf3rf0b4geJbvwV4mvp75vtWnraeRK0MWVLyEPwFwcgDqK520ZVRreWBpVaNUQIcLtGMow78Zq/p1mkfw28XSqCDP9kJGMYxMccdqznNcr3vbua4Ki3WgpJNcyW3d/kZw+KPjTP8AyGRzz/x6w/8AxFS/8LP8Yg86xx1/49Yf/ia5EpsAFIx4B/CvG9vUf2mfpqyvBpa0o/cjrm+J/jMrldX/APJWH/4muk8B+O/E2teMtPsNQ1HzbaXzPMj8iNd2I2I5Cg9QK8vVwF69+1dn8MpQfiBpagf89cn/ALZPV0q1R1Ipt7nLjsuwccJVnGnG6i+i7H0LRRRXvn5OFFFFABRRRQAUUUUAFFFFAHz/APtNf8yt/wBvf/tGvAK+gP2mv+ZW/wC3v/2jXz/QAUUtJQB7T8DJ/s/hvxrJkjC2YyOvLSj+teopBaDTTMspiluI1BUDJIzjivJ/guceE/G5wDxY8H/fkrvorpYrCWQvH5qsiqSclfb+dfP5n/GT8v8AM+kyuk54e6f2v0R001oDb+RGqtEnzICeRzn+tY8cskMRmkJklJ2bM8Hnrj60ranBFpchjuSJGADJjnPqD6VTedvLjkEuRISwI/z615rlZqx6dGjNJqXc2fDlsV8T20gBGA+7PrtPSvQ6888Nzy/29YBiHSUyZOeRhCf8a9Dr6DLf4T9TwM3v7ZX7fqwoopM816NzxxaKKKYBRRRQAV4x8eElF74XuIYmkaJrghVUHnMJ6fhXs9eU/GFEm1Pw1DcEi0b7U0204OAIyKmfwmlKXLNM8+ggkvDJeQxlWIHnWryjCMAc8k8nI6ds1JNDIm17a1K+ZEC6nlo2HXGeg7j1rP1G/sby9khleQlWX7N9lP3sYxn5fmY456VqNH5t1bQTytGIVGb37OcswA4KgjqCAM8YrOSctjZSstRskiQkM9wE2RlQye6/KcYHPOTV3RrpJvh/4yMUjEoLL5SPu/vTznPOefSsXxDJbQag6tGQfmjZk+68mNwbPP4AfnV3w3AkXgPx46u/lyGyZVbkj96386wnC1Ntvv8Akelgp3xFNLbmj+ZzTybkxgDPNRg7uDSZynvihFx8xFeLax+rXbaFA29cV2HwvKn4haV6/vuP+2T1xjn0711/wtI/4WLpQ6587/0U9a0V+8j6o8/Mpf7JVX92X5M+jqKKK+iPx0KKKKACiiigAooooAKKKKAOf8TeCfDvjH7L/b2n/bPsu/yf30ke3djd9xhnO1evpXP/APCkvh5/0L3/AJO3H/xyvQKKAPP/APhSXw8/6F7/AMnbj/45R/wpL4ef9C9/5O3H/wAcr0CigDmNF+Hnhbw9aXtrpWl/Z4b7y/tC/aJX37CSvLMSMEnpipz4I8Onrp+f+28n/wAVXQUVnKlCTvJJm1PEVaatCTS8mYR8HaC0YjNj8o6Ymk/+KqQ+FNEZlY2QJUbR+9fp+dbNFT9Xpfyr7i/reI/nf3szLTw/pdhPHPbWuySPJVvMY4yMHqfQ1f356r+tSUw4FZ1I8iShojOVSVR3m7vzAN7frS5/2aBjtSiiN3uyBC3HSnVGTzUlXSk22JhRRRW4gry/4v6zo2jnRjq3h46uZRcCL/TXt/KH7vd90HOcj6Y969QrxP8AaBGX8N+v+k/+0qzqycYNo7MDSjVxEYS2f+RxD+L/AAY1wsp+HjeYp3Ky65OMEc5GF4q/L8R/Dc80s0vgN2knIMhOsy/MR0yNtcBtG/JqdkTjHXGK4XiZo+phktCV/LzOpu/Gvg2eQNN8PXkfsf7bnGP/AB3ivQvhc3hXxjpviHT7bwudNtm+zfaY/wC0ZZvO+Z2Xk4K4Kk8HnPNeE3C88DNez/s8DnxJ/wBuv/tWt6VRzaTPMxuEjhoynT0at1fc9CHww8HKMDR//Jmb/wCLpT8MvB5POkf+TMv/AMVXW0Vt7Gn/ACr7jy/7Rxi/5ey/8Cf+ZyH/AAq7wbjH9j8f9fM3/wAXVvSvAXhnRdRi1DT9N8m6izsk8+RsZBU8FiOhNdJRTVKC1UURLHYqScZVJNPzYUUUVocgUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABUXUZqWmHGOOlc1dXQ0JniloGMUvtWUU+4xh61LURIzUtXhmm5AwooorrJCvE/2g+D4cOe9z/7Sr2yvDv2iW2/8I315+1f+0qyqq8Gd2Xy5cRF+v5HkEZ3N74qYjjqOKoWsuASTzipjMAcE9K8qUXc++pV48l31JmTchHHNew/s+x+W3iMZ/59f/ateMiXKA5HrXs37Prbj4jP/Xt/7VrfDpqZ5ecyhLCtrfT8z2yiiivTPhwooooAKKKKACiiigAooooA5XWPiR4S0DVZ9M1PVvIvIApkj+zyttyoYcqpHQjvVI/F/wACjH/E8JyMjFnOc/8AjleO/Fe2Z/iVrM4UmNfKEmCOB5Cc49K55f
"image/png": "iVBORw0KGgoAAAANSUhEUgAAARIAAACKCAIAAADpF1LuAABevklEQVR4Ae29eYxsV3of9t19rb2qu6v3t/I9voXL4zJDzpAzmtEotjSytdiSbTkWlNixDSSwYTg2/FcCJ4GhJLBhIAEM2Amc2JYiWx5Z1jqafSeHO/n49t6Xqq696u5rfvdU9xtqZsghW2Sp2egPt2+fOvece8937vc733e+s1wuTVM6oZMaOKmB91ID/HtJfJL2pAZOaiCrAXGS1cBx3Af6uLHm/Opfq07N8mY3KOmymEohz6sF1bacRLDjVDbKeT0YuCMtyRuGWCWzQuGqJy2oas7u9l/4wr3P39zaCkN7FNUl7tyZYkHinpiRalVl5OiO54x8/iO/s/qBcjH5m/83j3LLpvyAJnz+u+6XekZFE1RKG6nsq2JF5x+vK54vvraRdqRiTi1IkZNEiRX7JYVT+yNODj46u3gvrctmu7e23hM6oRDbUUJF4VJ9+oLZKVX6f+//zSya1zkuTxQR3SOSiYoSxTkaBaRZxBlU8imNCOkqeVqXSemTzlNaJWlEDkeqSrxLQ5t0SBBH/YjKRKUaRR71BHJDCm16dIJ200RhMyGBGHFKXEjxNnQlsEeyL47avB1J5dOnjGpxOAyHtp8zDM7gSDdpu0WxoT5xOrx714h7CwuFv3hh9saLrwwdbhioCzqXk7XET0c9zsFbcblSAe/9uJGZzE9rvQ7Phamiq4IjyxDOKOCGvuv4XKtpl3jJMqZ5VaAk2ew50/lSxRRNmeOatqsGzUesxk6nL1unyrXzruqMvI2NwWLV/MWL7mBd+fobM+P60mVqBgTzRmOttReS191vtnmHBIEMIo+oO8ygVUNYoKluFpUIlHpkBeQThZTdAYE2btLKboVcRZ56kzWbjiFsVDkN3Ngs5NNpnQ9U1RGVns2rknG2Gum6sjitvOyRPCSjTDtdCmM6e4mkGtf5RqwbuTPzmhbK8UzRqAZRmm5ti4qWMw2PoiTwhVS2Qryy40anzPg7q9wdS+/68SCJDFUa2JGsiSWelxVq7AaFmlKekgo81YRGUY3VyBWIS6sVzwljlVaWzdEj/N4qX/Fycw1DdVuOngpD7dY9fmNb2tuwx/UFZQJpg6ALTPotIuXgJ7SMLpKCs0J7Hk2LpKmk+jRCSoXciIoK5SXquhQTxQlJDC0+T5pCRZcoIeBrknQMYWNqqipS8YEz4kw5XtulXMR5SZGLaECp1VSCHik+8SJ5cjpsciWNakWKA3FaTheWClYoTy/L7Z5i5BRNsoMw4YVcUTZSoeD4fmQJ/gdrZ07y3d9/Vs9yXlsLt6LIpyRIeSVWuGJ+Jsd/4qOXTxWD3/vDW4oWnroiDZtOKeAXCmm4Ze31En9mruIDStxzd/nytaVz+S7f77s77sXiVLOQf93xXr5bmsuLA3Ft/CCXR9uTmWEmEUQd9QhFAfnrU4YTmFsBNIlLUQpFR1pAsk7DINNCRaR3KCeTlGTWHVCIOwB+XkKWmwV0otz4GZM6H0PYJHUlt7QoF6fj/lC0RqTlabpKfptaI1GwiDdowJMUkGJzeOkzxeyFdDySRM5al40KjVqVZy6Tn6A1LM4ux90B76zybiDGvCJJZKiTejWTe86vv+pB+fqClEkmx/eGcS5KxZm6N2hs78WPz1tmmZr9XuSVu9sRSaHu81oqVwauuThTX/zYm6v3uJcsQCJe92+0tqrVK8tPP9a9NzCVWW/ti/XTU2NOhCgzroCWeSb0sLLwQ0yphDNTRFA+YZpZXCPcimmVJCExIY39hHGGBMCZHJOdZvcBhHDuUwZFIHCSdAxh84BR4USB+tuCZmS6Pw4ojLK2y9SSXc/3h0LAKVlb5xPkJORpdyW9vsXxFmmx392LJJOvmtqZcxSgiyoK6pB4mWy0j0oUewUTL+u4kakLniPyJSEaimFs+wHfCuyVF5znXuuIQfwTF/Vir2hK5btt1x5xnyjwJumV5UpD1Uj0v/DGN0+deiwaDHg/TpL4U3/9r3LGqa989Y9SKg/8jbwmRCkaoIw8kXqsKw/HEJdmgg7FAnhIKaEvJYgkJJkCQXIkQEdy5GU4EaCjGMzQ0KHq9YgSCQYECSnr5yiU+lkyvjB+yITOxxA21O7z0wmp6FUKxEvkox/KkRtT6AiuS5wQJpwCXOHl8HniRHrzHtcL6McukyK7X7+jh3684RDfIj4mQ8/8OwleLhLHAFQaR0DcMSN1Wn8iH1y9KDTb4Rde0X78Wv6RpfjffWn9pbvxiIQ/usl/6uG5VIsKJenCnFIWU76dBpVSrVZsrqxzHXrq6dPDerDTbc0/9NjZOeX6+r03b62bM3qpqCjDxPHQ4jCKqM56NUOGGRn+hRg6nriY/JSEkCSVcgH10gwzUCAQTeAkA5JIPMyzhNCjCqGaoIgEUmJKFDKkzFUg5smJMlNtYnQMYcNpnCAVqA9DXc4atAR6PaVAShp9XhHkNHEzpW7Q6aXs/XR2M9OhbNL0IoW94rNLtKvQyt3sdekSBUNyQoLVLSh+RHwoRrIHY/qDJ7TQk/MN/eIDfCxwnGufruoXnuQ/vhyWmsXFx8/9qtNY6yVRWhw5Qp0bTM9wlWJZcNzG+Vyn4y3rzp4/XJqvzqc7OyrXCVutzuDFUayR9jd/6eO2H95+c9MWepKx7xJwGGagZBQxU+TQLRB0Mc4MLRA6NgFML7wuItjB0DCwCLIYpAGKBBqklEvJgZLBi1Ap4cmQKUbLhm6NQtxE3sr9934MYRNLOWknooqZqf9BQhUjMwLarZQTkyhO0ckXJZou0OwidVuxkR95g1xeEIYJ5XWq7dHiRZpdoM01imwqaCQpNNpLNcm3U5kS20kn8oJ2iebuv6QPOnC+5zbaysuRiuGRMOR+59uDcrex9MzCbocT/Hx1oe4qymv8aa0dLgfRhfK0rMvcsKNqiqoX5kvcnfVX9kylWDhnVut1SbNXvnVajF/eWvUGvllSlQStVEYzJu1ZmW2mRJlLgE+zhgHNGtxiNv5C4qMMNnkGoQEz3sZaBZ7oDDkR2RwpsL6RF4kBJ7R38Eggr0itkBbZUyZzOoawUSzUsUvVpUy1t3eIw9idRgovlEppexjHcSAHhuaSOyJViiQl4DnbdvPckHyR0hlK79FwQJvrJGp04RL1Q9Iibm45f68f9l7JwaibBE3S4qB/e4tzh0JDFcuFOBIdOxLXleLd22nOnK8s8K90t/1A+tQv/Z350uz53GZeiJbTZLC6cXd3U9J1URb3bGoMBoWL0ezs/ANTi69uvKAaVcfenDal0myZgn1eAgykUYYKuJXLsLuibJQGByyxfJip/DTOwABtgzNUCPzU6P1D7cAMy3OZAxq2Mkw16CLcR4QukjKNBLxFDplIPUGajBBMkCH0QqBklk6TYmbWAJo6tGxiSKZOBZOrKmp/2L7RL2y7/IJBUVeKxFDg01DIDy2qAWBVclTaalBxnjiH1Fm6ZNDrX6PiefrYYvT5L3UidX4S3JQm8ZCDZ3yhD09afFYzgloawcDVktc3424idpScXMu3N3bOnFomrnJ7pWnUd6oXausvvTK79HBVUDf7r+30ggv1JcXZ627dXY2iwrkHVjrbeS8xI17SZUEqaRiLYVTUMscKVE9FylxnwInJQIKLiIT8gwAYxANIApd1eIATpAFyYChH8BlATSEFUsOVg9caZciRfQpi8oC/CdIxhA1VZiktU2mehkOSKuSlpDnkJKnocqfzVF3e+cqt+c/+RTr/JL36VdvxI4wMpGKyvctf+gQVpmhzl4QiVavkDkg1KSxmxoHf92+8rsjFSnVmgm9nQo/ySNV1ta9Jv7njXy7wl87k8o9dlaze7HDNderzMyU+ClZf/h0fEwe2hXRvjXPX5NkHY83kuDRXnikVNVuZubV5584rt3SPy+u5qO8Wd51Rzq9M5+wEnZqM4IIBVTAbIKU+XGesQTNZByYUSY0yeCAJAAPLDVYZcAHAASYFpnmQPgoJ9+pgnMfNHAMpupzoGiEjejvZvSdHxxE2SplizGqao946YRpZJ9AvoHsjcHFItk7TRQNO5EG
"text/plain": [
"<PIL.Image.Image image mode=RGB size=274x138>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Train :: Epoch: 41/800: 100%|██████████| 135/135 [00:11<00:00, 11.87it/s, Epoch Loss: 0.0500]\n",
"Train :: Epoch: 42/800: 100%|██████████| 135/135 [00:11<00:00, 11.96it/s, Epoch Loss: 0.0486]\n",
"Train :: Epoch: 43/800: 100%|██████████| 135/135 [00:11<00:00, 11.64it/s, Epoch Loss: 0.0476]\n",
"Train :: Epoch: 44/800: 100%|██████████| 135/135 [00:11<00:00, 11.71it/s, Epoch Loss: 0.0478]\n",
"Train :: Epoch: 45/800: 100%|██████████| 135/135 [00:12<00:00, 10.98it/s, Epoch Loss: 0.0490]\n",
"Train :: Epoch: 46/800: 100%|██████████| 135/135 [00:11<00:00, 11.78it/s, Epoch Loss: 0.0481]\n",
"Train :: Epoch: 47/800: 100%|██████████| 135/135 [00:12<00:00, 10.83it/s, Epoch Loss: 0.0506]\n",
"Train :: Epoch: 48/800: 100%|██████████| 135/135 [00:11<00:00, 11.87it/s, Epoch Loss: 0.0490]\n",
"Train :: Epoch: 49/800: 100%|██████████| 135/135 [00:11<00:00, 11.64it/s, Epoch Loss: 0.0491]\n",
"Train :: Epoch: 50/800: 100%|██████████| 135/135 [00:11<00:00, 11.72it/s, Epoch Loss: 0.0463]\n",
"Train :: Epoch: 51/800: 100%|██████████| 135/135 [00:11<00:00, 11.55it/s, Epoch Loss: 0.0472]\n",
"Train :: Epoch: 52/800: 100%|██████████| 135/135 [00:11<00:00, 12.02it/s, Epoch Loss: 0.0486]\n",
"Train :: Epoch: 53/800: 100%|██████████| 135/135 [00:12<00:00, 10.75it/s, Epoch Loss: 0.0462]\n",
"Train :: Epoch: 54/800: 100%|██████████| 135/135 [00:12<00:00, 11.24it/s, Epoch Loss: 0.0476]\n",
"Train :: Epoch: 55/800: 100%|██████████| 135/135 [00:11<00:00, 11.91it/s, Epoch Loss: 0.0441]\n",
"Train :: Epoch: 56/800: 100%|██████████| 135/135 [00:11<00:00, 11.41it/s, Epoch Loss: 0.0477]\n",
"Train :: Epoch: 57/800: 100%|██████████| 135/135 [00:11<00:00, 11.79it/s, Epoch Loss: 0.0471]\n",
"Train :: Epoch: 58/800: 100%|██████████| 135/135 [00:12<00:00, 10.55it/s, Epoch Loss: 0.0488]\n",
"Train :: Epoch: 59/800: 100%|██████████| 135/135 [00:11<00:00, 11.48it/s, Epoch Loss: 0.0473]\n",
"Train :: Epoch: 60/800: 100%|██████████| 135/135 [00:11<00:00, 11.99it/s, Epoch Loss: 0.0459]\n",
"Sampling :: 100%|██████████| 999/999 [00:17<00:00, 57.61it/s]\n"
]
},
{
"data": {
"image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQgJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCACKARIDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDP+KXxS8ZeHPiPq2k6TrP2exg8ny4vssL7d0KMeWQk8knk1x//AAu34h/9DD/5JW//AMbo+Nv/ACV7Xf8At3/9J468/oA9A/4Xb8Q/+hh/8krf/wCN0f8AC7fiH/0MP/klb/8AxuvP6KAPrPwZ4o13WPAHhzVLu+8y7uzcfaJfKQb9szKvAUAYUY4xXX20urXDBvNKoc4J2HI9cYyP1rhPhQ4X4Z+EgwBBF4f/ACO9d9oxmtrBhcElkO7J7An7o+nStG0orQ53fnepN9ovEZAxLD2A5NVpbnVBGJUbaGGdjIBt9q2Ttz1yajljeVXUMApGOnekn1Bp9zz/AMbeJ9c0X4e6/qdneCK+tPs/ky+WjbN0yq3BBByCRyK8I/4Xb8Q/+hh/8krf/wCN16/8SY0Hwp8WSROGjY2oBAwMi4TP86+YKJ/FoaU3eKPQP+F2/EP/AKGH/wAkrf8A+N0f8Lt+If8A0MP/AJJW/wD8brz+ioND3D4W/FLxl4j+I+k6Tq2s/aLGfzvMi+ywpu2wuw5VARyAeDUlz8RvHVvYGP8AtZ/tokCn/RYT8p6EAJz+HpXF/BL/AJK9oX/bx/6TyVVbUBaaheXRUG5R41CoxbAPcZ/zzXBi3UTjyM0hazudtbfEj4hC3MtzquJEn8kxNawjccA8HZWlP8TvE6BV/tnDsQBtt4jyf+AV5nJ4pvtPklWfEod2dIm6Rt2Pt24qppms3DNLNLB5pALNIy7gO/Tp2NcUo4mV5t2Xky7wirHbR/F3xtbFJbnxEkv73DQfYohgdwSEH6Vu/En4k+MtE+JGpaNpGsLb2kXleVG1vC2N0SMeWQk5JPfvXkokTVGn3BVmdcqxbAyDkk/hXY/GRSvxW1mQjA/cYb/thHXoQcrO71Mk035EbfGbx8J/L/t7uAcWcH/xFa0Pxd8bQ2dz5mptcSHIjf7LCNg/vYCcnrWZp50/UPCNk05KTRf6PKhj27yCSrD164qJrWWwhkkuRHE0pOIi4J29B09TXnTxrk3CzTTtvvZnrUcGn799H+BYm+MHj+FULa9ywzj7HB/8RXp+n+NvEE3w+8O6tLf5uroXRuJPJjG/ZKVXjbgYHoBXhF7EboBuAUXaMexr13RkSb4U+Et3reY/7/mvVws3N+Z52Ip+zduh19l4p1m5EB+3BvNwBiFRyenan3eu+I4yxj1GFACAPMiXDZ6EHFZOiuybo4uZWG1HJAEfqxzU17r9tpoGmz3C3RdhGcqMRpxwMda75P2esloZKCqQ916/1qaS+J9c01ZWuJBfNjPlmNY9vrjA5/GszxV451e28F+KNU0y+MNxZR2RtyYUbymklCvwQQcjPXOO1LquoRTPi0AQEEZbn6ZrmfFEQj+FPjMq+5SLHGQMj9+M81pNQcHJLUxSadjzxfjX8RGJA8QjgZ/487f/AON0n/C7fiH/ANDD/wCSVv8A/G64AV01pZQvZxJNADkAnjnNedVqqmrs2jFydkbo+M/xFMBm/wCEhG0MF/487fP/AKBXWfC74peMvEfxH0rStV1n7RYz+d5kX2WFN22F2HKoCOQDwa8XvIhb3UsIAwrcGu4+CZz8XtC/7eP/AEnkrSLurks+jvBeuXet6YrT6j9omQZkYRouM5wOBiofE0vi+5mt18MXsUWAzSJLGhLcjbklSAOtbukWdtptgsFtAkaQoIxsXG7A5Pvzmlgu4YbiKBT+9YKp98f/AFs1xTrO/usOhiaTY+OENquq63DJkuZzFDGCo/hA+TBOe/t3rO8U3HirQ4JL6016aez6lTawl4vyQZFd+emCeD3rN1a1W5s7iDKgGBkwRnGeKuFaVwktDYooorsA+QPjb/yV7Xf+3f8A9J468/r0D42/8le13/t3/wDSeOvP6ACiiigD6h+Gc0EPwr8KNMshP+llSgzg/aG610F34utdMyJpDLMjj9wBg469Txn0rlfARA+EnhRjjj7Z1/6+GqxreitrUEVjEF2+Y87sq/vCccgMTgAAH36AVU4zcFyuxNF0fbfvloerCaNbVrhlKjaXI4Jxj2p0cgRWY42AZ+XmqGkwIulW9i6uAkKjZIcttxjk+taIhCI43EhjwPSlba5ldt3jseYfFPyF+EHiZbcrtMkEhXuC1wh5HavlWvqr4r26wfC3xSAck/ZCfT/j4SvlWnJJPQulflVwoooqTQ9A+CX/ACV7Qv8At4/9J5Kwf7RiF7c3jKI5HlGIkOACOh9sEVvfBL/kr2hf9vH/AKTyVx/2cpaXFzNDJy4VGI4JOSawrRjK1w16G3HeabrV2LaWAxNIpxM/zYfHr1xVKG/ubS0fSbWLdK7sC4HzMpH+GaTSrqyj227psaZlV5SMlee34cfjWnqr2F9JkXsUM8bkjKYZgMBeR7CuFpQnyOL5fv26lJuWpQmtG0YWzqSpkTZckfMBk9M+4Feg/ErSpta+L+v20RI8uGGQ++II+K8/19hb306Wk6y29z9wFslen5V6Z4216Lw/8bdfe7UNZXcMMExHLRgwx4YD2/lTnKr9Wc4ay6f15ao1pKDqJS2Kt/f6XHoFmZhN52mbVtoGk3BVJBLMT16dKwNRuV1bRBqMeTNFMwZTnO3dxj8xV3xTqOiWukPp9vcCeaWASo6LnOTlQT9BV3wkbR9Jtp0uYoDBGS7MwAGR8wNeHFeypKtZ3v17f8F/ifQvllJ0oNWt+Jh2ts8+qqloEdWG51bovBLH8ADXqPhCGyvPhv4Ts7m5iheZb7yXYkEkXP8AD7815TaXkd1Jc/2bIwxE8kkjsF2A5zknpwa9H8M3NpB8O/BH2qcxIyagFCRLIXIn4Az3zj619FlkZe2afZevU8XMWuSLTOivEj0jUIdOeR53Ub2mMAQEdsYJ+nPpUeseF0EpvjcM32ld+wjbKxxxg9Djrg1TaybUdRMU+oahCHQLAsjKsku3JCnjoM/hmtfXtU0/Q47bR45W3tDj7Tcy7mAJ4HXI6YHYZr3qmHcmotHkUqzjdpmXJpk1tEk0zuYvKDZ2/dGe/wDjWP4kkEnwm8Z7A20fYsEjhv346etWtV8XLJE6w7W2sqllfhlAOVGOnJB9OKj8VNp03wi8WXFhK7Syx2BnjxhUbzlHH15qKlN06bTNfac8ro+fE8oRSb92/gJjp15JrporyEXaW0s8ZcgDf0Ga5d06kYIHWiMEuAMZ968qrSVRas2hPl2LF4POv5ApUHcQSWGCc46123wUG34v6EMgn/SM4/64SV
"image/png": "iVBORw0KGgoAAAANSUhEUgAAARIAAACKCAIAAADpF1LuAADUp0lEQVR4Aez9B7gkyXUeiEb6rKws725db9v7np4eP4OZgbeEoYMEEhJXfPwkrqgnaZcrabWrlVmJ0sqtJFJcOhF0IgACIOEH4233tLf39vW+vK/05v2ReW/PwBAgJMzFe+/D6eq8WZFRmRkR58Q5cVwwvu+TH8GPeuBHPfD99AD7/VT+Ud0f9cCPeoD2AB92A8Mwb2l/hDztb/7+hUiUywnW4aGEx8r1Vp11WJ4wnOAKhOQHCk3dEDhJlvhiNqG5TrtncxwTT0U8z+Ncpq97pWaV9VnO91yeVSO8bXFbrb6rOZ7TV3npJx89jFbsTVtOjTMlg3zwYWLxREmQc9ukvUEadcIyZHyQtOuEcUkkTlIxInPk8ASRZeK7RLeJ6RMPH5esbdHuX1ggtTqxLZKOkShHmjr58EfIwX3iX/87JtqSjMuM4HG+yxDWdhyBJwmR3rBhsK7vEZ4nHuO6Duf5tk9QMBInD+XJYJF87Aly/g75Pz9P2i5RFcHGwy2X+D7LcI7rQsKIKDwvOLeXqKzx83/3VwXipGMxTiSiJOVVkeVkl2U93ZEicjwat4ljm3iOFfHMeqfdF+SWK/JiKiqnOl2tVN3U692pqeKJ0/seORJNZ9ILG3hsV4kM/f6nvvr05UtP/Ze//wMelxhh0CQDd30DQhx798d+KpVKfPjtZ44eHOUlzrAlj6iRqC9JjGYammPHNPK//ot/v7i9Kkejxczg+upyvVz70NvfNzAduTnbVETv0YfOXrt9XdMrt1fnn724dfr+MzIZ8CzXYwzec77+e7+HR+6QzRsPfyvP5IjBChGGJ5plSqpy+OgR4pmW1re7rVa3JQADHSsRk9Wo1LcMIIHIea5POMJGohG91da6y4wTxTt3PctDr1m8phu86ysKTth+T3sr3/1b7x0vkohDeIlMFIgqktdvEs7DKxHdIatbJCKT4SxxHLLdIlGPZBWSyZBIhADv0eOcTfosOXmELG+SrklaPYLmYOIYniRWjfz+58jPvMcKnydHiGE5tssSxiMU7YnAEtcjjudZPhF93yEOuiid5kdE5+YWaXZJYpLkVXJrmSxvE5EnnEMsz5M4ViOsR4jLcCwDinZszzXMnblSEoBVMm7FM5yrtZsWiSZSkUjEY23GZ0GwxGdw1fTsvmU3DLff7pW7lid3re68HEmJojU6lhI4u7K83swUN+YqW3wsLurxEU0HpcUy39p3//3fu8SPoB/Rnm+9V74YFSRRTiYdSYjIDBfllFhCjHCsSyTbVBr9xa2lpdXVlluJ+GLf2oiyKmvoN2afP3Xf+xoD0vZWZXB06Pg9J5K51OKt+dMvvfLq8lbKlwuxuOV0NzdL4fP2lGx8PsoAcWw3G496gnXu9RcxFaQSuUKhkInJLM8NqGmO5y3bcDzecH2MmSgS39ZNt9+rXRpKDBqZQqPd9W3BMtyuaVoWER1XiUi6T0yLTs97BmAywPW1EjlxiNzaIIpItvpkIEuWNkmjSRIqOXqaOD5Zr5G5FbLdJFKUeCKJSsB4AkQ3O4TRiO0QRSGjg2QoR/mSIhEuQtwyuVLbaYdng7GiPrADuM6xnmu6JMZTxmW44FouSkFLjONM5ikOzW6QdZ30l8nt10gbPMIjAr3qyQLhRN/0Odv0gG24p2FTBhWCZ+oW6/KCbLSbCZmRMzlZESQGv3QFV/e8KC9HFZYH68eAZDNCJqpKfXP+1nohWxzIRcYKMZ/j233ckXzxmbULl6/lJ4aOHxwfznu5/GC884MQZLCY8Eg8RTrN4JXxdffld9qw+xC8w8zhsWQuhnlBiKqC4Emqz4HNsryjmS7TM8324HTkTDp7a217Y0MfKsb3P3T4fe8+dfjowafPfylXLIxNj8cww5nuiaMHp6ZG97187sr1RUt3ogx/9MBA+Lg9JRtGkFmByyogHc90BVVMYHpLKlFN7+jl9pl7T2MWbLR6ghQVeE6D9OV6EisYlkE6tfL8U4VTH5W8ZkGVBd2zBM4weVZxPdtutDtAkEwsvtODe/KnOMQaNa/TJboprG7YhCVKlGQGSNci23XS71GpTJZIuU9yCWI5hONIJkbLNZNIIqWojXUyPEiuAhuS5J7TlBIqFVLtE8zvJchvAXC8TxzGtXxJ8R8tun6PtAjp+YRniQjmBmpiCccAo8gWiASil0TlvZpO7D79PaYVSSZxwU+wboPn9b5vOo5j0fqCSEAXIaCOGhNkxjU7TUFg8umDhmOzLoiNdUyT1W0+E8koqrNVqjmMGpMjCTWtRGLJEVW2B6O+bfK664ocY7v4w+SGipXt2h1ZGizGvW67vL7bmJ2nffMflqRl0tC/jQy+uRZ9Y5bsHyCvg2zAl8FnIKGBeMK1Oa7utoVlhWQs6na63b6fzShxNQbxpsdoja1tt9tXk9kz7zpT4TczUutovSU4wr6J/Ynh4tGRM9vm0vs/9NC9h+919F4kGdUczda72eTQe9/5ICfyF85fq3f66wvl8L32lGwSCvEw2BHOcnxetoanRw4MD0iEgN86QVdoxFcVxjS8mBqJiXxTNw3IAowg5AZzvXfzsSxvWEJcETin7bAQ5zTd5bmIqEi2YVqdHcHmWzr8Lfp635SqTRjfeMqau2E/fFS5vqWdv04YlrzncfbSFa9UIoxAsgXCbJKRIinEiKBQiurpxNIIpMmlbaK7JJUm+STZaJKnX4QATlomqWJRBLl0d1gc38MULykEUlYu4WWj5FaNNLrENimeeAx9okiIrpNal8iE7M8RHvTjknSUcD1SskgGxBwhaYl0NcfxIUgyLOiM81iOvatE5WUGq0fLs7T6dq1hy8MnRJbhfYYIntgsJVta/DA4h8kOpNZvLcXiBTmZbfRbUtxgTF5zZd/TwblwB8NwYnF1ZBxTiNIgzPW5eqkGARRI/c3wJuEKc10uSroOpfbvAqxEzh4g+SxRtwgVxu2g7ptvvMttut3e6sKWVWtksvEDB6ZZJm4RSwB/dUyWB1NkK5WVhCyfOvrgA9mswCQjJAuGbRBTYhNvP3tGljKYizhMNWybc/AYzTONR+49jZXg7332a5oJ+qawOz7ht7f4mBIZxxdiEqd7fa5vFjMFzKXVVpmVpHQkrRBWJqIpWIzTFrgID5HG4xngDe+mEsn4iUcZYnEqBzE/KRHJ7FVbusjzXdM1HL/V0Xwst/cQ4gpJ+d4HniAvPEf4qNVuk/c8QmYOiMkMr3e0QpIc3sdX6k65SnIZIquk3SC2R5FDAEslpGNQzgD5Kpkhq3Wy3SD5Iqm3sZIhWK+AHkLgsPT1fNYifc97foG8bx/RHMilxDGoRGcKxDUJp5IIR1I8lcdiWPYYZHyIyCbp50i8SjSG5Hk6NfesQNgDpbk+j/uiY8OpGlM21pGO5dptBuXcgGl6PCd5oiObtufx8VQyIyjt554af/Ch6Il96yvzdkvt9Mil1++cvWdyaHS0trEN+cw1WYgG8ZigcpDgBJeNVDq9erMHkvzWYXnTggQEUza+B83g555JVmt0EQi+vUMz33LTXW7TN7xLt1cPD2dcztCNeoSIDEFzKdlEigVTa1RWlx576JQogsnFgxkbFQyPgLWCfkCRDmjGI02nU2M4VTdqji+yAhkbHb//7D2vXXwhfOyeko3AMlGeTUaldFzeXFnttMx8KimrmK6kCMG7EYkwEh/rxwwZy2lOchSeFfwIzyiUviHGS0AnfNB1khS3kny10q+WW92uphkGa79pNL6lT9+CrxtVq7bhLG6SW4tksekMZcmhU1JRESp1F3qC41MklvbSce7OortRJ/uG2C3Bu7NMGm0sUEjPpusZUFrfIFOjZLVNzA1SrdIlRzRCNI1A6gyBYT2o5jiJZYnXMMltsCOXvOsgOT1JrmySYo7MV8lL8yQtkKk06fWofklkSTJGsmkC9ZmtkR5DkiJRE2S+Q1yHCBxVKvBAJQFEu0OdgmP5Zod3WjKEejUPwdcTBE4Q+4yfGZvODuV4rsttdOT0wLigjflK0xcPDkam2NTl2StiLpIWxI4vQAI
"text/plain": [
"<PIL.Image.Image image mode=RGB size=274x138>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Train :: Epoch: 61/800: 100%|██████████| 135/135 [00:11<00:00, 11.59it/s, Epoch Loss: 0.0470]\n",
"Train :: Epoch: 62/800: 100%|██████████| 135/135 [00:11<00:00, 11.51it/s, Epoch Loss: 0.0442]\n",
"Train :: Epoch: 63/800: 100%|██████████| 135/135 [00:11<00:00, 11.37it/s, Epoch Loss: 0.0476]\n",
"Train :: Epoch: 64/800: 100%|██████████| 135/135 [00:11<00:00, 11.33it/s, Epoch Loss: 0.0458]\n",
"Train :: Epoch: 65/800: 100%|██████████| 135/135 [00:11<00:00, 11.57it/s, Epoch Loss: 0.0467]\n",
"Train :: Epoch: 66/800: 100%|██████████| 135/135 [00:11<00:00, 11.38it/s, Epoch Loss: 0.0435]\n",
"Train :: Epoch: 67/800: 100%|██████████| 135/135 [00:12<00:00, 11.21it/s, Epoch Loss: 0.0473]\n",
"Train :: Epoch: 68/800: 100%|██████████| 135/135 [00:10<00:00, 12.67it/s, Epoch Loss: 0.0475]\n",
"Train :: Epoch: 69/800: 100%|██████████| 135/135 [00:11<00:00, 11.46it/s, Epoch Loss: 0.0468]\n",
"Train :: Epoch: 70/800: 100%|██████████| 135/135 [00:11<00:00, 11.40it/s, Epoch Loss: 0.0462]\n",
"Train :: Epoch: 71/800: 100%|██████████| 135/135 [00:11<00:00, 11.42it/s, Epoch Loss: 0.0452]\n",
"Train :: Epoch: 72/800: 100%|██████████| 135/135 [00:12<00:00, 10.96it/s, Epoch Loss: 0.0452]\n",
"Train :: Epoch: 73/800: 100%|██████████| 135/135 [00:11<00:00, 12.02it/s, Epoch Loss: 0.0459]\n",
"Train :: Epoch: 74/800: 100%|██████████| 135/135 [00:12<00:00, 11.10it/s, Epoch Loss: 0.0479]\n",
"Train :: Epoch: 75/800: 100%|██████████| 135/135 [00:11<00:00, 11.71it/s, Epoch Loss: 0.0443]\n",
"Train :: Epoch: 76/800: 100%|██████████| 135/135 [00:11<00:00, 12.10it/s, Epoch Loss: 0.0462]\n",
"Train :: Epoch: 77/800: 100%|██████████| 135/135 [00:11<00:00, 12.12it/s, Epoch Loss: 0.0474]\n",
"Train :: Epoch: 78/800: 100%|██████████| 135/135 [00:12<00:00, 11.15it/s, Epoch Loss: 0.0457]\n",
"Train :: Epoch: 79/800: 100%|██████████| 135/135 [00:11<00:00, 12.19it/s, Epoch Loss: 0.0445]\n",
"Train :: Epoch: 80/800: 100%|██████████| 135/135 [00:11<00:00, 11.60it/s, Epoch Loss: 0.0455]\n",
"Sampling :: 100%|██████████| 999/999 [00:17<00:00, 57.68it/s]\n"
]
},
{
"data": {
"image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQgJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCACKARIDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD226vJIrsxiTC8dh6U37bKE3eZk4z0H+FU9SBOpyD+8B36cCqMruqbcscYHygnitYpWPQp0YySNlr6bg7+o9BVSbU7tHwJcDH90f4VTR5ShdnA2gbR6iiZEcAk4yuGPcZqrK2wexVzodMnkudPillbc7bsnGP4iKt1Q0VBFpMKDoN2P++jV+sWcVRJSaQUUUUiAooooAKKKKACiiigAooooAKKKKACiiigArhPiJ4i1PQp9KTTbwwGdZjIvlK+/b5eOWBxjcenr7V3ded/E6yWe90K5llkjiiNwm6MZO9lQqPodppoT2MCx8W+K5oV+06uVzIAphtI2ZgRyDkYGOo4qO78ZeK7NUVtVY7mKq7WkYJA7kbeDUGkaja2M9tJcTI53bXhRSXQYPJ7YqTxNfSTWKXbeWsYcMBt+5nj/I9656+KpUJQhPeTsgUJSTcegDx94otmjnlv0mhLZZPIQZUdsgd67D4eeINY1681t9TnLwRvF9mTy1Xywd+RkAE9B1rym3mjtpvNkOWmCTsuOFjOCDxx65r0n4TyJcw6pdAOHcxKwZs7cb8Aeg5rpdiVc9HoooqSwooooAKKKKACiiigAooooA5fWN8eqSMT+7cgDg5ztFRyTXC24PkyMcg4AwcfzrmPEGkeLf8AhYF7fafqCHTZBHttjIQVwignGMdQTWvFFqqTESOjLt6g/Pn0yK2S0R6lJ3p6tIsW7vLAQ0ZR8nbvBAIz/MelNu2by1EZO8fePXOKp3epXcUkEE1tIzE5L4OAPepS6NNE6ggyRtvUng9MU+lipOUJXZ1egMz6Jbs3U7v/AEI1pVmeH1CaJAoxgF8Y/wB81p1i9zzKms2FFFFIgKKKKACiiigAooooAKKKKACiiigAooooAK84+KhdZNGkVpMKZsqoOM5jwePTH6mvR688+KJMb6JKT5cQldZJsZ2KSmfzoE3ZHDWh8+7QSqJo1BBk27GT0we/Pb3r0K/trW+s5YJbKLy5V+YqACG4+b2OcHNctqenWFzARp86RvyM8jJ9z2qrca/rFnZpay28DyMq/vkOThevfGDS0e6uZ3YxbbQNIuUN7I06wlI42aEsFOeQW6EjrivUvDzaUbi+XS4gAChklH8ZO4/pz+deTNrEjXEHnJ5gkJE0h+6D1+70+n/167b4bTSyX+tCVlyUt32p91STLnA/Cs37RuNnp1CO+p6DRRRWpqFFFFABRRRQAUUUUAFFFFAFOXS7Oa4aeSImRup3sO2OmcdqT+ybLOfJOf8Afb/GrtFO47soPounyY3wE46fvG/xpraFpjFSbUEr0+duP1rRoouw5mRW1tFaQLBAu2Nc4GSepz3+tS0UUhBRRRQBBd3H2W1eYJv24+XOM5OKgi1FnTfJDsH+9n+lWLpFktnVuhx/OvPde1+9t9eXT7Iq7R229o84JGefxxWVSfIa04c2h1914gS3iaRIBIoAIIkwCPyqCw8UxX5VI4o/ObpGJsnGev3ag01LBbCFmt90dwFkyq8KxHJIPvzxXK2saaR46huXIjsSJjGwOcDp292rKpUlGzWxUYRdz0OK/Z7mOFoNu/PO7PQfSoTrAEW/yD9N3/1qbHcJcahaGI7k2F92OoIOKrw2u9m34zXdRSkm5HLWbjaxLJrrRj/j0J+smP6VCfErBf8AjzG7083/AOtVi8tN8GFXJx19K557Rg/U9cVvGEH0Od1J9ybUPHb2ADDSvMU9/tGP/Za7KvNPElqEsl+Vt3tXpdY1YqL0N6cnJahRRRWRoFZWsWmn30ttbahbecr7tp3kAdM9D/nFatY2sxySX9jsQsFEjMfTlf8AGrgk5WYnsUT4M8Lxl/8AQeSoDYuJeg6fxVmX2keGre68ltIaRdvMn2qXA9utacVtc/2hPI0h2MMBT9Kz7qK4/tARYHkYO/d1P0rpjQgtzO/Yx7ix8NpEx/4RstEp4Jv5Rmt7wPJprz6iNP0wWWEh3H7U8xcfPtBDD5cYPTrn2rFn0NVRll1K4JYMuAVxsPbGP1rT+HnhuXw+2pNJqcl8lwIthlXa6Bd/B/7660qtOMY3SKi7s7iiiiuQsKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigCK5IEBz6gfqK848f6Wtu0WqW8b+dsaOd1z/qxg5P6V6HqBYWTlPvZXGfqK4PXtburdZbC6tkkW7zFHJv+XY3G3HqM/wAq5cSk42Z0Ubp3Nrwvef2p4ft7h5kmdWKFsDcMHoaydR0prfxZBcylI7R/kiQkYLFcYx7kiq2jJJY6Gttao5vzEF88tgRlnwFIzyemOOtafiPw9d6zPp0kZ8uaM/vHLZCDHPHc5qPecFpdopNKb1sjT0qK6ttWaGf/AFe8+WO2Np4FaKsAwXaF4HPeorNTFfRxyFpXyf3jdc4OT/KnlWcLjrnNehQVkzhxDu0W2+aH5RnIrKktsygYPHNa0Cny1Dde9SiIZycVop8phyORjzaWLuHZIODW5TcAU6s5zcjenHlCiiioNAqOUA447EVJXNeK9en0GSxmWDzLaQuJm/u/dxVwTlKyE9i24cXqHJ9MDvSalYwvEXlIIb72T0qppWsx6vbPNCgDxnaVyDzWXq+s26XwsdRdrV2TdHuI2SDOOv8ASuxJ3RkUv7W0CCXYbmOTGQXU5C/WrngCS+m1rxDLNqIu7B2hNmOhjHz7gR+XPfFcrr1he6XA03h6GzjupSCySJlW9SB0/wD1V1fw2fW3t77+2olWUeXsZE2q33s44APbpmlW+FlRO6ooorhNAooooAKKKKACiiigAooooAytQ8R6VpcrR3l0Y3XqBE7dgewPY1UXxv4ddCy6jwP+mEn/AMTXD+Krnf46urcZYI0eV92jX+mKqy+F7+41U29nkWr7QLh0K8kHOR7Y/UVxyrVOZpIqx3snj/wzFL5b6kVf0NvL/wDE1Pb+M9BuseReu4JwCLeXH57a5m48G2uoz2U19GkjRNtk28BwBxkD3xWXrOgSaekQsncxGXcibcbTnaFBHr6VpzzSuxuKseiXXiLSrKCCe5ujHHOGMZMTnO0gHgDI6ilHiHSyAftXBGR+7f8Awrz/AMXyGS18LhflR0n3AnPQx1NE6smB2Fe1hsJCrTU3c5KtVwlZHcf8JHpJJH2vkf8ATN/8KQ+JdIEe/wC1/L6+U/8AhXENE23dgc9KryFlYp/D2xXS8BS7syWIkdzJ4h0m9067livcR2+zzXMLnbub5eMAnJ
"image/png": "iVBORw0KGgoAAAANSUhEUgAAARIAAACKCAIAAADpF1LuAABuaklEQVR4Ae39d5Bl2Z3nh11vn38vfWZl+eqqam/RMI0GZjDYwY7lzE5oKS4ZdEuJ/EPBFRUSFVSEQvpDGxKDJiZCDIlcanfJ2aVbO34wGHig0Y22Vd1d3qTPl8+/660+972sWozBoLvRlVtI5OnXt17ed9059/zOz39/Yp7nwlE7GoGjEfgwIyB9mIOPjj0agaMRKEZAmQ7D+NK2lCtClomSmouyIAtZ4gu6IeWSJimxIAqCaIqSaKhJnglJkOV5EkcSP8WSpCp5yJ9+quR5moV+liu5EPtqnoqqEoy8zB8f/6UXjsb7oR2Bl3/x5xq1VqM5oyjyxvqabJn1qvWFF1969c033nz70vHjq6Ph8ObexvMXP1WpiZHrhIKuZGqYSo7XmZmdVWRt5+5GrabONBtBMmq0Zn/ti1/a2xz+z3//d77z5vdjy3z7O3/40Pb9oz3YPtlIWiIliijLkpgz+/k3lrVcMSRVyEXFypI408MskbxIzGNRUUQlyzMxSfNMzTMp120p8ERVklJJkb2BEudSJgRZVpydqUGufrSHOzrrYEYgTxNRzLOM95ZIshw4weVbN8b9wZnTF+tzi2ql+unHnp+9eWX3zpqQLRp62VTM/mjg+D5veW93KCt5e29YKs1v7mzu7o2WFuR3lm4FcapVVFGSbds6mF4c5F32yUa37ajjSoKcpJFSqqSClsWQTyiLVp4VRCClcQaV+G6uqmIup5IowJ3gQbmU5InryaKqxmEiJpnk5ImSiLYqBFISRVkWqGlwkF06uteHHYEnnvtUFI29kaSybCqmLebG4nFVr37qU5964RMv3rp+/fGnHr9w/vwf/eHvCWEWJJpRkdNRatp5o9qALka7g7PnTjdbpVvX/XppRoiEP/7jr2SlSuA6maWVrNKHfZ6H//h9ssl8MYOTKLqsIWDJYpbJQq7qiphFgphgNWApUkUNAhHkLJUzVRSiTJBSLZZCIZVVNclSI859wXEVUxIyKQxEjA2ioMg5PCh7+Afip/kJ3/n+m+ceu6DpxdpYr7ds07BFrdqau3ltLfCCnZ2+Jl0Z+OOVxSXf9yRV2xr249RrGLXUlyU9NazyzGzJUDXVLBuyGIQRXEZPsiD3Z2bnVQ0J/7C1fZNAHiVIZ/AOWEvqRbmfSQhmXlpwj0TK3USWJCmLpYjB4G9ZSBDTkNdCMRRg8UkqZWKQSXJeKie2EkpaLCZCVYOJC4kga/phG7bD1Z/uXjeL1SBwNDmtWEbZqtbK5YZezgJhd2PP0q3BqOf5UbvXVSzVLs0O+qN4mPm+m2Rh5PQbLVuWhMHIL1uqoGqKLPb7QeLFVWOm3jQrrerhGq2iN/vcJhFTURZTIUm9EO4gl2QpEQTkLbMkRGGWJrKRIaGlScGGlDjJDCnLhCxKFCVPZFVKBUkpNvyaeqI/HkqmaoRq7vTFJEzz+PAN3GHqkanaTr9Tbra0HPnbV1J0WjnLEt20ZmYXrZo2d2whioXAD1Up9qOwWavIma+Kim0YSWqMxv1yo1JrVbLcSfwszkRbs+vVuqDowiBYWJk9TGM17cs+2cR+pqGHJFGq6ZaqJa6b5bJkynIKK8nSMFfzKPV8MU5FzYgwlgmqnEY5+o6MpqMJyG9ZlPlRpuqRH4S7W+VTq1Isxk6U9HyjfAil28M0FaJMHI+844/ULFn0O72SopV0U0rRc/NaqzazvFSpVmQNWSIRozRMx7HnvD64JloL1Rk7i5TvvfZ6qWHxy2NnLiyocjvKWyfqyC/LK8dr3fJ3L339MI3VnyIbKczjIME6ptslOUmSbi+XjVwtw47ycSQJKDdePAjkKMIAnRoVKY1Ebyh5siJaghbkuiiHmeh7ipxJQmIeO25K1SzFGp3yixqND9/AHaYeYUhz/WDt1tpM1WqZyGF6nAupkKmSbGpyrWJXG7amiKEXhbmnpuOV4/LtnXlF0ZK8UGovXDx94+q6G3reMLGq6nJzVq+Vdre67777zp2t624QHqax+lNkIzhjRZISsyTJKjJZqpeFxFWccW6I7M+dMJfjLBXQ7/MwFd04lTxhFKpZFGlpOhCzxDHNmmBYcpr5EF4WKuOxGOYY3Bh4QTw8SqErCPahmwWKKrmeZ2oGgvkwcD1RbBi2ZFYEwURX0TVZ1SxJGfrDO2vrlx6p/I87nVaeLiaqsrNzTUeFFWTf8at1BDUlTgW37x1bbS4/svDdr1xdXDyl2ocwDOWeJU3B4GWigyT8L0pp2dKdLIsDMfEyTU9VSYm8PFFzU82ENA7jcNix0kxr2HkaiplhZliuY0RdBTNBmqZjV3QjzTaE5aoQ6zH2t8PSDh/N8Gbssnbm/Pnnnntid2N7r7utpGnXDwyB1dA35Pox7aSQDcZ7v1fZ/s/sXXm4G3TGI602c3P9pmWW5CB1ukgdwmNPXtzb2V1pzmFSNQTlrbdfnVtePXvm1M721mF5+f+iH/tkA1/O/DgJRGIBZEk2CBgol7NQiGO0m5hIAUHQw2SUW81U1sXdzaTXls+dE1t1I4wFP1PGeQYnSlOpZOXOAIN1rhuxaeitqrczHDs5C9dRe2hHoFyvNFvN5585e1VTd9pbtl1LckW3ZEU3MJflomtqSnz9P1fi9afmjFQPYnf19pUbQSiZRj1NRb0kn7ZOLFUb4+2NnbX23mi3sTzjjtL27lqtVJ4pHULNdt8ArZiGJIoqJuggFLUMxz9cJdNLKeKVaooKnv48dceRIfmhkzWq5ROnFLuSo9MYFjEF+DTF2BPCFKOCkseKZEUNM1GFqD9IJCcTeg/tjDl6MEbg8Ree7o/a71+9fm3jtpTocSB85lMv/Movfenpi2faW+v/y9/7h++9f+XWXtBoCIqZipkyI73nba4dmzV0N964faNarZRr5ffefa9RthD0NF3uBcONO9f7w8HO1o7vdw/fIN+zpOF5MTTZD5IEDUVXJSvFcNx3ci/IbCkJA2E4kLqDYX7NsysrqyelwSDu9rOaqFTKSuoVoQNRlOtxFkiaoAe6kIVegOITB3rVjMz64Ru4w9Sjzzz1+H/zyqXXpHeac3a5bo39zh9/+yuV71mqLHfWN2ot6+77u/KoGaZtW4vTzDCk5K98QfvtLwud7R0h1R595MLuTv87r74yPyfLsq5olRtXLwu6bFlKlLv1xcOj2d5/6fd0m8JClrGQSBUzj/Ik7OKVUSxNcOVASBVMBbYpzTd1XXM7wzjzLbssqAI8KewOZHeEs1MslWVJC8ah0O1oqzOYr1NCbpQkHUUmpHTUHuIRqFTVpYX6cDw8uzIXir3ctt/deD9eHx+ba63OoOjP3rndfvLsUhRewfOvGMkgqgxd/dbVTt2e9xyXuN2IODbH86zyC594xnWcVy59Y2n+3Nr6jlUO3P4hdHbvk42/17GtcqibAnFliqy4mVlShXJZMEpaEslxklcqSeQpbqATItDtxo26kqMxRgqRNgl2gljVDEFTpfaY+OnccfIgkAngLOyYiTh2HuI5c/RowtuvXzFKit/Ljaos9dXllRPN+fmrwSVRiE2z7Lu9k8dPn3v+i5dfF5b0b7ZOPR8Mn1aMWqX16lxrMdvcvnvn7kxzYX52KY1HV968sTscfeblv/7Sp578J7/zj4+dXb22863DN8T7ZJMmgpISJePEup2NfD90zbRGlIBQq6qmIQhZ0CGaIghiR1AtJRgorpXlYuA51cqcDy8eO+O9dr1Vl00CPZXA8bG36VEc5nlsEaCWHr6BO0w9+u1/9HuPPv+oP3J3drZn6zPjjX59ZeZTLzy/3d65dff6qdkZL/eXTj6xfPq/CgeXJFGfm20t5Utudvqrv/N7YWRtd8eaYDz95Fk/SPt996//0l+dXzrtieNP/uznh8P4Sy/8rcM0VtO+7JMNYXhOv2fWKkIQyoJoGBbaSTYKxeFYbM2QbhN22qJoKavHpZ1uHIdE7CVGKY+i1JDjKE6Ixojw2SCVqWq16Y168d7AGbeNasuVDWEYNQ7fyB2iHsWjYegMzzxydtgbtUd3kMq7nbuVBuJ
"text/plain": [
"<PIL.Image.Image image mode=RGB size=274x138>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Train :: Epoch: 81/800: 100%|██████████| 135/135 [00:12<00:00, 10.95it/s, Epoch Loss: 0.0453]\n",
"Train :: Epoch: 82/800: 100%|██████████| 135/135 [00:11<00:00, 11.62it/s, Epoch Loss: 0.0463]\n",
"Train :: Epoch: 83/800: 100%|██████████| 135/135 [00:11<00:00, 11.81it/s, Epoch Loss: 0.0447]\n",
"Train :: Epoch: 84/800: 100%|██████████| 135/135 [00:11<00:00, 11.83it/s, Epoch Loss: 0.0453]\n",
"Train :: Epoch: 85/800: 100%|██████████| 135/135 [00:11<00:00, 11.36it/s, Epoch Loss: 0.0459]\n",
"Train :: Epoch: 86/800: 100%|██████████| 135/135 [00:12<00:00, 11.23it/s, Epoch Loss: 0.0464]\n",
"Train :: Epoch: 87/800: 100%|██████████| 135/135 [00:11<00:00, 11.92it/s, Epoch Loss: 0.0444]\n",
"Train :: Epoch: 88/800: 100%|██████████| 135/135 [00:11<00:00, 11.62it/s, Epoch Loss: 0.0465]\n",
"Train :: Epoch: 89/800: 100%|██████████| 135/135 [00:12<00:00, 11.08it/s, Epoch Loss: 0.0459]\n",
"Train :: Epoch: 90/800: 100%|██████████| 135/135 [00:11<00:00, 11.86it/s, Epoch Loss: 0.0447]\n",
"Train :: Epoch: 91/800: 100%|██████████| 135/135 [00:12<00:00, 11.08it/s, Epoch Loss: 0.0446]\n",
"Train :: Epoch: 92/800: 100%|██████████| 135/135 [00:13<00:00, 10.37it/s, Epoch Loss: 0.0453]\n",
"Train :: Epoch: 93/800: 100%|██████████| 135/135 [00:11<00:00, 11.27it/s, Epoch Loss: 0.0460]\n",
"Train :: Epoch: 94/800: 100%|██████████| 135/135 [00:11<00:00, 12.16it/s, Epoch Loss: 0.0453]\n",
"Train :: Epoch: 95/800: 100%|██████████| 135/135 [00:11<00:00, 11.56it/s, Epoch Loss: 0.0460]\n",
"Train :: Epoch: 96/800: 100%|██████████| 135/135 [00:11<00:00, 11.36it/s, Epoch Loss: 0.0451]\n",
"Train :: Epoch: 97/800: 100%|██████████| 135/135 [00:12<00:00, 11.20it/s, Epoch Loss: 0.0455]\n",
"Train :: Epoch: 98/800: 100%|██████████| 135/135 [00:11<00:00, 11.32it/s, Epoch Loss: 0.0464]\n",
"Train :: Epoch: 99/800: 100%|██████████| 135/135 [00:11<00:00, 12.03it/s, Epoch Loss: 0.0460]\n",
"Train :: Epoch: 100/800: 100%|██████████| 135/135 [00:12<00:00, 10.82it/s, Epoch Loss: 0.0469]\n",
"Sampling :: 100%|██████████| 999/999 [00:17<00:00, 57.61it/s]\n"
]
},
{
"data": {
"image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQgJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCACKARIDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDR8f8AjjxZo/jm90/TNXS3s0MflxNbxtjMaseSpPUmucg+KHjWZkB1raOeTaw8/X5a0vG2i3WufF3U7eCRYESOORp3BKriKPjj61SPgRIgkdzcYfG5tnTPtxXG5S5mdFHDyrO0SvY/FjxjiU3GsiT59oxbQ5THPQJ+FJB8UvHEtxn+2l8sMPlNtCCR7fJk4H8q6nR/hlpVmrXOoTGQysxKq5UAduR+HpWT418F6cmnvq2jna1s2ZYZAWA5AO0k9uuPSnyz7kSpNK52beKteHg7QdTTURJJOZzdyCFNzKJNoIG3A2g81xR+J/ie31X7PJrongNzhZFtogWj9MbODTbvVZtG+HXg0Tx5jlN/HOmD088VxWrR6A2qRzW1y9ssrYeJmx5YAGcdevPWuOrOaqON2fWYCjR+qQqShFvXey6vv17HVeJPih4w/tu2sdA8QndKCJIpLSEmNgccsUwR34rubTXvEC2UK3Pit5rhgHd4La3CgdwMpXg13Na2fjWO60mcS2sYDxygknkd++Qex9K6KHX9rXCQQPcPdblEMeRjIJOMU6tSpFRSNMJhMNVlUqNJWdlorWstlY9O0/xZ4mt9H8XG615dQk042j2dzHbxL+7kkYHgKBkgY5zg9K562+JviqW9jt/7WkMkrMEie0iGfTkL6VleFXMvgnx9Dfo9qiLp6Mr/AClR5r8dD/k1l3KK0sOmqGlkikSdGA+cjqMHv1qKsqkqkYczV192+vy0v5Hk1I0abqOEbqL008kdba/EPxpefaDBqOWjmZVVoIRuXH8Py/Ng8nnikufiT4ohS4Qa2d6ECN/s8J3McAAfL2OfwxXITmSxjlgjjckXriQYLuoYcMvHy5B/SsxYxcT2zqxS0gl2Rk4G70P1/wDrVyRnWbu5u3qPkpNfCr+h694K8aeKNa8XaTZ32pwyW7GZbuBYo1JIjcr0XI5C9DVmfxh4kjtWZb/58cZhj/8Aia474aW0Nv8AFCyQebLMs1x5jscJ/qpMMB6kHHNdPpGmNqdhIssqiZwTGX4AI6HPbmvRw85One9/6X9I4qsI+0tawp8ZeJhChbVWWTqUa3i+Yeo+Wkfxl4rERI1E7tuf+PePj/x2qOoa1pM08EQcNLZ74ptjKcHOcevB3c1pQCHUtPKQkguu4Nzwpzg5/pWrm1bUHh/d5uXQ5O3+Kfi77XJFLqrn5vlU2sIwP++a6fxf8QNb0fx7q+lw6osFpFFEIENujYdo1J52k4yc85rgr2z+z37RlMMnGSOvvVj4wedB8RdTlTaVk8rbwOGEKdfwrVST302FhqVNz5aiuizP8TfG0FzPKPEEUlukgCJ9mhy6jqR8ufzrY0X4na60csl9rXmxZ2o5giUgk8cBemP5VxAsbAeG7SCaN/tW8szhjufevTGMYB989Ko6ZNaz2k4eQJlkDPjJUA84+ucV6EoxlG1rM7nRw7ottHeav8SfF7W5i0rViJ4HJkla3h+dSQAuCnXkV6/4CvdU1DwVp11rU4n1GQSedIFVc4kYDhQBwABx6V87aD5NlpV3cXPzs0ZXez8btwAA75x6eor3n4UZ/wCFbaXzkbrjafbz5MfpivPp1Yzm4w2W++9zyayilaK0v8zs6KKK6TlCuZ+IOrXuh+B9R1LT5vJuofL2SbFbGZFU8MCOhNdNXHfFQZ+G2rf9sf8A0clRUdoN+R1YOKliacXs2vzPGx8U/Gx6a2D7/ZYf/iKUfFPxpwTrf/krD/8AEVyCgDIHpzSFNy8deteL7af8zP0v+zsLb+FH7kdgfip40wMa1z/16w//ABFdF8P/AIg+Kdb8c6dp2o6n51pMZfMj+zxLuxEzDlVB6gd68sAA4HUV1/wrOPibpA7nzv8A0S9a0qs3NJtnDj8Dho4aco04ppPouxQT4z+NYp2aTVlkibOxWtYgQO3RBW9p/wASPH1xai5+1pIi7nKmGIs64BBwFzgD8a8djla4hSAjfMXVIgevOBj+f517HrHh6x8G3EYhlQ/a4wF3sT5MQVd+0Z+YswbnsDXfFyWjPlaEKcnblT+RXuvid44kj+0w6lJBbA4V/sMW2TP+8ucfSuff4x+Pv3g/tzaRjB+xwY9/4K3JIF197kW0bhbaxTyI1JO3aC2MDg57n1xXlkqokYDEmVuuf4ahynzu461CEbaL7j7looorsPBPBfH0y2/xE1d4rpYpykWQQTn90mOnvVXVfFiIuk6nKsqx26ESR4KpK57ZweR79azvixK8fxL1OWMKrIkYGQcMfKTBJ9ef0rBikGr2Btp3OE+bI6Hnnjp3FefUai7vud9BySsnbT8Dute8UR6vocEumzqkkuFjRjhlfg4PP/1qp614mFv4Wtf7LufNkMm24kaPdkn+LntkGuZ0+2huby1s4rhB82zCNljnptC8H6jNWvEXhO98L26XTwvLbD5BIsuQCckFh1HPt3rRTv0G5JKzeho+L1vtQ+HPg+VJA0n+nF2/7arXkmoWssCBnO4FiN27rXsmonzPhh4QU5jjkN6HKr0HnZ6fhXlXitSmpKvBTblWAxn0J96zhJ+35V/Wh7M8PD+yo1ne+tu3xMuz6Dp1lodte6Zrq3l1PnzrbZs8sBQWzyehPBOM1a0uC+8NXen314NkU53o4bPQDj8QRWHoltI7pGhYPK3ygDnvzWj4ovLh47fTJEx5BAD54AAwAPalO7n7N6muGUaWFWJjo1st1dvb5npWjX0mreBfHd7auv2iae0Cuvy7VExUfkAT+NcM96lo1nDFYT3P2dS3mDcG3E/MenIz+WK6PwcVsfhD4ximUXECS2citEf9ZumA29PUfqawbPVis0d6DKzFC0sb8/MM/L7YHIyK5MQrWaV1Z+Xc425SnJy0lp+SIdVa8kuPtFmGiSd1kaRcnBxxk9upPofetNrmwsdKe2B3yJD+9ldQoJGSvHU/MBzUkMeo61oUTBIraFpPPKlj++TBJHrwScCqel6fBfaTczzpG8qbQXb5Yy+37pPXgN0rjcouNpacr6fhcpJp6dTr/hrZTxeONAuFYL+8nS7Qtzu8mTHB+n612nhyeO48Pqs8Z+0NvBwhwMk4Oe3WuJ+FdtFN440edL37SYFn+XzGbZlHHQ9+cZPavT/DkkFrodshdA8iDac9c/5NephLOm4vu+hwV241LrsjxO60tbLxBcShIhPJO7l26E7j+QrpvDXh3UUjmSXVZBaqSAiDcA3vk9D7etd5rHhTTdTkeYx7bh1Oyb
"image/png": "iVBORw0KGgoAAAANSUhEUgAAARIAAACKCAIAAADpF1LuAAEAAElEQVR4Aez9Z5Qs2XEeiu70rrK87a725vTxdubMOeMdBmbgCMKQoJX05EhKonR1Za/suk/Spbz0KEMK9KABSBAYADPADMbPHO9Nn/a+vK9K795XVT0UpaV1170/OL+4V63q7KzM3Jk7I3bEjvgiggqCgPxp+9MR+NMR+H8zAvT/m4P/9Ng/HYE/HYH+CLDDYTjxyIhv+YysdOtVSjASGbVT1YRULDtCenW7seOIAi8JjCkEuulpFU3yaQiphx6dHZ0YW7p7U8ny9ZK4uVmQGM62fML7mqGPTCWTyZjX7Xbq2jtvNNBR7xMP0y5LpdRd01pfufp7q9pzFPeldLqkdTe4TiiQ2Cd/KLW3TLda9TvFtwP9nzBMz3McQihCPR8V04xxwCbz6eTJxGjp8i1WEFd97t873VuEfIwlZyTy852+5Pw/n4iGYh3XC0orxJVJOka0LplKkYkk6WkknCU3Fskby+SLh0ndI7UWOX+U7JbJXf8Jrl0i7vJjH5WbN/SORmo2KZaow0eEA7w5e4C89A65sEwom/p63Ucv/+rv/JQiiISSGY7H7TFixLV7K4sXWc9VZCEkJzSHqTULjBBhKDehiF7ABoSyaNp1XI6jFInXmq12s6V77o2tpmkFY5EgHRUVQWY5j/apf/W1C+jlS6eesvm1xIyWO5KRQ+fWX+nG2zPbhe3NzbfZwJtgM7nMbFu35p86t3jnN7vrO+Swmjg/l1eOSNNHQnGr1H597UGveKfyzJ9RI1nxrV+4WrhMqs3eISIGhN4j7sXAQi8fTnudotqEdAiRCeH675QwhEiE4J0ZhLiEiITgbnhCMJdrhJiEzA42uoSMfHAK3jVINjQ4rDe47yghNUJw5b8w0Jt+9ix3ZcWVOVFqklzm6MKhU7FwrFap1GvL7e0H6sihk489evsHb46EUomjp5L50UB3q2vLQk5crl556TuvoetZWckmE6XWtsKTsku2bRITiG6QhklEjty2+zS2zza2Y4ZUonVolxJpyu8ZJJSP6mW2w/mGQfmiaMq0b1PpSKLXqei6y4qyICoBbVbrewwbMjXWdGjKZXvECgJL4WKM69m6Z9Z7IxE2YL3hi2EKa50ik3jyxNz8CFUZ4b2VJdupuCSeyb212DmWkg/l8uT0LIjdefni0lvfqAe+R1ib+AHxWxz7EVV4emJu/oUvkpHR3CsvY6iPzp3qfO/lv33xfZsiAdhr0KrN9hOnece1f3uROjwaBDYpGMRskR5HWI7oJtnSKEYKwAnjDvmtV0m1Sm7XyYnU1fAc/dZtInWMos3PTdtCm6zXgsvL1o0uedYj8RSRC/TmVp9n0KJqyHcJzfg05fk07ZjNSq0ocgHDiqIgybG0gN7kcM/W5KBFeV2akj3CKbxgUkRkCAW2pgNeErvdHiXLvq27ATEpVmAciaJEUNagHabGvnf5ksx77gHZ7Fqmte04oVBIrTFOzvWJy+h7exqpy+unRnPn7+2+cST6uH+nK5w0RqKiK9t+RRlVJzj1sNO4I0dCJx47s/TWu6BOvCaayDKT2O/mQ/mjDDghTYg9IHrwCWgU5A7mwQa+wUsgRzCSTohKSG7AWtgZHvAV7hHchZ14zzgXTIWfhMHBeCVgpGFTBTegSaNtRnlSbNxjL5VikRQvRnpOxaHMbCrRWV0ul5ZjCRvTxsr73yCcbEmRjfuVtlc/nB3ViWs79pKx3eqQUYaAY3WfLEyQSpfUdomJjgdtn22OJEdWqk0mcGTJF0TJx9vneWLZWocKqYnAdUZGpm2rRhFHoUQrKlIuE4mFuj1reX3v8NTDPVPTGwVJ8h0qrLk9R7dYwpiGHcumwpybn4wPO5OS8+1aqbtTjh2Ynv3Jn/h49xdeutm5XNh7VJ7kXOJ1m45WoB90GTGa/dFPxqyCe+USQ1xMPyzFnpse/fEXn5JnnyCNXaLvkYU8kaLk8PGffPHH7v7kZ+urN+9jIAftWIYUirbDknyWjEUJIxFFIQqmeoy1Rjo2cQ0qERYKTfP2BonKpNsgkk/Np63UNPPOHdJsMozAimEnZAcWS4XYIBEh4Si7XfVM21ci+73QuGFC0RTH0TQmGs13PccAg9McYThZ5oUgYOgQzXY0zhMc1vMdQ5EUlsHxggvJ7tqCIOiW1aM4gbGNkOSrIZchva7BScRy9+eASNmPMqHpUGg23ypVO1w3HJuJUMXFDM1OMgsLs08Uy1dDrWB3e0k9cvzkrJzvyRshilky4kpjdcGOpJOym8tLav2afHfr/rW3C6P8ZN5cLRHBY1UxP7b/MB/KH3ALCB3sgRcBPoFgASOB7kGK2IkNUD94Bg2TRmPACThSGxw8nEbwL9gJpIwjcbXhT6MD3sOeYWt2SbtOOEyROMzRbcvb1bu8GPJJp9XVLr/3jbnx6ZBPa1a1vFzkPJmZnzLtHqOZI2IkPZUJOo0d7YFmEE8nLcywgwkfG3WNRBmiDf5FR/ts4zftmZGs4bkMzSTigcHrty8WQ2rWN6F/+OCBSnEjn5mhg3aDqjEk7NAtNcY3er3A4vcKGxE1JIqcFwi1vSovKonEdFjlK8Ulxhd0jz85Uh4+kv+Rp9TJ1Z3f+35sboHw0slwKsjqmRK50ewIMcEyLPP+ZVpl/K2qGpCFh57wL17CaM7T5OcePvmTn/0sSfMkSpOmTrbukHCKNC3/e79Lfzz6C//5l776l37ktXurw14wnd++RjiBNHqB1yPZGNED4kr9WQpil7GI61GLBXM2Sp48I1K8+TvfIkemAhDSu7foaIS8c9k9c4xjZOHOHXs62Re8kkwSqstKRGbJTm3YCRjEk1iGZgkfkICmBNpTONGBBPZs2rW7lY1YKj81PrW6oQemL/u+7nYwG/EiBKjLMBShOcfjeN5otgq65hmmWTMtTxXlwOUCItH77yeo785zuYMr4+6lctQ9+MyJfORY9K1/XZqUDo6oc+Fs1EseKr33mt5czzcOyxu2QDflI6UEP2WH5LV3Krk5Ia53m9UKy4Z2d0Z9u3b62U87r//X1fa2kppMHz+4/zAfyp+tAYcc68s6zDh9ysPLNQbCBOwEEgEXYT9YCGoQRGKFkNgHfDI8Hm8Q/AYWCg14pj24CHbiYPDSsC3VSGKsz5TQfCiWdOhA1/Qw5WDyNUmA+Xsklh0/8Vi3UDXuv02NZjyWsQxqd2vDE4O2tiyEmCqlRRO01fE5lgTt/s0Udvuqvi+SEOTgoO2zjZvghLjodnqtZtViHTkmCjIj0aCEwKM0NaxYRk/iBdqOxGhiGE4sFktLM2XNYImvdbRet2rajGk5MTnMhbRUPpWKjeltrWa4xKL4ZvKnB52Z5XXl6Hhm8QBZ3SBLG5VaIzk6KtvaNys1jOD5MOkVC6HkwcW9+8bXfudfVfoicYaQfz0lPuGKZKtBJk6Q4jpZukkCnYTihBHpzDS5edNRUxM2hRcwbFBeFtKkHZA25I9Pthvk/U0S59nPPhc+caR37a6t1D3RIoU6mTkI8uQ+9yLlt5yRTFDQPZkmnErxvHp/lWx2ugusMZoneIjVAjk8RwKP8Hi3gybTcsAzLEUxLEs5FMUGsijaWJ75gsqFXZou1qqUGBMYXnOgzEGmRHmGl2jfo22OY2yfcwXieeGkFOl1O7ROPF7rMOAmYvkUy+3PnrrZiRCtsbobXcslxEU7W99aTsle7qGpk9FolDPaQpe3pTzxhOLmrYQeRBJTMc5l5lO1q1XqZjGmjQXbVdfd2e50g+zMZOLh7PTZa/VrZxN66nBeCmX2H+ZD+QN+aA7IHQIbkw/6tgaMgUcF21AfrHbwHoccBWYAg+Es/AraxQHYBkmAAXAKOEcY/Iv94CX8NGybNTKa6R9gDabILuiSwpTo84J69uAj+Wh4Ij/PZjOdVM2YSl14/TtbKysG6SVjM7OnDiWZ+9vVAibWPdPvBkShCINpkSIhXMokbYtw6GnQ9tmGUyjD3C4UyzwbjgoKcTmVC/GuJfA8lAkSuB6xjZ2SKrLhwG7Z7uaDesRf56KsxQqcLwicBLV
"text/plain": [
"<PIL.Image.Image image mode=RGB size=274x138>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Train :: Epoch: 101/800: 100%|██████████| 135/135 [00:11<00:00, 11.92it/s, Epoch Loss: 0.0449]\n",
"Train :: Epoch: 102/800: 100%|██████████| 135/135 [00:11<00:00, 12.01it/s, Epoch Loss: 0.0433]\n",
"Train :: Epoch: 103/800: 100%|██████████| 135/135 [00:12<00:00, 11.03it/s, Epoch Loss: 0.0448]\n",
"Train :: Epoch: 104/800: 100%|██████████| 135/135 [00:11<00:00, 11.64it/s, Epoch Loss: 0.0445]\n",
"Train :: Epoch: 105/800: 100%|██████████| 135/135 [00:11<00:00, 11.69it/s, Epoch Loss: 0.0457]\n",
"Train :: Epoch: 106/800: 100%|██████████| 135/135 [00:11<00:00, 11.86it/s, Epoch Loss: 0.0450]\n",
"Train :: Epoch: 107/800: 100%|██████████| 135/135 [00:11<00:00, 11.25it/s, Epoch Loss: 0.0478]\n",
"Train :: Epoch: 108/800: 100%|██████████| 135/135 [00:11<00:00, 11.63it/s, Epoch Loss: 0.0431]\n",
"Train :: Epoch: 109/800: 100%|██████████| 135/135 [00:11<00:00, 11.77it/s, Epoch Loss: 0.0464]\n",
"Train :: Epoch: 110/800: 100%|██████████| 135/135 [00:11<00:00, 12.11it/s, Epoch Loss: 0.0451]\n",
"Train :: Epoch: 111/800: 100%|██████████| 135/135 [00:11<00:00, 11.37it/s, Epoch Loss: 0.0465]\n",
"Train :: Epoch: 112/800: 100%|██████████| 135/135 [00:10<00:00, 12.71it/s, Epoch Loss: 0.0453]\n",
"Train :: Epoch: 113/800: 100%|██████████| 135/135 [00:11<00:00, 11.28it/s, Epoch Loss: 0.0452]\n",
"Train :: Epoch: 114/800: 100%|██████████| 135/135 [00:11<00:00, 11.70it/s, Epoch Loss: 0.0445]\n",
"Train :: Epoch: 115/800: 100%|██████████| 135/135 [00:11<00:00, 11.66it/s, Epoch Loss: 0.0440]\n",
"Train :: Epoch: 116/800: 100%|██████████| 135/135 [00:11<00:00, 11.38it/s, Epoch Loss: 0.0442]\n",
"Train :: Epoch: 117/800: 100%|██████████| 135/135 [00:11<00:00, 11.52it/s, Epoch Loss: 0.0450]\n",
"Train :: Epoch: 118/800: 100%|██████████| 135/135 [00:11<00:00, 11.76it/s, Epoch Loss: 0.0434]\n",
"Train :: Epoch: 119/800: 100%|██████████| 135/135 [00:11<00:00, 11.75it/s, Epoch Loss: 0.0462]\n",
"Train :: Epoch: 120/800: 100%|██████████| 135/135 [00:11<00:00, 11.87it/s, Epoch Loss: 0.0462]\n",
"Sampling :: 100%|██████████| 999/999 [00:17<00:00, 57.49it/s]\n"
]
},
{
"data": {
"image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQgJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCACKARIDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwCx8QfiF4v0j4h3mkaRqIitIXhwht4mADRoxBZlJ5JPOafF8V/ENrq2nwTK08DOVujLCqbckd1HQBhz71y/xkM0fxA1UriRWER245QeSmfw/wAa5DRIpjqUCzRM63EsYRZAcOSw7+nPNc7bTvc9GGGhKHNJ2PrmTVBHq4sG4LW/nBsccMFI/UVa3SkcP+leVaZrM81v5V2Ct1byfJIOjJ2we/ArWm1jU0lJa4kihK4VicAA9xj+ZpfW4rdHkSg72TOzvrq5t44CkmCd27IHOMYqvFqdywJZsgdeBUEEwl8M2tzJyI0f8VGR/IVmXGr28WnRzIu0zKGIkGCq+9dEsRThTU5E8s3KyZp33iGSzjDLE8xIJARRziq9t4lN9dhTLJaFcgQYU7+vJJH8jWNe3xvUSMxEptxLDng+4J5B/GqcjGykR5RK4yAWQfMik/eOBzxmvLqYucqqVPY6YxtF8xteMvEN9YeA9W1LTL0w3ls8MayCNW2kyoGwGBByGxzXjUfxP8dyy7V8QOVA3HFnbg479Y67rxbJNJ8IvESOcgS2/lqvTabhMEd+fWvH9Jglu4oQE815SAiopyTnp9avE1pRSknY9bLKNKspQktVrfy6nWQfET4i3MjGHWy6LklVs4SdoGSfuVC/xV8cLd+SNdIXH3mtYMkn/gGMV6lZeCLTS9FsV02Mfb5Mzs87YGNgDLj0Oa8Z8UeHJtMjDJEpjiuGH7sHCDOQD7Zz+dcEcZU9ryTdk9v677fedcI4R81ltrr6/gu3odj8PfiB4y1b4iaXpWra2LmzmaZZYfs0KbtsTsMMqA9VB/Cvfq+ZfhlDJJ8UvD87bMq1wW298wPg19NV7OHm5wu9zzcxoRoVuSKsrL5hRRRXQeeFed+IvE+t2XiXULOzkl8i3RHVUtw/VV4B2nOSTXolebeMfG0ehXGvRRxILm3ji8uVSCS7KuAQfqT34rhx1apSpXpq7bsJpPd2Mq48S+NIrS2hS+H2+a4KhJIYlJQ9MfL2JGe/X0qrq2v/ABD0VI5LrVoJFdQAIIImJY54xs4wBnPSnaD4iTxVtv4tPEV6sqCYDqwbCkoc8AAHJ9SB3rpnQaYkj3qx7QuBLJ82VzkkDtj19TXzcsxxNKfJK5caSlFu55hdfFTxgLoRRayABwx+zREE+3yV2TeKvEd74P8ADF3DrptL2+NyJpjbRMsm2TaoIK4BA9OvNeUeJJbS912RLBBDZoSkLr95lBOCffmvStMNrD4H8GQzklt92Y8c5IlOOPXO2vUxGJqRw0qkW07X/EeEjGdZQk9DpdT8S65aOBFeo4zEuUhXv949Pbj6n0plv4u1eUhRdKW53BkQY/SudvmuJ0dwGhSIkg5wWIPQegxVHTtSa/lMSkxkOd7FRuI/hHHqMHNfJxxOLdO/tHpvqz7OngaEY6xTfod2fEesuTEJtsgGcqikfTkVmf8ACWa62jeJpf7QC3Nkto0OIF/db5CG6rhsge/4VTMdxHbAI2+YHK+c+N3qM1i6ZfRXXhnxrcIu1y1kH3Dbn963BHbuK9LJMRiKmI9+bkrPq3+Z4+Z0qVOC5Ukxx+IfieMhTqhYnk/6PF0/75roPC/jLXNX1Bba4vGIJILCFMD9K8snYNepAsiB2YKN7YHJ6k+mKv3ZbTtRFvZanHKQqv8AabZyBgjpnjn1r7LVnz6PR/GXjjUtHP2ewviZ1mZHZYkfaOo5K4P5dqp+CfHOv614ssLG9vt9vL5m+PyUG7EbEchQeoBrz6S4llJLuXxzubqf/rV0Xw1gX/hOtPkDgsDLkf8AbJ6cbrcLmcnxU8YNF5jasq9seRCepI/u/Siz+KPjGa4kik1nYeNubWE/X+GuBe4jZMRwhEx/D3zV5I7QyW8iTOFVMsduCCRweevpXmSnNLdlvyPR774h+JrfRLeNNaLai0jGWQWsYCL2GCnPrn3rMT4l+MkaIHWTIXYIAbaD5j0OAFBx3rlZra4mn81rbzYmUMQSVBzzgc561QuY9Q3eabRY5lXeXRgCF/A/hRTrSe7/ABA+wqKKK9gR4L8TvD2s3Pi3Vr6LT5JLB1j/AHsZDZAiTOV69QfyFecaRLK91E803lyWv7u33cbTnIHtjPfpxXcfF7xNf2ni7UrSzu7i0NuYRmJ8Bw0aE7h+JFcd4Rshrepyyf6OiHLmOQ4GAR0AIP8Ak1yz6m/tJNJS2R3Gma/BvNvM6CKNFUHcOT0ODVTxV4plsmW10aM2wVMtKWR9wz2HOCPfsa6y08MWK273CmBCcHBA/n2ryXxX5Vv4juoormJ4lG7cuOuBwcd6wULsim4OaPbtDN1r3wZsw9yIrycy7ZVXAJE79h0yB+tZug6Lq9hZYvbqRpDJku0pk3pnPJPODWz8L4mu/g9pAIw5W4wD6+dJxTtVS6t9KtIFhme62qZLeL7yr0yW5HXt6V1ToxmlzGFSTU3ymJ4mlurexMelb1VnBmKtyUzggenBP5VJo81zBp6wNdHzhw8m3BKkkA57ECtARSY2tBIiEDO7Bx/jWcJ1S3CraSRlsEStGQQQ3r07frXHPDWnzx3WxSqaWZF4ktLO0+GXiOe3Kl3ktFlA6grOpGf++vyrzOx1O10uQNbiWK+Ulo2jyNrf3s9uv+cV6X4xtrWD4ZeKbuGAxTXElo8zbickTp27d68Ui1ORQ4LxyJ1VduajGUXK1z6TJK9JUpQm+qfy6/5HpNr461rVI4LLULoebHIGSZY1L4xj73v0J60TXq/Zpg0RcsSrKRkY7/0rgLTWLexk+0xrhmAwqnkH6Vp3uplLGCcDZODuckH5lGCFJ6cnd75rxa+GnOomz1MQqKTlSS9F99+3yN/wDG1t8Z9NhyGUvOSeMg+RIccdq+kc84r5X+E18Ln4uaMFQhS05+Y5P+okr6W1HS5bu6hurW9eznjRkLogbepxwQeOCM19Lh4yp0krXZ8xi5qtWvKXT5Ly9Cxeaja2D26XEoRp32Jk9T/h/jSalqEGlafNe3BxHEM8dSewH1NeY69a+JPENuskqTOsNzJbtGkQ/d9MMAoyQfqeR2r02PTbf+y4rC4RbmJI1Q+aoO7AxkirhUlNuy9ArYanQjByldtu6RFomqf21pcV+Ld4I5eUVyCSPX25zXgHxUV5fiDrEKsNrGEsGHpCnevo6ONIo1jjRURAFVVGAAOgFfN3xVkx8RNYQkjmHBB/6YpUYhNU1c86s023FWRj6PqM9r8tvKYSY2jZ84JTPQ
"image/png": "iVBORw0KGgoAAAANSUhEUgAAARIAAACKCAIAAADpF1LuAAEAAElEQVR4Aez9Z5QkWXodCH6mzdzNtQytI3VmZWZp1V1VrTUaWpMEQAIgz5AEyTncs7OHsxzOghxylrtDDkhCkZgGCKCBbrTualFduiqrMiu1iAwtXWs3LfeaR1QDIACKH+w/i3eqMjIjPPy5mb33PnXv/ZgwDOkvx1/egb+8A/8td4D9b3nxX772L+/AX96B6A7wh7fhUw8sqYLX1uztjjaw3Pd+6LGJ8VStaTz8wWcSkre52piZW7j45HPF8eMxgfeJAiIn9PyQZdho48FgWWbA8j7PCj5HlkUhE5mxwHbC0PNs62Iph5d96fpOXJJkWeA4hmOImJBYVhE4YkngWLybxODdfJZnQ5ajMBRZn6XQ9xyW9fLxDEO86w/uXHvxnaufc8LYQ498X7l43Aj8RDIncMrt26994JFnMctkjpkk0n3G5cSBGyY4x2EoMCgbEEc0JdG8QJccassUsiSzNO9R0SHLiz5OjeFnlrJv6u1E6Gcc/iAId13ftsj3SHBJFIm1qOF/7+zzL/zrf6woUlzyLW+T/LoSS26sb925dvvceemRx8/7pvOFb+8mpXk/cHtdXRT5mMB0B/uexogJXoolfNsnVhSVeIzxWrtr/X70zBgu5AUet1SMC29+toE79tADjOOS6xAv0a//05mHnwwaX9wTk1Rr08w0vXyVJuO0yNAwJI6l7NRo1dhYAUQloixPHS9aAXhyIg3WaaATHyc7SzWHXrlN63fo1z8b/fhDH3sfJ4uxWBwPn+UEUSBJFPzQCgIvkZIlhXPsIC7HCqmCxHGFcj5dSA5NJlcobG7fPXN8VgrEW+t3Vu83NistvaPHFVJjiusFge87roff/b3PfA6z/NSPzba7/lhZq3YDxuFUVUpn1c1KM3Rx3XbXMLkYxVNSkkvZhhRPGu26rcakwkT5yWc+3WtUL7307UazW28Ytu9NTMSGlmdo4YmliU5veGx5kWfF//NfvYxZjraNUW9wyVjDcTqeaxjW/n61XE5mM0my3dX1jRe/+UaumAt6xoVnafHEafya54X7O2v54mw8odheQNgyHBv4gY+lGDIChRzL+GHocEwQsHJcxK9ghHhhGLiuY7vEsAzuHsMElheKPMtjT/AB1jFH+B4Gngm5eA974HvDuCC6wYBExicllSk89MjPJNOF8Ymlrcq24zKyhx3qTC+eH01CZYV9ygkEO8RtMnjaxLNkqSzTCY4EIkGn2yzVY9RJUMwmL6QqQw9wJPMUl6iWpzf2O8zAP5OhJ3nvrT59JSAcE0tEt7DnXOK/t+bZsgNy+x4vS4m8IgYh1rzgYc1PT0vHx8X/8KX7xjCIcbplGtXtZizG5XPpwCTb9kWVI87GvXRcTZVVbVj3rVDXHZxLYox3fBxurKsd7f/3PkVrVdqv00SJ7t3ceXieX9For0lPL9Pl61Rfo4cfJLeLW08eS16TqEe8Gq0dv0+658UniMOdNYibpmSGGJH6Awq7tL9LeztkRk8yGqKscLwQUxRe5MhnGMK1sKEj+IHtep7bt7BweIbxfBc3OcS3LGZqsnTq1Fku+h5TNwzH9Pu9LuMZMucEDmeGLhYUsaHAhH1zcDhLR9M4QdB1xjT4Uk7q9Xt9Q8NSlGVRN/muxsm+n1KVuBDYjFaPlo8TcsFCLPHMk+979ZXPW57t4NyWBTGUp8bGDNfq4w6rYqNu7e52FEk+nOVo2yhyQQs7Hcvyyc2WpIE+6PWG8/OzWJE793bMau/u9n7QbnNSZmr+NM4kLPjW7q5v+MtnTpvRw4wO8pCL3g1LX+IY3BWeYFBEz3ewDw4nC3jO4zgvxHEdndhiIMHowKyQHwQ8rArnMgGLERkcCh3Xt/rmsKUPGorg9WVja/M7vCLPjb9vvPigzwampcWlJLE6FzgSL0hK4nCWNBuckAkWhheYihlKEpkZMoYkOTTHUxs2kCglkZIm6nA5xs/6TJHCdJwSKjVa3t0OPSlQcUhdjsZYmuBp4NBHJboQ0DWLdtzDSb5Hf7qu4DE2r7czGSUT59Z3q0KYL5bb3Z5mUeXJ08df/vZ3FIGv14xSJpbLYNUZjcpQFIVYSgjIcQwXJtdye5rrhApOLxzLIZfksbJdjxXYo+fykbPS/qJtCpQU6cM4fKZo6TS99EX6/g/w65c9zqSESDqOjz4ly8SFZGo0bJBapEAgxyRpk5gkzjgKt7E3SPGpH9CgQQsqhVN0FafOaMiyHFPEELuF4XlJCHD+h4znOq7LSDbvuQFOScfU42IoZnMmWWeX5uPZ7PbuVrfeKo2lT5869uabr1WqBzwTMz3btbFudEXBdojZjpfP5Q9nWd/oF7MC7J+UklgWU4Sc4nEkGQ3N91iRE2RfgLsTL0pW15manNyvHkgS/8z7PrJ258rdm6uOo2ezyURCCXEVwzCVzlt2Z3urduLEuY2NSk5VDmc52jZ60HY939LteEpUBDaVie1u7Bq63q4Yg/Vtu2KarNtv2X7AUrQHcMfJGOj3V765dOJU5I6F2Cy4GdF7Yj9gCx3+hRcJWwG25XCIGALLcKLtWNhrXuDi90Se8xkOm4vnXVgfnO0ceTxu4rB37/6llMo3Knfu3/vGwnw+wXaLKX7QYVPJGYtkC1sHpwjLWVq3frA1t3yShGjn2DxVHVIdSuCnRBmfOiFJAr3hkCfRdJamHGpl6ViR5nQfvkYfVkmjtSGxA1o36ZTI4KYFIdMPQ1ghdSH+zTt616NjcCoD0o8u5Xv0xXYduLhMuJktjrPOzkFlL18yz54XWobg6vrYhPzc44vvvLP11z4yd/6UmizPxG371/7gamZK7pL8yks1P+Dn57JOxzRqjq4bSTU2NP14UrJMB0c8E4sfXsbbb9tjJTqxSEvHKTUOX0LiQv8Hzodyw0vbBNtgVCkYku5QLoPjjHDXUkViM0Qq4VQijcik/l5kf/IzxCVJiRFtU0Kg5RzVWkf3Sk3I8OFJYHz4KnCIA7gyBozKcKjLMTGRzG9vb6oZpadxltUY6tbT71WwApenF3zbWVm54WIdd3t7u/vpdI4T437ouZ4riLznwOZg4Ryt5Fic9YJwupzY6Q0ZJplMx/vdoGPZjsvzcFGNIFSFQd9FTMAliI15x87NKHwsnVJXVrf2aiuMJMB/DETEEjGrb+/uDJjQnZ2e2tjZPzho5/N/2tq0PZ8Nw8mEhKjCjyWefc+TzVarUal/9Ytf+fRDD6dus9uTjK55VssRxeiMwmf0rN69G2+G7N9mXcfCh5ITPLHeaM/AkcHOwcuwhRAy4JMc3Tke5wvDRGvSJY4PvAA/QHgkSD52ymj3wVV1LEvjGfzICrGZLRrPCcrydC5b1oerTrBZ37XgWrFsis9+iE2NZRV3e/1qd2hPz08TRdsmlEjwqG/AIaNkDK5IMB7SwyfJzUurt2yPoRxPOYOWNZoNKVtkvjYL/zv8JEt2g1YNWvJCmSFZYXOBz4p03LNuJMizma1+iKsWYR2/hyMM283KraliJ8OxL7y92WxqZxfF48fkliUlxfi332g/9sS0FLZ/4tNljs2G/OmEyv/iD7GbvvH/+fV7hm4cOzUT2mFr1w7gLxNvOqGJIIaTsWZxh30dh0Y07u3TwhilXIr3iPLYJXoaK9EnAxYjTfUmBdiFOL8VcurEpUmOE5sb3Ww8bywk/FejYokcllisxRLxAyrP0bBHv/VZWhvQ3x7NEp24gec5QTqmmpZlYMP0+jFRLJWLnmO22w04kJbhB9hyIknJxLCrFQsZrCXbNTfWKxsrB7YBB1XWhpaiIhZmQwptN2BDHMGcgcc9GpmspOGQ47l0UmH5lKTYjbXK3OmJgTWo7VhCjAn50OEDKabWG72M5A0tq9Lf//XV/02NZ32EEBT0+m1JKuORBySNTyRjMi/GqLexmU7HC8Xy4SxHezQTk/SBXp7N5gXL5JWDN24++NAFi4T0Sb4we3aneOPHnn3s4I6+8Y23jL//0zgaEBTEYuzM5GS/17RcQ5IS2AxwvDgGsXzknOE/3EycRDpuP2KC6F8IqYU
"text/plain": [
"<PIL.Image.Image image mode=RGB size=274x138>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Train :: Epoch: 121/800: 100%|██████████| 135/135 [00:11<00:00, 11.99it/s, Epoch Loss: 0.0469]\n",
"Train :: Epoch: 122/800: 100%|██████████| 135/135 [00:11<00:00, 11.26it/s, Epoch Loss: 0.0446]\n",
"Train :: Epoch: 123/800: 100%|██████████| 135/135 [00:12<00:00, 10.84it/s, Epoch Loss: 0.0456]\n",
"Train :: Epoch: 124/800: 100%|██████████| 135/135 [00:10<00:00, 12.38it/s, Epoch Loss: 0.0422]\n",
"Train :: Epoch: 125/800: 100%|██████████| 135/135 [00:10<00:00, 12.32it/s, Epoch Loss: 0.0427]\n",
"Train :: Epoch: 126/800: 100%|██████████| 135/135 [00:12<00:00, 11.00it/s, Epoch Loss: 0.0439]\n",
"Train :: Epoch: 127/800: 100%|██████████| 135/135 [00:11<00:00, 12.10it/s, Epoch Loss: 0.0477]\n",
"Train :: Epoch: 128/800: 100%|██████████| 135/135 [00:11<00:00, 11.48it/s, Epoch Loss: 0.0457]\n",
"Train :: Epoch: 129/800: 100%|██████████| 135/135 [00:10<00:00, 12.27it/s, Epoch Loss: 0.0472]\n",
"Train :: Epoch: 130/800: 100%|██████████| 135/135 [00:12<00:00, 11.08it/s, Epoch Loss: 0.0444]\n",
"Train :: Epoch: 131/800: 100%|██████████| 135/135 [00:11<00:00, 11.89it/s, Epoch Loss: 0.0470]\n",
"Train :: Epoch: 132/800: 100%|██████████| 135/135 [00:11<00:00, 11.50it/s, Epoch Loss: 0.0452]\n",
"Train :: Epoch: 133/800: 100%|██████████| 135/135 [00:11<00:00, 11.56it/s, Epoch Loss: 0.0436]\n",
"Train :: Epoch: 134/800: 100%|██████████| 135/135 [00:11<00:00, 11.85it/s, Epoch Loss: 0.0447]\n",
"Train :: Epoch: 135/800: 100%|██████████| 135/135 [00:11<00:00, 11.46it/s, Epoch Loss: 0.0459]\n",
"Train :: Epoch: 136/800: 100%|██████████| 135/135 [00:11<00:00, 11.53it/s, Epoch Loss: 0.0454]\n",
"Train :: Epoch: 137/800: 100%|██████████| 135/135 [00:11<00:00, 12.17it/s, Epoch Loss: 0.0454]\n",
"Train :: Epoch: 138/800: 100%|██████████| 135/135 [00:11<00:00, 12.14it/s, Epoch Loss: 0.0420]\n",
"Train :: Epoch: 139/800: 100%|██████████| 135/135 [00:12<00:00, 11.09it/s, Epoch Loss: 0.0436]\n",
"Train :: Epoch: 140/800: 100%|██████████| 135/135 [00:10<00:00, 12.29it/s, Epoch Loss: 0.0453]\n",
"Sampling :: 100%|██████████| 999/999 [00:17<00:00, 57.75it/s]\n"
]
},
{
"data": {
"image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQgJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCACKARIDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDutd8R63a+MLuwtb/yraMKVQxIcZjBPJGepNV9Q8Y6pZfZ9+pIgm5XMcfI9uK5v4i3txaeLdXNmpe6aJViX/aMS4rxy6W6sU2ahNOLl18yCN8syjGfwBPb2rrk1GKtG57tGdCnTXtIX+4+g38YavIoWLUwHI4xFGf/AGWqFz4312CYWjawonK5/wBTFn8ttedaFqd5ZafDJeMPMkwVA5wD0B9DV27Lz6hZamzorghHV2ADDqOv40oVIS6ansYjAUpUVUpQXTpr9x3XiLxl4jtPDHh29tNT8qa6+0i4fyY23lHAXgqQMc9BXFz/ABQ8brK8KaydygbWNpDyc88bPcVuePLmEeEPCskcYMci3RVSO5Zf6muM0PQ5ta1ny0YFflZ2zxjjI6cc/wAq8yrze3kr6HxldctSUV3Ojh+IPj+Xcsd7PMPKEhkisoSFAAZj930NNj+I/jWXaBrJRjyEa2hJP5JXarc2ds88UexBsKthMg8AEDHXpivKtc0d9J1B5U1JZjPudo4wVeIHkEgjGCT2PY1jdtXjK5lqnqdsPiB4qHgPxbqDamDe6cLP7PL5EXyGSYq/G3B445BrzxfjP8QWAxrv4/Y4P/iK1tGEk/wt8dBidx/s9jgZx+/Jrz/R5Y7DXLW78tpY4JhJsA3ZwcivRo/wn1Z2UKXOr+Z1kXxi+Icj7P7eO8tgL9igz/6Lp7/F/wCIqzyxHXCrR8MDYwDH1zHXHJG8MnmyK6uCWKnjkdvUc12H2Y+JdN0+dIzDelBA1yyMwmYY6nHPXr29eKh88dejO6FCE5ezS1R6F8LfiD4j17XrOy1zVvtBnklVYxBEoZVjLZyqjoRXIat8V/GFrc2RtfFLtFN/rw+nwARkEZAOzkc/pXQfDKxEfjLSZ2tzHLH5sMvZVYRP0HfPJrzjUPCTw2cLR6gswI3iN12Yz+Jz0x+VcM6yjJcza1f9f5HHjKDp1OVK2h0+nfFzxtcQzQSaw8lx52I3jtIfugNngIe4Halm+KnxBZ47aHUpFnngLwlrOEHg5Lcp3UH6Zqf4ZQ2troV5NceUSZWdiACVAGME9fXj/wCvVjxVBeSOdQ0lN24CMKq/PFnhgB7j05xmvHnmclipUUtF1b0voKOGbpqo2UNH8ffFTVQ8o1tkt1GRK1lb7T687B0HJ9q9q1PxClhrmprceIRbwWoV2t/LjHlL5anOSpJzkn8a+a4b6e30YzS6mGtVYkWYXLBd5AX6Y5/Ku7+LviWyg8c3+mS6Qk4URLLIpO9iY1ZfbuB+FevSrVW5SavZ6LX9bf5EU6cZtRbt5nd6P8R4tWu8rrkcMLq0kaSogYoCec7Rg4wce9YHj/x7rtl4dXXPDfiYrbC48kBrWFhLkZ+XcmeOfwH5+RzXOmL4f/tKz2w3ol2iLcSUXOMDPtWNqmvXWrWtpYlnFvByELFsuep5+uBXTSrOd04l16Eaeqkuh1A+N3xDC/8AIeB5zn7HB+X3K9cg8Za7L8D7DxRPrzQ6sRMWYQQ/6QROUUFdhAwABkAdea+ZSnlyYkB46gHmvYPENvHJ8FvCF1p3n/ZoftiGMjLFTNyxxxwV/WitK0NP61RzpaNjH+MXixETOuyMWbHy2tuOPY7Dz9R+FSWvxW8a3tvbOuvlI5JmR2W1t2lVV+Y4XZg/KRz0rhPDlo154nijmi8wxHzZQRnIA9D35AHuRVjQrmyi8XTG0DNp7SO8Sk42R89Qc44IFcFSc4qSi22lf89P1NKaU2m9E9Dt/wDhbmtO3+j+Mbt13bSZNMtxgc4YAJ/OtXQvif4o1H4f+L9TfVQ93p32L7LN9niBTzJSrZXbg5A7g47V4lqVgtlqtxbvlFVmMZHII6rz9K77wXKknww8eMI9oI0xWA5y3nsM4/KuqnFpcyk5XXUynLpax6veeIfFs3he2u7HVmS+WNJZVMMP7wbcsBlMA+laFr4l1t4nzqXmAOdr+QikrnjI2+lcxobX50qC3iayZ0Xa8r7uMe3c/StWKOZLqQBoZEwAHTIJ9RyPWvXhGHMptdNjz5Sm4uKZpT+I9eRfl1E5/wCuMf8A8TU2ga/rt74lsLe41DfbMz+bGYkG8CNiOQoI5ANcvd6tbw3H2eeZFnJwEBz/AEHNa/hOeF/EukOkqMJhLt2kHOI2zWlSVKzirXFSVW923Y5W78e+Lf7SWKHxHMihHZ0SygfG0Z67Pw69qLfxv4smbYPF8wl+VvLbTIMgHqpIXg+9czMbi3s/NaKJZSskTNGARgblbIPJyACPQj3qzZ6lbWtjHJjz9w8wDG0q27gZ9R1zXx08VWkrwb8v6se7ChFx16bnc6X4p8S39/5Q8SF7UxlxKtpDnA4x93Gc5OcYxjimav438Q2um3V3Dqd2jWqhShtoTvJHDZMeBnOcenpXMaTdxPFKrq9m0qggxEEM2cE5bnJZhx061BqFzcNa3tvN5jxlRlhISGQHhNp6Dp1OevWvPVfFe31m7K2nz18mWqVNRPpOiiivsjzz53+Jss9v8T5pjIFtt6Ag8k/uUPT0zxn1IrITToLq8hviiTThCkCuOEH9459O1W/i5Jcx/Eu+lVVkg8lI2jfkf6pDuHuMk/hVTTdTtxpltIhL3DSIhUjBAwSwP5V2x1jZnvZfUoKooVV2t9wvh3UNv2iwvYY2aImJiwHUdMN3PFdBrmkaVf6aYWtXV1UFZAOQeo2t/Ouej3m+ylrHFAFzu2fMTn9ep5/xrQa8+829io+6pPGfWqor3bM9PGYq9P2S9OpoeMma68G+D2kQxlTdrx2CyKP1Cis/wJKIdWlLtHHJL8saMcDJ+h5+lX9bZpvh54UabBcte5HYjzx/9auPs0SK8QbXilTAWRXwPX8+MV4tadq0j4yqveZ2etWkvhxpZJtatBNEpkhiDZaTHUYzweQR6n2riru/up4nv5ZFd7onzFAwEIzjAB4BpLuyabU7iWbdKJiWAY8gnrz+dVZsqjRPEPnOF55BJ9PyrCFOEIqMFZDld/EdR4SEk/w88bLBKiuTYqrtzg+c3BA+v61TtPAL3FvHLazo08qyywK6bA+19pU+nGOK1PhxZKfDPjWCWLzFZrDCnufMfH5GurtNFePRdLaCRpPsrySxuWy4Lbs89+uCP8K4M0x9TB8jpSs33WnW34nrYKSjBpLX/hjyzXdJm8NzrY3UEcryLlzvyJGJLZ9vT8Kl3ah4YtvKisrmyindZFfzjlBg5Cnpz369qTxFfXOsavLHem
"image/png": "iVBORw0KGgoAAAANSUhEUgAAARIAAACKCAIAAADpF1LuAAEAAElEQVR4Aez9Z5Rk2XUdCN/nXXif3mdWZfmq9t6iDYAGGt7RAQL1UaL4SRoNqRlpKC5Jo5EoiaKGokiKJCgQhCO8aXSjG2hb3vv0PsP7iOft7MjMgsTRohbnB/kLd9XKrMrKiBvvvXvuPWbvfaggCMhPx0/vwE/vwP+XO0D/f/nln/7uT+/AT+9A7w6wu7fhj578bTficyIVYuKTfmi/lOZiOZ81iRsEdNCw6rpJbJponJsWQrzrhoKAsS2r0eB8dsm3rpOG7zgDSi5GRVhGMYm/QUp1te7VWmw0JYWkz3zlM5jonodi4bRYbVsCw+gOG6ac2TF3a5PxFKltOc2K7dlE4Pn9k+Ftp9atUwfGB/qS/vkrTd3yRJahLSEywHuORXxqq9TNZgWa0FmZ0ywvnpK26sGp7yxhlilqgpBAJ4FPJIFO5mS5rdYd0jVIK0FIhRCVWIRoGeIJhBIJ7RIcuFwgn2B1rU2aPOEI6e0mBnECYlrESxMuTfzHnhEWmMn9dx/9jd/4t/jfJ55LrSy3t5cln+tKCjHaeBE1fDDabriWZngM+9jDynvv6vu9by+2KD5UszquO/I4neT8+TcIHSUfeZr+zd/2PZMQnhAb77c3+DDN8vjcQi2v40d/+2fD0cxI0R6anH4hG5niWCYbH9jYWNY9XRGv+7Qsi8MjE4+ValtxOXHlnW8JUfnyxVe/99IpIihqMY/7QLF04Hp4q9H9s7ZJldduCyGGRCS90iW9K+/5Gr/ws/etledW5jrpPhKyCMWTlkFSIuEYYgSkpgmVTYbiTCnh3zPD+AETEbmlLe3Uhd5nFmTC4JbZpGORSD89kPT7ssLJ03Q44U5Pc1pZn4yRr7/Vm2XkAN3qBBNHnnzyuU+HskOqRa3Nn7zynd92G43DU9l3HeJq1VH52f/NjPXbmuX6goNPj4/umq6LB8EyLINP6xi65wWcWTcdyhNEynJZirTXLlcL82+/9FXM8rF//Le2b/yIC9SbC4ZWdn2O4cQgO8RWCh5l2eEso5okzHmBIZpeMD4jqV1rYkoRadVW+VRC6IayHKXn16uJkPfh5/zKtvfmWW7SdVSVKnCJNjP75g9exSx7ZkPFiCRLlOl4js0MpurrpT5Z8uUQY5oURUSdcjumn+JicpjSrbAie21XUBTG5x3T6Yvz+kpQVwtKSnJgD5ahEYcXlSE/6A4odbstRPowEwaX5HXdzw2IgsBurZhSRLo2r+qqOzjJMJ7H4rWez1FU3bY7XYohrGN3K2WW5aTBlJ8OCS2PaWuO5xPO86MRVhQpovM+z7u2jXuht93dWQpEjZGQQMIWESy/XVYbJlHdnoVgG/BEoqvEZwmjEBIhLkcoB28TmE296BGbIXSVNDniJMlAQByPUBxhNOKHiJlLMXSk6+NXdobr+AfvST3wXPO1l5l22YPNECoQ46Re0k3PZ0yvVKbcvvLEFNURfW3d51U2znOb21ZN9XNxut1gPNg1zPMnPrJC8Ba27gsC8arG7iyZWGb6rl9+cOpTSUqTxQi2IJgA53oe562un6PlPMdUHS8zPbpfYaSJj/699fzczOzk9mbrnbfe2Xlz2MzuO5H1uds9G6Vx/S5Ru3s/3fn27/7Nvyxsf+t3f+/3l7f9iEvWaiQeJ5M5ouvk0gY5Nm4d/mT4wgpz/g2/XPHi0aBAO4vbvVf+r3+Xt317rUgGc4QOyMkVnzOITVnHjxJ1k8R8d6lIiEvtzmXik/jEdI3s8P5QSInS4uGZnw9WTl99/XuTo5NHHrrn9z5/Nqqb8QShQwJDSZ7rOS5DBYJIKDewWCrAXbZo0dMashQl4ZjtmwJrMEKIGP0rc6/vzhIJhY8cnoySuQEvmPfd+DjLRtkwx4tjztU1rdsK7x/rTI0z75yi/W54aNi5+wi/3XH+5A+dj35sKGksXTjf+bVfEtPPi55qHpmxuSHn6Bh//poU0NRHRuk/+x52x97YMxuGFXmXFlgxRkWzyWioxfgMLUWiJJCIbYZ8zTcbjJlgWFqgRc5wBYYwnusSmudFSbcOhpJaONriJJ3xbM93icsSXhIUn5Laasly1N3J3ICSYmyCF/M19ehMwqW5djdQ60anHXACx4Vp0bYFPhBZKtsX7uQdvUGRrBCO+6wnFAt+y9eUkBALua7GhHO8T5xu0zc0Px2Jltt6s9nbnjEEwuPZWaTjYYsiLg3jIRZDeJGKewF+CVuvx5BApGm8RUB8HJxhnCdscNk1YSS4IwGuixhhErKJYxDDJGyDUKE4kbPshUZkdxY+JT354f5cxonKnT/5HZ/wFBGYgQHGV7n1m5Zr062Ws9FW12/YXBwnJM/yzrmXnZF9TDrttwv+65o/MEXy84SWaB/2AwuCjUbJ+x4VmGIQ27/3XI49+xujBz8W6D5xBZENYGXddu3GN/4PcXImNDg7MjrACr4cHhRxU2nPoblGs9XXP/S//ZPfauh//9aFU711+heGg8u98wOs5r0FHZNTTPLAcCj9zSvlu4+SwRQZlchwXLiwasUz1PU8e/JPu5l+qlojTx2nV9f8CwWCZ/+ZnyVPPeGKoYhTNgwLew519zj50fe9qYP06Ij/9e+ShfNBiCO17t4shh3gXGIcXeSSLm3iAwd+d//kAX3j7K3N7iemPjz9iFZozFG5SV7mfNchLC9wVLD7ap8zA0rwXCFM2VQIGyWDHRDPieJoyo0PHug//OjudTGWnoiN0erGe+9XQwWPHefuvotliqzZ0D72nsiZamYsRbIx87ln2EaZydfF6XTz0JRFXFnidbku/eG/kKfGO+16UGt4l04FmwvU3Y9oTz3NVDvs3CXh9trm7ix7jwfrx+r5NJLCRkSTk4eyRO0QVu7tIZRDsAoc3Ta4CONLts8rIYoNqK7lCrygqXjmQTTJB4wr667vuM2yLnoscbDYHScQuJCj7S3ovgFBM3xKpiajcaPprtcNOUYzFdJpu7kxkXPoUJTOJqSjh7Kvnlzp1FWLdrT1dijBhCJyveLTihkNhxMhxQnTqutyPDU4KBEfOwkvY83g8NkZNAkEIqqkwRGJhffVsxyOJwKHHYMw8Mfk3mZAcb5DaNH0HYkJwryfjJSUBn3eEVkSRHvv47NUZ5QzaZZZ0hmGOPWmJmVotdzYncW1aytbZLNoWAHjcfAYehNIIS+k0L5P91YnR17/vl/TmYlRPxNx6y3fp0hM5Js0V6tg9wymp4g6QoxWgD0GE3gamZoW0xlzvRMcO9HzEjHE/n1We1viWVZJKWGpuLF48StfoMqFR941fXVlyRw+GE+kOUaCL+YHkkeZxY2VdCIqE+59z79/x2x23wZf924OgfOwlwTCT/aMigmlYkJ/dHSKhMoVh9QLpE3IypqVF0ijHnRbzkCWXDwd0GGy3SKPPsAw171bNaKvkVf+g88e7rx9iQyxJCuRbIqk09SF677mkKvrREhTjEV19m7Y3ieIpsYsx3IZOiy4Ai3NHjsgc+/5g2+8tVVXxyafcppSksJ/WiUXWzQhDEfjoeFuurTiBh4vWPCG4JqLjMtK2NDwZHHIw5Xonzixe6kM41fqbacRnp1uVCSaL9OM7f/5y80B/LIQhLP65hWGnaBF3ZhlGCncsB2R5MWfuZf9F3/aycYDMdT2O4Fr6DWHm7spCSErbNBd3TJV/rW3uhr28Z1xx2w4kcHuTTyPD+CpBpZKeJkILAlh1VluO9/w20GtSXs5lpJ916VpbOcB1SGOa9EcQ4siEWKRlqhy7UV90/KwPtk+eGMOEW2x1ursTpZMyNKm08g7cgj25cki02jgyMEm4jEU45lBWJYCx8ea4ih6YLi/Wm9MHssd2nfg0tkr+8YUL9sMTNpoeUT2JZbhPFZJRKJMqFbWVD0ISeLuLFgLDPFxFQyhJMKyRJGJgu3aInaSUDLN6b4XhV9PAsN3BQqnfhAj3i2d0x0fq9clVoiwI7LR1jUs/3QoZvpmlGfjCfFbX9qSGXl3Fsem3/lGsdKmQjTHYVPk4bxR197QYwnG9/zkrCiwtlUPwoL
"text/plain": [
"<PIL.Image.Image image mode=RGB size=274x138>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Train :: Epoch: 141/800: 100%|██████████| 135/135 [00:11<00:00, 12.24it/s, Epoch Loss: 0.0464]\n",
"Train :: Epoch: 142/800: 100%|██████████| 135/135 [00:12<00:00, 11.22it/s, Epoch Loss: 0.0435]\n",
"Train :: Epoch: 143/800: 100%|██████████| 135/135 [00:11<00:00, 11.32it/s, Epoch Loss: 0.0434]\n",
"Train :: Epoch: 144/800: 100%|██████████| 135/135 [00:11<00:00, 11.84it/s, Epoch Loss: 0.0419]\n",
"Train :: Epoch: 145/800: 100%|██████████| 135/135 [00:11<00:00, 12.05it/s, Epoch Loss: 0.0432]\n",
"Train :: Epoch: 146/800: 100%|██████████| 135/135 [00:11<00:00, 11.56it/s, Epoch Loss: 0.0447]\n",
"Train :: Epoch: 147/800: 100%|██████████| 135/135 [00:11<00:00, 11.76it/s, Epoch Loss: 0.0469]\n",
"Train :: Epoch: 148/800: 100%|██████████| 135/135 [00:11<00:00, 12.27it/s, Epoch Loss: 0.0448]\n",
"Train :: Epoch: 149/800: 100%|██████████| 135/135 [00:12<00:00, 11.22it/s, Epoch Loss: 0.0463]\n",
"Train :: Epoch: 150/800: 100%|██████████| 135/135 [00:11<00:00, 11.64it/s, Epoch Loss: 0.0432]\n",
"Train :: Epoch: 151/800: 100%|██████████| 135/135 [00:12<00:00, 11.21it/s, Epoch Loss: 0.0452]\n",
"Train :: Epoch: 152/800: 100%|██████████| 135/135 [00:11<00:00, 11.33it/s, Epoch Loss: 0.0440]\n",
"Train :: Epoch: 153/800: 100%|██████████| 135/135 [00:11<00:00, 11.65it/s, Epoch Loss: 0.0449]\n",
"Train :: Epoch: 154/800: 100%|██████████| 135/135 [00:11<00:00, 11.75it/s, Epoch Loss: 0.0418]\n",
"Train :: Epoch: 155/800: 100%|██████████| 135/135 [00:11<00:00, 11.38it/s, Epoch Loss: 0.0445]\n",
"Train :: Epoch: 156/800: 100%|██████████| 135/135 [00:11<00:00, 11.92it/s, Epoch Loss: 0.0454]\n",
"Train :: Epoch: 157/800: 100%|██████████| 135/135 [00:11<00:00, 11.96it/s, Epoch Loss: 0.0430]\n",
"Train :: Epoch: 158/800: 100%|██████████| 135/135 [00:11<00:00, 11.96it/s, Epoch Loss: 0.0436]\n",
"Train :: Epoch: 159/800: 100%|██████████| 135/135 [00:11<00:00, 11.88it/s, Epoch Loss: 0.0414]\n",
"Train :: Epoch: 160/800: 100%|██████████| 135/135 [00:11<00:00, 11.65it/s, Epoch Loss: 0.0447]\n",
"Sampling :: 100%|██████████| 999/999 [00:17<00:00, 57.55it/s]\n"
]
},
{
"data": {
"image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQgJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCACKARIDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDS+InirxnpHivUYtJ8Qi2tE8vybUWcTkfu1LfMyE8sT19a5TT/AB78TNTH7nxEIz0zJYwAE/8AfFeg+NLTz/FV2Fj3yMF4x22LWCunpGqJcRExeYOTx0yR/I141TGTU3BPqbU6TqNJGdLr3xbjtVnXxHBKCeVW1g4/8h0TeNfiJb6Ub+415VCbQ6R2kBPJC5A2ZPUGtWS3d9QnsELKsMEcsx7OWGSB9OKqwlrW4+ziMyrJC5Usu4bumGHpUfW6ydpBXpexa5uup6r4E1DUNT8Fafe6ld/aruXzS8xiEe8CRgvygAD5QBwK247oNcSRZIK46jrx2rB+HdtcWngLTILvHnoJBIR0J8xufx61q6jNHbIXG3jJJJ4ruxGKVCgq0not/P0OWUZN+6Pl1SOKcxFjuAyRjoKsxyyPyRgHpXAWOqql+bhz5n+z2YCuls/EHmSxoUGG5x3Arw8NxFDmf1lWV9LJ6ebZpLDTTumzU1WSePS52glMUoACyBQdpJA6HiuKtf8AhL1sriK68RtJcPnypo7SEbPTgpg/jXYajNHcaVPgkAbc5/3hWZE8KxsWbBHGPWvpadanVgqlN3T6nHX51OyZwurH4lidPsHirYpGGVrCBufUfJWfJ/wt5GP/ABVsOzbkMdPg59vuV6buUkfKoZuhJo2rcRgqvydMmtotMydSrFbnkHgTx947ufi3Y+GfEGr+fblplmjFrCgfbC7qQVQHqAeDXEJ8aPiFI20eIeT0/wBCt/8A43Xq0+nLD8c/CV5Gq7XS6RiBySIHxXgek2j3l9FbfZllnYlFBbac4/pWVaapps6o1HKCfU6o/GT4hBB/xUBznr9it/8A43U1v8XviJOxQa6Q3UD7FBk/+Q6fpPw3nlDT6jdRwWxUjOfmU+vOO+K6azt9NgvrUtbrhAytP5f+t/2vrnP514tTN6SfLD3vQ2jSqNXehzTfFj4ixBxJr2GxkBrOD+iV0fxO+JnjHw98QtU0zSdX8iyg8rZF9mhfbuiRjyyE9Se9ZPiS8spZHnsNIWAICWyMB/RiOm7sPrVv4v6VZL471TUPtQ8+QRB4mHAPlIBj8AK7sLinVi5SViWmrq9zY+F3jnxt4m8QGbVtbjOkQAiVZLeFC7kfKqlVBz369q9ximVAFkulkZunQZrxH4deHUtPC0esXO2W4u23W0Yf5VTkcgcep56V3A+yrb7/ALO73ZX5drbQn0PWor4x0p8rS+8m7KHjbxhq+gNcXEd+9vEYz5EItVcAj+IuQQc88cVQs/H+rN8PPD2pX2oSR6jfm6Z3it0IYRzEBcEYAC4Gfxq1rfiu1sNN+xXskH74FBDKqt5mRjbtPXv0qjBpmnp4L8KTtFMbK2muVHOWVXmP3uORjr+FFHFKtTcos0mpJGFH8SfGDMki3kskQmxIfIhAC5HfZ6Vtv428QXFykWnay1w0pHyC1j3ISPu428/Ws3xNLp81uLiGwa3midFBcfKyk98dDzkV1Hgo6Uujy35iQXlvKVeZu3GRtPpg/nms3Oo5cqkedKFX2ns+bz3JYrvxzqEMUlnczJGUw7ywwqwcdcAp09K6Dwzda3JrurWurTtJFFBavACiKAW8zeRtAJyVHX04rn4/GuryaTdX1rpXmWomEUV3JIoQkkDO3OSB7dxXU+FpZruzOoXkSLeTxIJJFUqHVS+3AJ6ckj6100pPms2zspq2zudBUU0i7TGswSRh8p4yPfmnhlfcoIOOozXO6rpOsNd+bpU1oE2/cuQ3B+orPHVsTCKeGgp331t/X6HTFRfxOxsbpUk8v7ZGW3KcOoDY7geucHmrlZsWmBo7STUZEnuLY7lkAKAH6Z/nWlW2F9pZ+0Vn2vdr1+f9dEn5Hg2q+NfFcOrWWnQ+KbuCaaMFnOn27RFjxwSnHvW5rEPxNtPCLalY+KzPfQRGWW3axtxvA5O07OoHb2Nc54nsrjUdLtzYnzGRsGdeNuMkZHbOOvtUlnrHimO8tbG1ja8ihs9s8SjaZEHAkOTjcpOGxgkc/T261JRfOl7rt97OClVclyt+8jY8MzfEbUvD9nrN94yjEN4mPJjsIN0O4Ha+dmG7ZXHQ1X1d/inodtf3F34wje3hi86G4h0+BlZR1DDZkH6ZHvUuja7eaR4P1K7eESRWNwyKiIERQcEjjjjPP0rS1rxNFd+DbXXI4nFs0RbqWY+ygDn+WKhQhdRL552cj1WiiiuM6jy3x3p9pqGq3sN7JMsYMc2IjgybU+6c5GMgH/8AVWDdatY6tptvfzIsSRzyRwlSfniBAVmHbkNV3xmj/wDCX615l44t5EjQxMuQuYlHynt17d65Y3ECWsOlwSCVYbciQ4wepyP1FfNyupz16/gej9ZhSoWi9U1b5rX8dDfmMMWsS6jPKFW7EccCE8MoAJ/mfyrn7GWXU9VujDOoEW6LyyxzG2Tnv/srx71Brc1u+oWdyuY4rWFlVI884AAHPuKs+GdQivtEgtmjWOa3uPMdlGC/cEnvz/KnOOl0cuNxEazg49Fqey+FRdweDLBXA84Bwwcdfnb+lcx4k1aAb47eKSW6Y/MEGAo9zXUeHr2CLwtYTOwVWd413dNxkK4/Pis7xHock6z3Fu6edndJu/i9h/L8ayzHByrwhOOtlt8tznhU9m9Tym5u9Ut9PijghOWkbc6tuC5zgH0HWu28D2t9eIZLk/vIlGCeuM9M+n+FOGnTQ+Gpbpo9vmKMJkcDcPT8a7PQtJjt9MtJMMsrxKzgHoSM15tLBVMS/ZOFur72NniPd0HvDI2mXsL9fkwR9axBLKWPlpgbQrM3bB479q6W+xFplw2dxLJ7fxCsa+tvlDqhKEYYV9XgMM8Nho0n0v8AmzhqVE53M5NZsroMscwlRmO2QHqQxHQ9vcVo2NyCrBQ2xTyTXOweH1gs7e3RQUjxtbPIHPH06Vu28KRWxa38zcowyk53V2xWplUaasPt7CGfxTp96ij9wXIP1jZf6181+HrldNBKwpLmQMjTIPkIyOPw/pX0b4T1WDUdSmS3O5IpmGc5x8vP65r5at9SlQEKdu45dV/izXLi4e1hboyacnGN13PYrrWbe+0aUtcDzHGz5lHHsOfmrJsBNf6xNFAkYskbYCW53jr+dcnDrUC20UagqyEkkD5eTW9pur2Og20v7xmZmWRULjEhUZbacfhXyksFKjFqC1ex6VPF89lId4jv/scn2eeKFWCByiyBiwPp26V0nj74f3niPxzq+oeeq2
"image/png": "iVBORw0KGgoAAAANSUhEUgAAARIAAACKCAIAAADpF1LuAAEAAElEQVR4Aez9dbjs2HUmDm+xVCrmOsznMve9t5nZdhu6DTHFDjrJjB07ySSTmUwyYZxMkkkcdMzMdne7mekyn3uYi1lVYul7VTr3pu34Ccwzv7++7KeOjkolaUsb117rXe+iXNcl/5H+owT+owT+PSVA/3tO/o9z/6ME/qMEvBJg/WKggxRHaMI4tkVcnTgioVmG5YjAENqgOpbtUK6jEeIQwhGC+cm6einBdTRHsn38ddemTh4v15qGyLKOSTiBpx2pa7Rs166v2cholXhbkTDIFf1VI902WeNJIEwShARwEDfGcdy7Q1SVdG1CS4TjSJAhxOw9qL/FOVIvfzwOf+VBsC/3zvlfT3zu5Refe+X5461GW4zyU4cOHz54je1az37t0VMPP77j/ntYkSyeuKAsLREFF/27kz8/UzyeAiWGp7a913ItgqfUKUK53muEvCejBd6pGMTAy/U+KECaUDKJJYjWIN1W71UtyjtBcolAM3EmlbYL8w5nEaPuSQFSJqx18TMuownr8rxIU66mm8SliGYS1r7ljhv/9I//OJ2OLa0tSgLH8GI0Go7JAzTFoeps4uhOlyPiq09+56lHPtfpNjPZPkFgLq+UTSb4+c98W2t2kMvffum/nZ+fOzszv23b2KqmX5w5ScJsIp5utzsO67B64Iajo0KYXT67Uei0mYkB164FFKerdw2uywvpgVRINVW9y3doKqAwRqOyvtR55y13HR4Y/Ycvfeb5py611r1ciPeeqFs0oG6vAqle1WH7Awkvjnpxm2Tu4af+YjLdmhx6W2Hmc0PbPySFjrrEuTj39Z2T9xES90re+6BRoDlgB3cm2278T4G+0dLy3MbKE6Q437s1agrNxJXEOJ3ZJdKdVm3TbC732hpy97Pzn0E+8tCvt1vLF5/9ItGqhOBXVKpIKJa4Si8jwXVRi1e6jSARiXYplieu4+iuw1HEdB2XREJ8oaiKFGsxlMaYXqPGffDu2BEITREHT8sSxiXFsvHkixvJcHDHUJLibLPF24YTkuxSK1Cpopi8hA6DLYoEHzQ3igQoorpkvOV1Dy/12qBXDBYRuwQNChewOlFZImFf93q0whAZPVzovRMO4hL/vbHvp/706NSu9okzFxizPTA6MDE5koplovHM5C/t+Uw0aNid8el9/QP9j37zYTdfIqZFVLTCXpngpZD+bV2JD9B2l9g4mWEIbxKLIRzKovcVxcE6tEy7tEFQkhCDWULTxJEIJRDXJM2GVxBCDMXn2q5roXjwAK5jq1Rh1YnIdFfbegguyFgafnRs10GNuDw+hLJonIsKw5HLc5eMTpdhEqlIyiY6BqqYlBAogSIMCgR5Ozhdbz736GfrxWIyGZ2amCznmydPHjs7s2oquvfAhAxkBzSLluUEH2A2K3U3ESY5Vk6ntCLdrlVY3rQDgVCAG+jvK68uyAGaoZNdt+gGBHQEUQ7ddc0Derv56olHbCapJi03FBlOj1CWwgXYidHJucman0tvK/a2kd4LX62x1/3u7eK418hUrXvdobfGRUnVTsQil5u1LzEBanntsysbGzsnH+pdg9PwQZf4pyTFctuP3PK2h95Unjv4/COfX1lZCcciAhcsFyrD49Nv/5GfOHnypcLS4pmzQrOw1GvKuPbqk/BMwPqx93/0i7x+8aUnlSpOoIkg3HTnG5VW4dLJV0xF9XNCq/PSbUfCiTCbTSRnlzv1pjWzptgcFZLEWMSUecIxdCBKmTqtNB2DthzHHchiGnAKNbNWcSyMtg6R0Hg4bmo0h2FXoE0qys+vKrmxsesGgl979DU/F7R1dAmMCWgU2EErM0iDJY7XfAjNY/DsvQcqUyVU7wQH0w7jjbToSCxLNJsYNLFYEjUI5ZcZ3hhX4Z7oy35yRX7Hjj0f/NBHK4XFAO+EsiOJSJJFqxbkt7zvvZ1aiVh8xzRzg1Nra3OdWtNmHZETRFbSTb3VrBVWC3iBbHKI4fhWtd0sFQvHThB9q4VdyYQY3sSCUnWI42AeIILDyziI5m9jeECjZQKu2USNuN7gQLuMRRyTQi/Bm7Nh4nKED6EgKL1LuDAembgMMR1b4Em75OC1t96lY1Cy4OoGpmbcxNI1YuNeuBBdycQbve2B9wwPjEqSGJSyKCX0TW/jjWOoB5Sbq9SKK/Nzt9/+hlg0Mjt3KhiJn7+wOjAgnDin06Gt2m+pnXQ6OZDNnp4/XanNtAubsVjOaHTqqxt20dap1uLYqXD82gdvfePutfWH11+qtYrtViHV36/rToBtZxTVtOlKsd1uzGXGh3hRiIt0XyjJMy4fEjqYWLdS7wG3Bl0U1NXGeuX3f/rvFWNKHFRYM8RuC/HXkfA7bPcl1zg7lrs+mEh6Y7Z3n63n7123dbepwwcnpoZidF0KkgP799x651vkeKy0slSrd0d27Lnx5ttvuemutlL91Oe/+Ok//Q3iVFFccnrbx375v+LkzVr1S//4N8Oh9/zqr3y0VX7/5z/7lYefeH50auSGu9+eSwvPP//0qdeO+8+4lfGOndl4PEgZ4rjN1SStomACtlnMGW0jlghM74hRLJ0MUEGJ6kBC4DGlpDq6tl5vz87XtK7m0sQ2iMAzE2PJsBxhw5Kx3p279HKxVOV59Y77DvqZefV5ZTRH9SrOSm3pk/YgHeJvQidBwzCJqXstlGuTBdc+0bWSXUKJlCDyFUKGLRLlSIQioknUXtuk8fS4D1opLseOnxw0LEKPjo6MjQ53icLSNucKFnq342ZjaSskm4bZ7bqJWDSTiDfVNqVblOAkogOEZmzdKrdqjEPHEymG5SvlfKvaekS3K8devXL7K//RHyCnmQxxIQpRVJCiOZeiXUwmngRF047qeMKIQFGsS1m9ecnoiXASifWjzZMu4zqQh3Eqhf5AUWEXrzMSIUWXaUW2RlDVcgTWNTBisA5mXxd3Nmw/R2Kbd9x94y987Jcq3UaUtSIhr7PaBOMD+jFuhWZk6aSzUZpv1GbDYtQOiLYYurR0XCHrl1c2OO/Btprad597dCA32saI2l1VjWo4zhhz5VbO1OqK23AN26jp3GJ1fTlQT0bi09TIi2c2khio7HYymoub4vde+J4cTd976K7ZwkkxHt8eH9VaTjY1HI/kbO54qyfV9ErNz85vcmgL/0LCmXhVNsJu7wlg6EVphnozETB4CX0C2jpK+QfusPUufDytu9FTF85/7y/+KJgdDKdKY9vG9247Mmp39x+9yXW62b5ozk38zu/+p0ox/8hn/4Cw8lsfeteb3vPOpMzeFiDB1PClfOGttx1KXUPuuu2GszPr//tvP/fq2csPvenmA0duv9pRt7pNywm6Ta5eb1fLDdJxwhG6W+12ukYsEsymeAHDe1LuT4TikYCh6VFZTERkVNJEzt7Xr+cbHdXotkuKJEdiUZkOy2w6xQ3EtT/+Xr3lRsuRRl/dLyG0BeSHN4aQqxNTohOEXSjm/6c+/Ps5ss0lMuVNG5xJ1kONn3c6cw6VcgJ3EC5gqQ+HIw8y5EdCJIMzUEL44FboKviKQr3aZ5CRQdkczXI8ywuUhMZoWpgOZDfsoFFBKHJYynAjYUY1u8GIHNdjmMaCrMiLIsPKnGsMa6O6ZaDPoF/IEOqyxsb1a08dw4SJfF6XdMywNOEwe0AUIq5mOzyB5GaYjqvhYE+Ict3eMs5bY2BwlPocXfVmAaNGcSE3yHE877BBO5Mmi5us5nJqR69ZDh90uPzWC7kMVkis6NqmSAzL6S2r8BNFdGP/dUd/+cMfKRbnpbDNcn02UXgSMohCYT4iQdPVHcviOWZ8cGdGGK5UTz3z7Ceffvm1fK0u8OFCQ+FkGlK5/z5nVleXNop1qh4Ic8Q1BJruilaEYwcnp5UxTSVt3XAuL5/6ZLWhVVpigk8lk1apaTTssWhfLZ8vd4x7b7lx18T2WutoX3JEEpLlVl5VlVwweuvhIxfmzl0pNYyZKEM/U7QCVN0PSTZZYkiRkHyHXB8gccYbTh/WlXkheBch6EV4/cAVCeOHXM4F4w1dUZh
"text/plain": [
"<PIL.Image.Image image mode=RGB size=274x138>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Train :: Epoch: 161/800: 100%|██████████| 135/135 [00:12<00:00, 11.17it/s, Epoch Loss: 0.0442]\n",
"Train :: Epoch: 162/800: 100%|██████████| 135/135 [00:11<00:00, 11.67it/s, Epoch Loss: 0.0428]\n",
"Train :: Epoch: 163/800: 100%|██████████| 135/135 [00:11<00:00, 12.22it/s, Epoch Loss: 0.0455]\n",
"Train :: Epoch: 164/800: 100%|██████████| 135/135 [00:11<00:00, 11.49it/s, Epoch Loss: 0.0439]\n",
"Train :: Epoch: 165/800: 100%|██████████| 135/135 [00:11<00:00, 12.18it/s, Epoch Loss: 0.0440]\n",
"Train :: Epoch: 166/800: 100%|██████████| 135/135 [00:10<00:00, 12.28it/s, Epoch Loss: 0.0417]\n",
"Train :: Epoch: 167/800: 100%|██████████| 135/135 [00:12<00:00, 11.23it/s, Epoch Loss: 0.0437]\n",
"Train :: Epoch: 168/800: 100%|██████████| 135/135 [00:10<00:00, 12.47it/s, Epoch Loss: 0.0449]\n",
"Train :: Epoch: 169/800: 100%|██████████| 135/135 [00:11<00:00, 11.55it/s, Epoch Loss: 0.0434]\n",
"Train :: Epoch: 170/800: 100%|██████████| 135/135 [00:11<00:00, 12.08it/s, Epoch Loss: 0.0442]\n",
"Train :: Epoch: 171/800: 100%|██████████| 135/135 [00:11<00:00, 11.45it/s, Epoch Loss: 0.0441]\n",
"Train :: Epoch: 172/800: 100%|██████████| 135/135 [00:11<00:00, 12.13it/s, Epoch Loss: 0.0424]\n",
"Train :: Epoch: 173/800: 100%|██████████| 135/135 [00:11<00:00, 11.64it/s, Epoch Loss: 0.0416]\n",
"Train :: Epoch: 174/800: 100%|██████████| 135/135 [00:11<00:00, 11.86it/s, Epoch Loss: 0.0422]\n",
"Train :: Epoch: 175/800: 100%|██████████| 135/135 [00:11<00:00, 11.45it/s, Epoch Loss: 0.0423]\n",
"Train :: Epoch: 176/800: 100%|██████████| 135/135 [00:11<00:00, 11.71it/s, Epoch Loss: 0.0467]\n",
"Train :: Epoch: 177/800: 100%|██████████| 135/135 [00:11<00:00, 11.96it/s, Epoch Loss: 0.0425]\n",
"Train :: Epoch: 178/800: 100%|██████████| 135/135 [00:11<00:00, 11.99it/s, Epoch Loss: 0.0452]\n",
"Train :: Epoch: 179/800: 100%|██████████| 135/135 [00:11<00:00, 11.40it/s, Epoch Loss: 0.0424]\n",
"Train :: Epoch: 180/800: 100%|██████████| 135/135 [00:11<00:00, 11.77it/s, Epoch Loss: 0.0444]\n",
"Sampling :: 100%|██████████| 999/999 [00:17<00:00, 57.72it/s]\n"
]
},
{
"data": {
"image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQgJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCACKARIDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDZ8bfEDXdF8bahp1rqYgtYDEFTyI2xujRjyVJ6k1k3vxE8YRWplttWWQjPH2eL/wCJrjfjHfyW/wAVdcjU4XNv/wCiI6ydL8RxmDbMQrbPLUjj8Sa8zEe2TvF6FqS2sdMfi744yQdXQfS2hP8A7JUD/GXxqnB1kA/9esP/AMRXASOftLssmcnNel+GtE8HyRWen6nG15qN9D5zSgkLHycBT2rLEYv6tBSnd+n4/cXSpuo+VG/rPxM8S2XgXwjqqaqVudQF79oYW8R83y5QqcFcDAPbGe9eeP8AGz4iLIQdf2kH7v2KDj/yHXRfEvTrbTvAvgm0ikYQwm/wW+8MyoT+RryW4dbm6DKuC3XHc16VOfNqtrGVSLpzcJbo7+D4zfEKTrr/AB72cH/xFTP8ZPHynb/b4yMf8ucH/wARWHonh2C6s5DO7LcHiNVYdMdazJtC1RGbNs8qAZ3JzxVunU+Loc3PdnrelfE3xbd/DrxhqsmrBr3ThZG1l+zxDy/MlKvxtwcgdwfauHHxr+IbEAeIOf8Aryt//jdWtAiKfCD4g7uHP9nZHp+/NcfoWkTXNzHLJDIITyGC9aIapGieh6HpfxL+I96m467njvZwD/2SrUvxG+IKcjXTgdf9Dg/+Iq9p2nWMMEe6RVwAGyM4qhrNvFYSt5Um5nUkccHGCfpwRW6iOxs/D3x7411j4iaXpurat5+nzeb5kX2aJN2InYcqgI5APWuIT40ePicHXv8AyTg/+IrqPhxdGb4n6KuwLxNn/vy9eSW1o8j7VQsfQCues+U1gmzuV+MXj4j/AJD3/knB/wDEUv8AwuDx/jP9vf8AknB/8RXMRabK3BQqO5xVubTEhX5ZA3Ga4XiLO1zZYeo1dI2m+MXj9f8AmPf+ScH/AMRXT/E34m+MPD3xF1TStL1f7PYw+T5cX2aF9u6JGPLISeST1715LcRFWYeldX8aGx8W9b9vI/8AREddUJOSMZKw5vjT4+3EDX8D/rzg/wDiKD8ZfiEI9417jOM/Y4P/AIivPwcsTXpHhCy0r+zVeWxF4bsrG0ky8QNnBAAzng1TlbdklQ/Gn4gg/wDIwf8Aknb/APxFd/ffEbxVD8NPCmqx6tt1C/a7+0S/Zoj5gjm2qMbcDA44ArxXXrWztNauoNOkmktUkKo0qbW9xj612+vTm2+FHw/HIydR6f8AXcVSYmbcfxe8XSMV/tBRhCxJgizwP9361LZ/F7xLJYSzyaoDJnCJ9nj/APia83FwVjZVXcGyAAex61Tt4JBKedqZ5pqQHunhn4k+ItSlaOaYzyD+BEiBP4AZro9Q8Va6PBuvXkcxtb208gwyNEh2hpADwQQcjIr5/tZzpt0lzB+9Cn5VfnJ9xXouh60+ufDzxd9pWOIxfYckdD++Pb8Kvni4NPcST5rIytC+K/je5mlS71reF4B+ywjn8Eq2Piz4uW/No+pgsFIB+zxZLf8AfNcO0sRuwsbKpXJJA65+lS2kSG+W8mL7k5T5eHNcvvSejPSngKsavsoq7209E/wvr5nU3PxQ8eLNLFFrR3jAQC0hPP8A3xXT+AvHnizVvHOl6bqmq+faz+Z5kf2eJc4idhyqg9QO9cBcybJQyOqySbiwA5Uk5I/Ktz4YSNL8StEbHy/vhn/thJTvJNJjq4CpTw6ry69PXb7z2Cz1rU5diyXuWOM/u0H9KvPqd8lwifahgnkFF/wrg73VEtWjiNy0bzTKsOUOGbgkbumOfatqXV0tJssRJKAdqk13pcz0R52h011q9xaxNI83A6/KP8KzIPEtxeSFYbzGMjGxe34V55r/AIjvtQu7eDe0LTD5Y1wAOecn6CqGiX62Eim6n4ikY7i2c810LDPqRzH0PRRRXCWfIfxrP/F3dc/7d/8A0RHXDxuCNo4rt/jWpb4v62B3+z/+iI64AEqevSoauIuxKSdo9cZrqoNRtdMt4LsRbphG0O1H5c4wCfQAVzi+T9nikjyWOdw9KjvZMKoDDp2riqU1Wai9hwm4u6O++IV8+o/DTwLdlQGl/tItj/ruoz+OM15dXo3ikj/hUHw+Ocf8hLr/ANdxXnNdsIqK5V0Fe7dy7Y6rdafIWhkPzAggn2psmpXzj5rqXB5wHIqqo3MB60+WLyz1Bq+Z7XJtG56N4HnB+F3xBe4JdVOmk7uf+W7VqaJr9nfWscaR/OvB44FYXhD/AJJH8Rf+4b/6PasjwjcG3uyQwGeDQt0KWh6HfzRCFUQH5xgFGwT7GsQ6hNK8dssPmIMrktyAc559K1bqSK4hzG20Kev4c8fpWXawNczu75ET5C7c4Q9R29a6Cjovhlp8lv8AEXS5zuKFpgN3VT5L8H8K4TTbhYYvM2/e6Yr0v4fGL/hPNGCSMSPNBPG1v3L15FYz+cNhlVMdNxwK8zHRvY7MLVVJtms99mQgdM9ac1nqNxpkmpx2U7WSNsNxsOwH61XurA2WnR30txDtk+6gcEt+VaV58Rri88Lx6ELWKOFIkhMgY8qvTC9BnjNcFKMZptHbHFe08jmLgfez1NdF8av+St65/wBu/wD6Ijrkp7rO7nINdb8av+Sua5/2w/8AREdehRi0tTgrW5tDhIxk81t6N4l1DQ3xaSjYWDFWUMMjuM1iDgZpVIDqSe9atGBqarevqmpz3kqBZJW3sF6ZxXaa+M/CfwBz/wBBHn/tuK4ITFpTIFAPQ5GQa7jxO5T4T/D/AJxzqRx/23FJRdiXqc7bhVG4nB68CnM5LlQR7VnwXAZRuOTirkciBTI3ToKxcWrmZNDNjK7MMO+OK9B8D2i6j4H8Z2zzLCr/AGHLsMhcSsf6V54wA5QnpnOa7HwreG2+GvjuZVJdBp+QD6zMKKaXNdm1DldWKm7K6ucrd6emnx/u5fLZpuXP8QGe351bSRLm3WBpAgRAMZ5Uj0rHurt7u0JdMKPuZ65qkvmQsZYwSqjgdvpVN6WR7yx1DDSnQo35XopXva+7sdHBC/2VpZn/AHZkKxE8k4A4/Wuu+FjIfiPo0Sfw+cx/78yCuLa5tF8PWlk0jC480uR9QMY/Wuk+EqSr8VNHl52OZwfwhkp295GWOxanQhRiuz36a2Xy/wAupleItUuI9X8yaRZGc78qPuH0H0rs7W+l1TSrOZj8zx7XyQdxH8XtnHNcPpFq17I8l1YvMrcLIWJx710UUlnaxCA3H2RVBG1pDz+BFerhYuD5r6M+fLd/F5ukFn3CVULbiPu49fwrzy+vLsWcaE
"image/png": "iVBORw0KGgoAAAANSUhEUgAAARIAAACKCAIAAADpF1LuAAD230lEQVR4Aez9B5R06XnfB74337qVqzp3f/3lMDlgBgNgAJAACRAkCFCUmGRpJVumFVbW2t61gs/Zta3jXXt3tUe2Je96tbZkSZYOJJEKpEgKBAYAAUzC5PDl2F/n7sq5bt7fc6sbAimCAKjFyN6Dd77prq66dcP7vk/+P8+jpWmqfjB+MAM/mIHvZQb07+XgHxz7gxn4wQzIDJizafijn33UsFWi61oU246RM5WuoiAOLVu3TV74w8kkiIJUT/1YtdtpFBouHyRWGKdpokeRMuRkVhIo3TQTJW+rSAvSQHEmTX/rtW0+r6/WFqq55dW6azmXb21u3Wuo8FtkHSTsKBVlN2VxHqVsvqosTdmGvJ0mSs+rOJQXSaQ4t+WpesG0CiqKVTBN99/hKKWVNeVztFxZbivOzqll7/Ax7ztyS46Xc5yS6+YcMxeGiZZqZkEF4yQMokSlhmZoaRKmsW7EoZ8E01Hgj1SSKh4s4OzqbFWbBCqxlGmqWFOGrhKuxTc1lfAnL7g619GUzt3GKtaVniqdN3mHmzflKbiZOFaGwcwrpm52cGwoPVB7HZkZt8R7chrTSDmhwW3l+CuOBspIjThJ0ziRM2vylGbK9eW6GlfnoqnSUmWykLG8yYJwYzwmUyp3F7M+KhzJVX7q3/rTd2+/3mvuzi2fOHFy1XOrYaLnc+U40cLJgWXFg4HuuYk/9YPx0MpV5pfO2Tk9CkNd00ejfqgS1y6UqmfnC+bpk0ulkl009amxlepRTsv3u/pnfupnucqTj9dT0751Yz9IVLFiuUXnzMrauZWSU86xvXZbvZzjFR27WCztHOwvLi0wrzvN3qg3HA/DcW8URqHuOMzywO+Me3G9UsiXPN8PcwarZY7C4Oq7h1zlv/5rz1fyiefphUJOJezo1FKG45lezoiSRIuS8TSeRoZj64bjzM/ldUMPp6yHJkvJQqaR7QRRrE0nUayPo0k4HKpwOjGcKNUKvPnZn/4IVzkim/Fk4mmubnOdyDZN22J+Debds9Ik0Kb+dOAH7cEwDtTEV0HMzWjTwIxii6VktdNYjSIWINB1gzvj41TTfT9SvqbZSchCZaOYK5TKZbbjdDxs7HZ+G81wAGsuxJH9i+Qvec0eslTEFLLnLCEV9oRhKbasHDxVUy8yEi3w2eNssGzIrs4GW2n2HtfnVDPKsdmGpm5aqakbtm6Z/Kcb0KaTGlbKzjct5Rj62I9SVkOzU4hG901Diy12KztR+ANjMlahLSQRwDK4w2yPyh7nOhADtMFuziiXO2e/QjN8E6KSPS2rk9FVLIfJn0l2d9xk9p3p8aPILUMSScr5LeYEWkmSyDIV7C2JE05lZtTCLEGZXDojIc41mz3e4epyV9wDZ+YYngpa4pyQGgucDS3tOZap64NkMhy2t0J3qGnFqN/Z2do+d0JPnTP9VuswHuahbyuXBLrlOLamNdq7o0FrOu2XylWvbLpWNNXsgZ8Wldefhv1hcTSKGq1o9dzi7CpFO+9rup6z0imEZgYBT5LEQapkg7Lz4E9BezLe2dufhnElV4S7wa2YL8dIB7CEWBXzLrc8CSzZF5alWZqeaGaOfRirydGzOJbhlbk/5bm6iAH4RKrn8nk3p4e+Sm220pQvmEaks9p8qmuGq7OOmqbF/BElk9AwQzimkUYOmyTnxaZV0nKJlTqFApMo44hsQpn0yIGxhLofhHMly4AdB77pJImjDeIw9YfdkRoP0yhKQ5bRYOqhv9BjYymbkyGSWLrU0A34os9u0DI2CH3rWiyLyMiVcnE6ifxkFCXTYTh787f9hBIQOBwuZ5Sf7CrNFU4pG4KbDbN9YCjbVIGjdCRkpEJWIVbT8dHEyQnZL5yB88woZ/ZJtnuUaTg523E8y7A8p5DzCia73oPn60hJzTWmPhIwyRkpi5PwFIEBcbLHmNpAi2wrN7thjavHshfZhVpGA3KTEDZbOaNQrg+JCT1kNCP3Mxu8yEiI7wovgJC4WY7kfmM5GOkKqcyGbaspApxjApFXOVuXncBUJxAqy5wy9ax8FCXcPDSkmdGMDhFoQroZNXLOmeThtHJxAxJGb4DXHQ3DYEPMBaOTE/+g0zJtOGs8iJPgcGejnC9OVD5N/F6vNTJaxdy8YZe505GvdVr7vfaBnkyDwWa7cavd3T370Mfvb7Z29kZztUKkuZM+/M7vD4+uU14oDkexo5sQvJn4RmKH0dQ389x07DP9SZJqrVZ/MmYFkma5V6nlNc5i2zHz2B4jjdnlORf6NjwjdR2tYJo+8t7i+bQEFpKNgqOtu0kfvp2gMJhwPr5R8Fhkg+fmPWQ1+8+GVxqank61NA/DgPckMSsZoSFBzX0/ieJAs5nYSEOdgKZDW6jsiGd+k2wgMh9i8FMLzphOVFAvVhv9oOIUrVSfq+XDNC1W+nqUjmJlsRuFQXJnqY1MSuHI3LkGB9W0MIziMfIl1UUfYG0tA6KfPZKPnqMiDu72+0fq09HCHf/itqAm5hm+VpBtz5Yusr1QexzYQToKeTIFWVrsc9ko8lHAvWQM++gsM/LgUy47+zkjG/50ZIuyh3K5fLk0j5pW4D/D5HJRzN4IdNuKclEo6mmoMc9R4pvwNC2ycnHRm4zQ4Y4YTZpRPX9wabklTm4rgxdcKxMgskC8yO6Cn4gg3mcJGDPykI1uKIM75014REZsvMftiWTIBrsfmpGBVOEoBAwkE8CkODPzy2yx6RJOwpKKJsYjmg56JjTNzUCWQipwIiQwJJTdAxeEA3NKudVsHB7uJ+E0x46b1v1JNwn6QdgaB/7CktcPvbmVYrfZRxKMR2NvzaxUbD/odNvj8bjjDw+8POeLg55qmbvuvberlaUgshqNslWshMHY0nLxMdM0Xbdq6kWkElpLkuTgEfDdicmMWjnL04r+CIIJp6Fs3V5/7NiIGK2Q99jCljsIA0QTMl+3w9zUDS3XdcquDt3EiZmDp41nz4KWM2anC03AiuB5ECQfs4Z6rIdazCyaOceOokmx6LGrEpRWPYl83XRiNN7JNAqCII0nkzRtb7QsyzNtt+gVWAbUPRcxnY1sGZUajfyY54P5mXFvOh4F8QXLbnSHKP6e4+pxuVbX6sqHPXCj7I/pWM4TT7UY8ohT1zSmSeqjzHJIxOJC6ux+oW5UMmGh2ei32k41nUzQNlLlctXZ29/yk+3CdpRHY5Pplp1YqEd6zAmwuBCgfeY7VCZCBhbABoJmuB8MIcypY04g1MJgT3wrzfAOEtS2Xct2cvlSrlQtFuqVat7MeXkXnjSaTLqDoW1YTMRED/M5D2JQ6A7BpGTacQJDjyzLDYNpdvbjzZ2ZELL9IJJIRZlJBtcSKYRFkcmZGQ3I7md6ORIWgGEj0yOULyyFGcpYA69R4eCbsyfgWNPUDDiWMCURSlyCT7FVmD+2lJBcnIpyyh8askaOND2+ZY8Gk4wq2Twwr4T5FLWQwzgiShODW8CGOh5RMGzvh/HI46k103MLrjNxJpiVxQR7wtQPDxvD5hATtxYlezt3ppN6f9gbdQ5TFKKq3e1ZzkJ1dfH0hUsf1DSLfVYuz6emORx0GruDXp8bkVHMe4N+UCjkUfZTfermbNe105jNanPfJU/bbIyjkD2UxLE2Ho4HJbvkeLamT1LfQgeEW7PKUVpzS3PFnFVL8nkt0MLRJM3sgqOncZwoCt3UGpsocOhBnFqYd8o8mMrx49BAOiVpjDIUBnbO0/NGMjZ0PYojfZpOYD39QXB/Y9vO5fb2muV8qVivc4/VUqFQiKMwY2/Z9pRH6qFEWo4W6Gic3eEAplqp2jazP4G/axM/8Fx3cT6P+b+xFfSbsqtTVEd8ArBLjBwjwqPApVkbzCmeTVaIp9dN0VOO5k2NkEWjyI+NekFfe7B29XojHsjV/+VAEPP4nlACD4ZlrFzUQtl/01EEB2FDyQ5DK8uMYGgGW1zz1SjAJXB8mhkT5SenmhEhry3NdL0cHgCvVPEKlfpc3snblpUrFzEWMd10zSoUS2aSoDMU8lxFn0JI/bBcEL1
"text/plain": [
"<PIL.Image.Image image mode=RGB size=274x138>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Train :: Epoch: 181/800: 100%|██████████| 135/135 [00:10<00:00, 12.36it/s, Epoch Loss: 0.0450]\n",
"Train :: Epoch: 182/800: 100%|██████████| 135/135 [00:11<00:00, 12.11it/s, Epoch Loss: 0.0469]\n",
"Train :: Epoch: 183/800: 100%|██████████| 135/135 [00:11<00:00, 11.79it/s, Epoch Loss: 0.0469]\n",
"Train :: Epoch: 184/800: 100%|██████████| 135/135 [00:11<00:00, 11.44it/s, Epoch Loss: 0.0444]\n",
"Train :: Epoch: 185/800: 100%|██████████| 135/135 [00:11<00:00, 12.04it/s, Epoch Loss: 0.0454]\n",
"Train :: Epoch: 186/800: 100%|██████████| 135/135 [00:12<00:00, 10.73it/s, Epoch Loss: 0.0424]\n",
"Train :: Epoch: 187/800: 100%|██████████| 135/135 [00:11<00:00, 11.41it/s, Epoch Loss: 0.0460]\n",
"Train :: Epoch: 188/800: 100%|██████████| 135/135 [00:11<00:00, 12.00it/s, Epoch Loss: 0.0432]\n",
"Train :: Epoch: 189/800: 100%|██████████| 135/135 [00:11<00:00, 11.40it/s, Epoch Loss: 0.0445]\n",
"Train :: Epoch: 190/800: 100%|██████████| 135/135 [00:11<00:00, 11.87it/s, Epoch Loss: 0.0447]\n",
"Train :: Epoch: 191/800: 100%|██████████| 135/135 [00:12<00:00, 11.12it/s, Epoch Loss: 0.0442]\n",
"Train :: Epoch: 192/800: 100%|██████████| 135/135 [00:11<00:00, 11.92it/s, Epoch Loss: 0.0425]\n",
"Train :: Epoch: 193/800: 100%|██████████| 135/135 [00:11<00:00, 11.85it/s, Epoch Loss: 0.0434]\n",
"Train :: Epoch: 194/800: 100%|██████████| 135/135 [00:11<00:00, 11.68it/s, Epoch Loss: 0.0445]\n",
"Train :: Epoch: 195/800: 100%|██████████| 135/135 [00:11<00:00, 12.12it/s, Epoch Loss: 0.0453]\n",
"Train :: Epoch: 196/800: 100%|██████████| 135/135 [00:12<00:00, 11.07it/s, Epoch Loss: 0.0409]\n",
"Train :: Epoch: 197/800: 100%|██████████| 135/135 [00:12<00:00, 11.21it/s, Epoch Loss: 0.0446]\n",
"Train :: Epoch: 198/800: 100%|██████████| 135/135 [00:11<00:00, 11.81it/s, Epoch Loss: 0.0424]\n",
"Train :: Epoch: 199/800: 100%|██████████| 135/135 [00:11<00:00, 12.22it/s, Epoch Loss: 0.0460]\n",
"Train :: Epoch: 200/800: 100%|██████████| 135/135 [00:12<00:00, 11.24it/s, Epoch Loss: 0.0411]\n",
"Sampling :: 100%|██████████| 999/999 [00:17<00:00, 57.70it/s]\n"
]
},
{
"data": {
"image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQgJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCACKARIDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwCj8T/il4x8OfEjVdK0vWPIsYPJ8uL7NC23dCjHlkJPLE9awbT4t/ESSGGWTWzskk2IxsoAGPp9yq3xesZr/wCMutRQgFm8jr/17x1lyRvb6fFYO7GOH95CVx1J7/56VpCk5ps9LB4fnvKS0Ox1n4oeOtNtoJv7fiPmMysiW8DMmMcsNnGSTgexrPtvjB47mWR11ouigbm+yQjbn1+SuNnu45pFSV1CAEHbyOhP86s6EFuNNnggiVJFw1wTKcSoDx8vtSrWU7wLxPJTk3GKaPSvGXxK8ZaP4G8H6ha6v5V7qAvDdSfZoj5myRQnBTAwD2Arhv8AhdvxD/6GH/ySt/8A43Wh8SWdvhz4B3/eH9ojGc4xMgry+s07q55cmpNtKx6hp/xS+KmqRyvZaw0qxLub/RLYce2U5/CorX4vfEe6n8qPxCXYqxGywgPIBIH+r7kYqjoWv2Nrb2dvbw3DzRFQquQBz94E91PpjvVSS9tv9IVT+9gQ7Zo8KN+Swbjjdn+gr1Vg4OCcXqd8sNTUItS1a19ex6r8NviL4q17w14qvNU1Xz57D7J9nc28SbN7uG4VQDkAdc1ujxvrZiVxqgJxyvkx8f8Ajtea/Ck7vA/jxmmjh/48GMjkKo/eSH8KfBcNOgmhvbWSPH8MwyPwrypPlVzoy+FOcWpWvfyPQv8AhPtcbhb8Zz3ij6f981vabr+vXcFi/wBs3+fMQxMSD5B17e1eQyzHCyo6OemFbr610ui+KpZW06wUrGvl/Z94P95v0PA/OsvbJTaZ6E8JBq8Yo9a07UNQvNQhAk3WyuwkO1eRtOO3ritYyy/3sfgK4rw94ms5de0/RtODsnz+dI4I5CMcDPXkda7Ek45rphKM9UeBjoOnUStYWS5dVzvx+AoS6dsfP+lc9q+pLazfO21W4yfWp9OvY7qEGOUOB19QfQ1d4X5epw+9a5utLLtyH/QVheI9Zv7CK/8AsTfvYoS0S7QcttyOvvWypyv1rntbAbV7hT/s/wDoIqopXJlJ2OYsvFficeGIb66vt9wYfNfEMYwM/wC76U0+ONdfSbe5ju8ySSbSPJTnr/s1dlgi8l7YkbChBX/ZPFeY3niH/hGL46TexM8IjdoZF+8rHIVsdxz+lauMY7oUW2n3PWYPFOpXFvHKLsruHTy0/wAKtatrGsRafpMsF60by+d5pESMHwwCg5HHBPSuE0vV7WNLW3nmVf3URjJ4LsVxjHbGP1rsdauI4dD0mUkcpOFXPU7hWNVK10dEKc4TSl1V16FbVfF2t2emGZJSJVYbsRoRg/hWPovxF1i61FYLu6+Vs4AhQH+VZV9Ot8MLJIH27RuOFbHNQXs0Wo3VvcQRLBcQfuyUG3d2rmO3kja1j0W18TX0s0sclywwuFwicH16Va0LVNY2ao2oTtOIfJMOY0XhiwPQDPQVxeny77hmCsfLb5hwOff611lxcra+FdRulYblEORngfvMY/U1cI3kjnmkkbsWpzStjfjA9BzUg1q1E8cDXSmWRgqqMcnOK8x/4SBi5FszKS2eW6cdqyLHULqPXIpVUEQyB67nR6WIglJN3Pdi7etIsjeaqlutV7W4FxbRy4xvUHFRSzFNTsUzxI7L9fkY/wBK5eXdEnyn/wALt+If/Qw/+SVv/wDG6P8AhdvxD/6GH/ySt/8A43Xn9aT6FqENmLqaHyoznG84Jx14rNJvYaTex13/AAu34h/9DD/5JW//AMbo/wCF2/EP/oYf/JK3/wDjdctd+G9TstCttakhBsJ38tZVYHD8nBHUdD+VZFJqwNWPv+iiigR8rfE65Nt8bdcZSQ2IMEdv3EdYPitWsp1hbGGjV0x2VhkD8q1/i+pi+MGsz5xjyCOP+mEdc5dSjWjJf3dyfOJCnfk5AAA6dOBXRTq8tOUEtWe5hZNUHDqznOWk9q6Xw5DiVZJciEgqe2V71mQizInM0uCsZ8oKudz5GAfQdfyqxaagq2yxBsOpwD7Zz/WuObcVdbnnYlOFJ26nZ/EaJJfAXgNY1CITqLBS/Qecnc9a8vuFhSTbCxYAckjv3r0b4hPv+Gfw/b1/tH/0cleZ1opXWiORSbV2dFoOqyRQS2UcNr5kuSZpFG4KFOQCegI4xWAZCu9UYhGPSmUVvKvKUVHsaSqOSSfQ9D8G5/4VL8RMDP8AyDf/AEe1cZbPGsymZS0Y6gHBrufAVo9/8LviDbRsFZv7OOT2AmYnp7CvPpf3Tumd21iMjv8AnToyVmmZOLVpI6W31S7k0ZvsGYngbnZyxBrrNLvbePwjILi2VplzNFcjJkL4xsbPVT+lYvhOyDacjRkb3diwYdhgV0c9socCLEKqfuY469a8qpPdJaXPdjL2FKNebe1vTsy/8LNTlufiHpaSwPDuMo+b+IiFz/SvUbH4n+DtYmSG01qLzXGdsiMmPrkYrhPA9sh+IOjSM4VkeZlT1zBID/PNec/DCXSNK8SRXuu2cnkxudt06sUiOOCVA659elb0JxitO541SrKvaU3c9l+JWnz3Nvb3MBlGwH7qnGPU/pVP4dzXVvbSJOztuY7mb1znqfrXodnfaf4jtIriyuYbyxJ5ZOQ3tTLPw7bWMknkrhCcjPPGSf61To/vlUT0I51ycjRowZKjPT2rnNdnij165DyqoGzO44x8oro0HkoVzwOhr5g+MGoXFr8ZtWYSyFIzbhV3HABgjJwPrXW58utjKMFNpN2R6jcatpsupGT7Yyoga3dAMl8kcj2B/lXB/EXSXl8RwR3D7CIf3UgHEyA5P0INc/a6tNPrRtLrCxQkNlT95vT6V1fi7xJY+JdIVGg8u7tnzAynseGB9iAPypOopQXmexWwKfvUFeMd7/16mC17FMkSbOYdhUKTkbf/ANVepy6nDrHg7w5euUSKU3XysMkhZdv4dK8CvdSkspnYsrSOpUKq4CjjB/nXpFvqCWfwo8ETTudrDUM+5+0UVppxSWhjUqxqSirWtodVNYxX7qltABJg7WU4BwOKz7e3mtJHn2HAk6k559qp6L4o06dTF57Z4zg7SPcVs5indUguImCozrHJ1Jz+nSsVZ6ol+QRTLlo5A2HJLOgAKEfxHHWry6k9z4J8SfIoWL7MAynIbMnX+VcPrfiA6ffPllibvGPmJz2q34PuXm8CeM3dvlzZbV5wv71qdKa9rGPmZVmuRme93IrhkYqQeMVe0q7ZAfMOec1hvMAetT283zACvfaujzoyaPevCt19q0ONjxhiB9
"image/png": "iVBORw0KGgoAAAANSUhEUgAAARIAAACKCAIAAADpF1LuAADyHUlEQVR4Aez9B7QlZ37YB1YON9/77suhczcaOQ4wmJw4wzTkDCmRlElKWlO0aWpF27Is25LXlrSStZJ9vJasbCpQFOOOGGc4OQ8yBqnRufvleHOsXLW/r+q+hwbQQw3PMeBzdudD4766davqq/rqn6OcJIn0vfG9FfjeCvxJVkD5kxz8vWO/twLfWwGxAlq2DJqsa1KiSbohhedUNZGTi2EoS/opST2jeJ6d2x0ZuVxwZrZfLS0qu++1TGPkb11uXJYLe4mVb/X8nK6FSaJIYU6q5OLKdPkRp7/blVZtPTAt6Zf3NphIlnVJgrlFbEqSerjBL3F6G+zkVz4NSfLTDXaz5w38kAP4xykZzmfnigtknPN3fv6v2nE1H8RayVS9TujGkmbK+UISSqrC0JVY9fVYi5xA5ZalQO9akTXs60mQ2NW5+Xe9r9Nc1a8+Zdn5+gd+WvN7caepVReSwqy08Vz3wqdX/t7fZa79QZLIMg/MzXluIilsJ4rvqGbO1KSQW4y5H8l1PXYrqqaqMl9jOdFkWVakiDMUKU7vXYukSJGURPJlcYoc+qEfn5q3mOXpbWfU63Ggquqhr3z+937nqS/8ennuzrvf9Xi+VNINOwm8drMVh5KiqrZtlaYqmm0mnr/5yguKnS/MLZWr1XLZSqIk9H1/HMhaZOtKFMW8gySSfv6T72eWv/ZTP6PqeqVSmT9xdnp5RVXiQj6nW/n25tpo5A72dzhezVnOcOCNPSOfK1SqhUqhNjOTKJrTbWj5UhT6405nan6xXJ/h+W5uXLhx6WX3oOUFvObwr/3Tf8ssOzelXEHqj3kLEtDGC/QjKfQTXZFlVUCeLEuKLn5SZClmHVhbRWIx1fRryEKzpLz1FExYOQFGkQAFsV+WCmW2uIjY8daNDMYmaMN7DMUyire5EfHGuRPuPBlI8TCOk1GoSLIXjqWB5OwuVfMLzrDBEym56fVxv6RGhqEFiiJHcRgm/WgQ6oV8NNRmCnbHCBPX6XmHjwE4ZYPHz7bZOBrZNp9Hx9/6662HschWsaB2hk4srsNhrOFk6GOQYSzbRS3WCvm5odQOZEMOFB6Y59JV2fdHSqTJlilHfhANw+6uopc0ZTmxYrtS4gUYkpqMG3HQVlRfsvOJakdOqLi9wM71k6lsGh5V13QB96wUKBHHKi9Zy2UvVWXtuCcQVpWjIIiVOA5kRdH4X9LiKFA4zwAsVCkAPlRJA2E4mIdgT6zI4ipiDAedMAy5dRA+DtVLFy8cdFxrxi3nSrqVA8cilUOZXfY8R4XyKRrXUVVDlo1BpxNJRilfZIU4XTWMiKeWXKZTBM0SZ2ez1BeOFyrlwPfAa2801Ax5nMQztZxpGa3NdWc0DgPfPzgYeQ6PYAR+mER+PJ45vmzodpzw5nVBEQ2Df4VSIQyCWm16vHyyISnGSPX9QTaLF4RBV/UDVwMVEjl03TCINKsMzYFCAG06twU88sndxQIfdDZYGc6XJTWUYuZhPz+wfCxgLEVcKYAYZTO8fZ8TtOEtQ7qZnX8DgTzciW5KaiApA0lZsktlWdr3w1a0eH7hIXmvOxiv3vHQQ6trG/FQc5zEAkJlxTSSOFJlJR8E4W7nFWngappq6jOGePo/0eBeWJhbcYb7Ap4VW8oL3JViw8498sj9n/vKV9Ij4U6voU3OLMXuEGajK1ZcLOUqZa/diQNWVxzkDoZ+GMlqaOh64I2SYBzHdixbsa4ZcWgXcjE/GPnAOdCMBc00I8uSVneCwVCXZiXe/OFEMjQwXTJWCkYBiYw1CarP6xdMkHef3n6ogqea57tiF7QxSlRZ1bQkjMAZmR0au1l2QDgFiDgAerQQiEhHzHFcVYaihd1uZ39zE7DOGXZpqszT+C5oUgi9xqjXCsdjyc/Pzs5qOgQXVFLGvZ6qlrqNlqbohUqOfQbMPja5AVBXin1AN5vFLORqM4uWZfe72/3mjmaZXj6v7ql6Med7Uq+x73thGEe+54LiuudCV9WcGXigme7Bw5xuPBzqphWMhr1ev1KbMbRcvjjlT/tt/0ByJrMMeg4PrOkaskwMGQk8TdVMQ6yAEgk+Axdi6aAmPDzcUFHFHpA7Ox+CA0Sw6ow4XTQAQjBnQBiSnz3J2/U5QRvuDNDmZlIYQGQA8xV+U6VkWlqyVHUj3De143PKudPybL/QmH74fe/8Mz/9+//ppyJp7PuqFyVKoNR01QJnYt5boJqaY+hysV5JalW9/PrHETjw+j1v+Ma6CVgqW3cgYo2kTbZPynfPaOWRMur6G5vJ9tDpz8/MyqqRREHGro+u6as5TXICyFpFk6JIMdKXE4XwFkAldMaunMBFfM1QI4QmXwoizwQShkhBZrloFvNeO9HsYvnUQ1qupLrjpLUa2At+PIj93sy5d03uVdXAEHGbsaTw2lis9BWyIwyFgMGLT5IIKh8lSYgAF/qWmhO/gh4xVFIFAbmAAAaQR5cQQnTIlSl2c1PZ8D0fZIMUAb6+66mWrucqJ87fV6pUBrCFwNNzoIEy2m8KqTOOfT+EoMC5PCh5JFhZv9NDANNMlTeiMWcU+WEsq3A0XraZzSInoQofkpRSZWbgdBFkxTUbTd0qDEfjyItgMH3XC/1Bzigmqud2u6ppNLYPCrVRFMRuF4HV03VzOIr83T1gCO5omoZdLOSK4zCcPExje123rVypokOiND9iUUxARawAJAPKJ0gJhAXKlEroAydeXlIEbiCJqQJVBCViI0ppakpXITcCakGt18jmZOne0j8TtGGOdF7IHwAASiM+gDxJ1Zi/t/jQ3uCq6yOTDCpq3dNyx04+OPvJczBZu3iHMugG8SCIJfgScq8thXlFni3UC6X8ptaPQtdz2/L0hN4cPgnP+h8cSVk68Y/f8fdOzJ5tDfv/+Ma/37x6+angmxWplEiTl72xenN2trq7A/Nh8NYnl/X8QRJFie/4zUrfiq28VXLjRDZCt6+E6AJBLOQYLR5y51FO8wxFlyNX8rdjaTFfmk40PRkGVv2cdeqRRLXkYSOO1lX7RE637fvfK6t2dutw0EwzES9OCB3ijQp9BjyC4SDTgwmgqut74jVHciLDhCGhGhxERt8BQUBbCZQyc6gzQk6DX/Ea4gAGBhETA6rMRRGTTV0t16buvPeRa9or07PzhmraNo+YWIVceWZ659nn8pKdi70EAbVqJIEz6vcNI2/mbZ43iBCy3CiStZwRBL6aArVqKjDJbNjFyrjfi6XuzPzStG3bxZw3HMiwgXBgmHGiGuNwIG4/cCTdGo4TMNY08u1mAxxkeiNfSVB6BMZCq+T2fsvUtaJVzJXycLUwnIjcdnUmZ2mygciJ3JqATkzl+lGmjaADgoFSMO43d4edfcUsOpGxOHteRWIGEHm7MEg+IUksNWAKtqUDDs8yhhDPt3FM0Ia3xM3w4jxJ5gZMoXfJJTP3/jsffcfsD379xc8ae61mvJmbDecK1auXr67996+60c7p6rIbbq05l8B4D/E6BZgwcd599/lcvX7t+T9w+/598w/YU1w7GymjzUj04a43/9WkmQfq73lHuJR/da9WvmeldvqT/Uf+71d/W5L6hjQNCP6A8TE1P5qvzN7zyCP/8Jf/eeQOU6o9uVI4RiSD+0XyqBtIlWQ4QB2X9UBCqJClIBwlqCFO7KitvKUlnmdovoxK60dabdGcqjjQLmWkVIthfUGHfmzcTPwNg9c0VVUrtqCN6YC6iJWCBKasUbxKKAdSUMBbjJQACQPCGQ09D4xBvkFcFXRRQTnnxQMrSuhKgeybhgE2Ic0DFil0MJMirpmOkDuOBI/ARgLoHD9zvtvc5/cAoDYsRXcVzayUayXNtJwg56qqH8sKylMEha4soKDP7V+8aC4vYFGQQcdI8bodo1RSEjBU05CH0lGqTdum7YeeIoeylQvdSA3j0Ovplfri+bvHw+c8Hq7fPHbs5M5uU2wnPhoX2pquWzwR7KDX78tQo8Svzc0rphbBBk2rVJgpnq6AWtksgmDEnhpbQpblBhSN9XG8kZWzrbz
"text/plain": [
"<PIL.Image.Image image mode=RGB size=274x138>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Train :: Epoch: 201/800: 100%|██████████| 135/135 [00:11<00:00, 12.04it/s, Epoch Loss: 0.0442]\n",
"Train :: Epoch: 202/800: 100%|██████████| 135/135 [00:11<00:00, 11.57it/s, Epoch Loss: 0.0427]\n",
"Train :: Epoch: 203/800: 100%|██████████| 135/135 [00:11<00:00, 12.02it/s, Epoch Loss: 0.0443]\n",
"Train :: Epoch: 204/800: 100%|██████████| 135/135 [00:12<00:00, 11.08it/s, Epoch Loss: 0.0423]\n",
"Train :: Epoch: 205/800: 100%|██████████| 135/135 [00:11<00:00, 12.03it/s, Epoch Loss: 0.0433]\n",
"Train :: Epoch: 206/800: 100%|██████████| 135/135 [00:11<00:00, 11.69it/s, Epoch Loss: 0.0452]\n",
"Train :: Epoch: 207/800: 100%|██████████| 135/135 [00:12<00:00, 11.00it/s, Epoch Loss: 0.0428]\n",
"Train :: Epoch: 208/800: 100%|██████████| 135/135 [00:11<00:00, 12.12it/s, Epoch Loss: 0.0409]\n",
"Train :: Epoch: 209/800: 100%|██████████| 135/135 [00:12<00:00, 11.15it/s, Epoch Loss: 0.0429]\n",
"Train :: Epoch: 210/800: 100%|██████████| 135/135 [00:11<00:00, 11.81it/s, Epoch Loss: 0.0452]\n",
"Train :: Epoch: 211/800: 100%|██████████| 135/135 [00:11<00:00, 12.19it/s, Epoch Loss: 0.0439]\n",
"Train :: Epoch: 212/800: 100%|██████████| 135/135 [00:12<00:00, 10.69it/s, Epoch Loss: 0.0420]\n",
"Train :: Epoch: 213/800: 100%|██████████| 135/135 [00:12<00:00, 11.04it/s, Epoch Loss: 0.0459]\n",
"Train :: Epoch: 214/800: 100%|██████████| 135/135 [00:11<00:00, 11.74it/s, Epoch Loss: 0.0442]\n",
"Train :: Epoch: 215/800: 100%|██████████| 135/135 [00:11<00:00, 12.20it/s, Epoch Loss: 0.0450]\n",
"Train :: Epoch: 216/800: 100%|██████████| 135/135 [00:11<00:00, 11.25it/s, Epoch Loss: 0.0424]\n",
"Train :: Epoch: 217/800: 100%|██████████| 135/135 [00:11<00:00, 12.02it/s, Epoch Loss: 0.0435]\n",
"Train :: Epoch: 218/800: 100%|██████████| 135/135 [00:11<00:00, 11.62it/s, Epoch Loss: 0.0438]\n",
"Train :: Epoch: 219/800: 100%|██████████| 135/135 [00:11<00:00, 11.91it/s, Epoch Loss: 0.0436]\n",
"Train :: Epoch: 220/800: 100%|██████████| 135/135 [00:12<00:00, 11.00it/s, Epoch Loss: 0.0433]\n",
"Sampling :: 100%|██████████| 999/999 [00:17<00:00, 57.41it/s]\n"
]
},
{
"data": {
"image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQgJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCACKARIDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD0bxZ401XRfEEel6bpsV0XhSQswY7csR2+lQzeL/EVtkT2FopAD5Eb42/99Vb14Y8SMzOyp5aE7R168Vi3F6lwWEc7A5IZPvcfzr5/M8bLD3ipava36nrYShCrb3dOppt4v1jaGSOxI7go+ce3zVSm8fa1FKy/YrP2G1s/+hVnW9zEZ8ElsLtx0yPpVqS2hu4ZpURoJgp2NMpAc9gK8OGYY2clCM22/Q73hsPT1nHQ0PEfifVrfRdHvLSb7PLcpI0qoisCQVwPmB9TXNjxt4lYhhqBAPGDDFx/47Wn4mXb4d8PK33hDJn6/JmuThvLO3vGjvJ2gj2keYi7iDj0/L9a+nrVKkPWy++yPFoUHXqckF/wxvxeK/FAk3TasQuM7fs8f89tPHjLxBvKf2hyP+mMf4fw1gyeJbhLmNVijdF6kd8dwawX1GLWtXluIbG5gSNg0bh8NK4HPydMDnqa4MNja9WTjNWt53O/FZVWoK6V/l0XU9Fu/GGu2fgnX9T+2LJc2htvJYxoAu+UK38OOh71zNr8S/EtzCGbURG+Pu+RGT/6D71veGbSPWfDuu2l6hMMn2UlO/Dsf5gVRPggQuZIbuJYAc5l4IB967XjqcJKlUk07X8rXfU8eVGco80Sl/wsDxYqoW1Ijd2NvFn9FqFvHvjIoVTVwHBPzG2i5z0GNtbR8LQvDvF4Ny9c4Kn6HP4c0yTTLazvbeG1so7yWSQCZJ5VUrHj7yn1zjp2zWFTOMNTjo+Z+X+exdLB1pOzLfg7xb4j1DxXYWOo6j50EofzI/IjXpGxHIUHqM1z8PxG8Uk/Pqm4jt9ni5/8drq/DGj2tv40huUmdnUyBYyQQmUI5IPNeYrYuV8xcEAA9a+w4cq4fG06k2rpW3XkcGPhVoSikdfB8RPEJ1CN5NRBtAwMqeRGMDvj5c1ta78R5l8g6XdBVK5P7tSWPvkcV5tKnyYGRVVUZnxyT7V9JPLsPJqVrWOCOLqRvHe563F8S0MEryyYdEUoqpyxxz9Oa474oeNfHvh7xnfQ6LqyLpqeV5dvHBDI6ZjUnIZC3Lbj1P4VzbsyrjngV3XjA2dl8RL68ju1Nw8caSwuwwG2Jt464xj8zXgZlg4UXHk63/Q76VeVRO/Q84074r/EzUrlLez1K5upicbIdPgbJ/CPitPUPHvxb0u+jtbuW9jmnOII/wCz4GMh9iqEVsaENb1Dxbq5sr2KxsbbY91LCirMfl+6ox83X7xHA6GtRvD18mrDVp9buJ44yHs47hFmKN/EWDDA4/ugHnrxXmcmhq3pdnN+J/G/xY8HCzl1q/iiiuAdvlw2784zhsJwea7Gx8ceJbn4deHtWF0Hvb1bszymFADsl2p8uMdOOPfOawvidp994g8JR3iRMrWshO6UBfMDcHCnnHIOawfFuhav/wAK18C6dp0VxeSKL4yG2RtvMqkZ9OvGfept71jSi7yulc9s0zVr6W1iEmpiebywXO2MZPrgCuW8Sav8RoNYZNAlgns5IsKZhCux/UEgHj05615To/w58TRss6asmnT4yFSVxID6HGP513vh3Q9ZsdDmuNT1O4murdmfyyA7EDur9fwNa2SZ3ewctZKxu2N18VbeF7i9u9AmQL/q2yhUj/aC4x6/pXXaDqGrf2XLJqzrJLFDHI0kYUBmO7eAAOnAx6+1efXdxq2vXDf2DOkunAAM982VZ8cgK2SR25HUGuj8KT6ytrra65bhjHHAEjhGA2S4O3n6VnW0izGUIo7UagimPfIF8wgLuwOanafbkllCjvXml1FpXiLWNPgnudRs47XciIHwPM/hZvf0+lRXeoXujeMYdJgjkm0oJG73GQPKJ4yRgZyf1rgTb6mio3PS3vR5iRozEtkghaRL5ReRW7yqHlzsUkZbAycVztt4os7nWItOQgu8jRMhOGG0cn9MVvJbQHUbeUxq0sasEcjJUEc4PvRGT5ldmUoWR4QfjHrn9jpfrqjOdwDRLbRkjPHULgevPpXRWfirxnqOhx6vDqcqRsSI4vskX705AUcpkZJ6iovDcXhd7uO50+CJ4iwU20qkNbv/ALSnp3xXQyW1rJbS3mkXKy2s13HIqBwUR1YKQvoDjNdjkjKMdDnde8R/EXSpLkWd+2o+UpLeRbRARcHOcpyR+uOlbMXijXtStNC8jVprSWZd11vtY8txjBBXCncO1T3N1cQX+qARxm3R/PlJbJHtj881Vvri21C6tfsYXy58EkcfP1I9u1Q32K5V0PV6KKKsg4XxLcXR8VpZwR5RoUdm/EjH6CsTWRdQrNDax4lYcbB94Edfr61oeNJpbXxIs63AjURLx36nNYUmvusytA+4AYywzXzWZKu6qcYcyT0/4J6uEqUox1klpqJ4Ps5bK+j+2M7vKrJiQcE4B5zXW/u4lk86fIJZlKEEcHp9a58a5FiET2UeXx5jg4x7jHfBpb6/sFgT7KuDIDgKflHNd0cM/aqo1sv+HOGeJbg1fVlnxq//ABKdCb1SXp/wCvPNRsZJHBto98sh5HA4Fdv4tlC+HfDW7qYpev8AwCuVW5NtcgbHkRhnO3gfjVYmHNJovB4uphZqpTOJOo6hPdta7AoiYgAjkDOK2LCSQvFOsUsqKNrPjOT3PPFbMZtbqW4VYYVmyARwWxjrTri3lSJIrOJcIcpHtBGfp3NcXspcyaVj3aueJ0pRje70u/M6zwjLHHoHiKSRn27INxU4OMsKq2V3fSxSKm4Qpy3JJbH8Poc9ah0B1tvCPiiea3EzsLUSRNwD85H4Yzn8Ko2F1KzxQRIThdxAbaee+T7UsZQ50pW1S/zPHw13Bq4+KPUZbqQNPEkchUo7HrnqMdeKfqUqWmbiWQT2ySoyBxmQEdQGABA9s/zqxO1vcWgYKgLEQiNwCykc4yO3+NZEvEsls8cUIlUZwvU8jP8AX0rijhFKPMkrf119PxOpTnO+uq/rY3/Beq2134y0+KNh5itMmSMFk8tiOPXp+VchYfLKJGVmiBG4L/Kup8C2c1n4w02N0i2/vW3Lzk7H5zgYPtWdZ6MYwRO5iVgflGcsO4/LNfd8PwhQwtZUfI+fzGpKVSn7Xcp6xNYTxxSWNoYPl+cMSfm/EmsgMqj5Qd5711ohtNR0m9gjtPs9xbzf6xlH71D057YrBbTJN2ApJ+lfWYKp7Wgua6a77/M8arJRqOxVaweSOSXzFIjwXwemelTfHK4t28YrHCcSQ7GuNj4blFxj0OMc099Luobdid
"image/png": "iVBORw0KGgoAAAANSUhEUgAAARIAAACKCAIAAADpF1LuAAEAAElEQVR4Aez9Z5hl53kdiO4cT86hcuyq6pwRGoEEwARGSUySKFGyTMljjy1b8misRw7X9rU1Mx5b1ig4KNskxSCKYgAIIhCpETt3dVfOdXLeOc/aVQU/9/6aZ/5zi2qCqOrznb33971hvetdLxkEAfHj68dP4MdP4P/NE6D+3/zyj3/3x0/gx08gfALM/89jsAmCJQifIEiCsAjCJQiPIOCLogTRIQjt4Ef4fZ4gHILAeYu992/kg1/DX8RfGRz8M/46PkTCv/EIp2mxBT6Hhf4/v/kRS3ccyud5luHYgKBsJzBM0w/YWJxkKNIyScdxfM/xDa/Z0sWoJMfEeEKKShHL8CiGEEmPZEmSYbzAY1jC0QPXshiatQPHJ6l/8k/+Eqv8zBef9oqRQGYljmP1iG8HPtG3hIFreqZOGqZuUaSctvlADkzbYyKkG3AW5wz83epycjQfyQjdfYpu1QTKNCwzYFPRQsxVaToikDzr0973fvebWOXUZ27CUfM84wdUIULptsd5wZkpcSrtv7Fq3+kIju/TvlvK2KeT5pNnS2fnYnKUISi+1dK/9tpOZ6fjkEyuILx/IT0ynjY6hu4RcdELbFO3GdmzYw9OYhUyIRC+Q+HmHIKRCZ6lLNx5QLsWISUET7csm4jKkWgqW2+q0WxBMWxfqQlJxxMD0vQ4PBpO5KVsIpvT9iuV3X2WpkuzCyQVkJ7ba+01lvaxyj/9mV96+sGPuOvm8ta99s723Jnz44/M86xnOTJbTlG0FxhsL1DuV7af+dErhKlVtyv/+Jf+TkVz/tuXn50ayZy7OHHzxjIvkh//qc9HBbHvtB8oBP/uj68yw7knTp92BPahB+ewSmPjhWQ+R3h0QOOV0D4R8AxLsSJ+RNC4VeFg1xGETbkEQ1ImxVC+o5M05XjhnmQYLvA9c2D7AkmYHk37PElin+EfPMojfF+WLuCTPvt3/2eKZQPfZxmGoZlBpy2IEkkzHEHjc6ICYzUbb777ukI4+dHs8bkLvOusby4PvK5jeKTNxyT52Fz5R6/fSGXGf/ULvzA+NKSZyu/+6R+9fftNRpYfPfPoH/3B72OVo2Njmduv/eE/d8Wo5Uv9+jpFqI7DclSKc3qJIV52lx3bwBtiOSciUwyX7DUbFEN2LUHX1EI2xuL+01ndIan9Hd/yZRGnhXciMdMKmNhE/PyvF86FxyaTSPlJW9csl6TCh0IRJEX6hOfaNktITED7NImHYPskIVKZDFbiU+mYwNMRluJ50scJYVnX8pWBKkVFggoC0iVpNmDxCmj8VSyBq7G/7rs5rpC1RZtQFZpXaM9jWYqSOMK3JUZiqID3DELxTUv0CVsguXgiud9uMqwUp/isk3fIPVbOGb12YPnxaIEKKB6WgSBxSknuaBXsO4fBNvc5mjZ8guXZwPOv79vVPu3RYlQMtnvYGsG9Ki0w0gdEGYeBMgOSNW/c3+81NIOSFIPobhtRss2L0npz4HV6x6fGOJqiTHPf9mCTwiUJi+cY3DL+2bMJ3fM9naA5Ml+KWrbT0/1EUaYDnyXlhbn4Vl3ztAphmEwkTjkGrAweJQUzYff3q03KpinfJLhEv9chSd3qDgY1mMLwujx7+f6bd42AeXuwe/HcaPnsZPTYqNtRIqRIy5JP+C5DyCR9Nicbg86/+cM/03X1f/2Pv8O7sc7+3vY956++6XQChSB6f/rVbz1y+qkzZ2efG3RfvLv0hS/8lM+IHa13sAgRjYo0J/g4EwFF0D5JsoRnEaQd0AyJ/cLC5ooEvqHl0CQLo0NJNBngtVE8Bdsd7hPPCU0n4ZABSdE0rBbt6RrOE8lT3ntvX+kbclKgw0+nAkO3+gOO5Vh8A8dyFNuVuHQ8/vjlx03cFDagY2Lvmapju44s8fMnz3Raqj1ok7pfSKaiUR4XKzELE9OLK9c//vSTE+Uzh/dydGy0Jnnz9SVX09WOFvjOxBg9OpLq2q7nB1rFyGRU0nU9g4zKJBNjuYCYxfvVu/22UjOsqFoVpZJf36O7BjkgsO150oNLsPGCGdbgq/rkLx0uhrvAjwmWoh3Sh8HDaeNJ7EnHD2wL5pqmSIYkXJmlRJmi07IXiLFELGB8GpuAcFUYF8PheEGUBY/yA8JlOAHWCCdKsQ3fgg8Mr7V7u9SeEpXX0jKXGM1G5lNEXdK6OpXxWNm0K5YYJVmOMzhJZmmsy9msY/tyLOW4usykLC3gdNoyndRQod2USY6KMBE+KlouZVfqhZHi4SoOwXoBS4b3Q7o+9rdve/judE134zKblsmmRtEkoftMSw8sklNsKnCdSlfd3O3yLN9QaDUgdNXdaPtjDePqYi9JE8dnSE+SVcV7Y7E+9+TBOi5lqm7o4A8jAIYgZWwZ1jIoz9Hiw7TvBL7tNJyKLcAtdAnSYlMBh9fE5HSz73R6Jt6hqoTmHKGDLBOBRvcQKbjw6EyCO7yXH66+kmjTzNxY0HaksZHMqekAHyAnw7xXYDm8ItO2bYchua2WxUZTpB7AubnGwBz0fULPybGp1IxAE/uq6pq9b3z7+ft7+3MzmUtn5wjX/s5fff+jT17AQqZikLQl4Bh62HUUwpqA4HXdkDmOkFjCpwlb91QbP4YthRkiHIeE3wg8MjwSODqGZ+OdEzyHo+S6cD0BBYuGTzGUwGOJKIIbgtjaWJo+flGQBU4UI3JU7/TuXXtjeGgyEhMHujKaHxvPDREUI8ixrjH4+ve/9v4HHv/ILz715s1b7+68c39xg/OJZ6++KMVSUYEI8F5haQZaOZ1/8OGLJ+ZOlpKlwyd2dGxoJmaaHjkYCLAHBOmJKXmqwArz1fWe3t0PInKKrQ9YnlC8eDrGWTUmcCMxOJIMr1F+ZRv21UW0oPsUr8MkkgJL2i4nkZSBSIWgKf1wMdgZD77S9Fq1hmGbrCAkckk5IpOC77imyBHwQAhEJJgPnjMdWCGSJ2FIbJdBROcHJNm3nDQfoRnLCSjS41jSlJMybk/1XBF//+BKpAjK7XA0I2azgWiSPZNk4tmsOGC6as0wayajy3Qph2DPMYhoRHLbCHx8hqfShbjfsw2zE41HIklBirt6QMXYGCfhnxO8pVqS3WuuHt0LzZO4H9J3g8BwHEmiEHmYTsASnGLRto23TRUjXFVzSVb8zrXm2SF6vhhp7CmMJ9ZVaqNvE7SoOQLf9ZZr/laHHkTILcXr7+rLW+23V+u/cLDMv/q133x7Z/GFZ76rDvB8CUIhApgYQrcHNsvhnfqWiSMBs92x+k1YaoTNjkgbrK9re4RhE4Y/Nj/7mZ/8Odvyrt/+q5dfWCRcR7MRFSCIIcMA/OBiGm4smxD7uk7Jw9GIYhFxh4Jtc3F6wsjAoggmmhAMh37w/LH7K5sbGhe1HTpDFE/NXHnfldGx8dRYPl8si77X73fWN+vRuNBvKXvmgGCt4fEjQ8MJ7o3r94aL2VIpTQSBY5uBD+NHIbjgZOx+CgeCJig6TBPgKkgifJ+IvmAwXNewNHhNDbaH8ESBp2hKZm3TpuD9qUC3nehhsEcQu0v3XdtdOHkmUcjTrptMFm+98+fbu9uz0zOcz7CTU/lcTulpuUSsPVDjEfkzP/mhTKwoC0mGpO911198+9W4GOu0+t/63g/Onzk3VB5W+j3bUvKFeCohZtOHQcB7QZpj6Xp7kIE/iwhUlEucmtek5MjJx/hypXv3GuPq0ahGux1XMSXXY1PwD2nb3SOVhmT5Hm6Uw1f1KNHhJFZt4tbhbhjYEynqaojY6Pjh6wlYhCDwjm6sFI8FiUgUO492iUBiJY1wWOQ7cB04K8gZ4KssIhA53zF937E8i+PIKMvSsmf4uhUQyQgLg0mwso2/T3oM7JMImxxefYLIF/KEEfQ1wfcjvsNSRI2JJIwVKVWK2SMWySRogRRdpt23GDJwLNySTwkGz7FmdRBJJhOlgq31kW1kojKP9EKi4aw8o5ONRi3NOFwF59vDHvb9ADaP4xXXRwSO7djVEDQe2CmSYljmWJHrW/67y/q7y/4DE8Zkgr7d4t9pwpL
"text/plain": [
"<PIL.Image.Image image mode=RGB size=274x138>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Train :: Epoch: 221/800: 100%|██████████| 135/135 [00:11<00:00, 11.89it/s, Epoch Loss: 0.0426]\n",
"Train :: Epoch: 222/800: 100%|██████████| 135/135 [00:11<00:00, 11.51it/s, Epoch Loss: 0.0434]\n",
"Train :: Epoch: 223/800: 100%|██████████| 135/135 [00:11<00:00, 11.43it/s, Epoch Loss: 0.0429]\n",
"Train :: Epoch: 224/800: 100%|██████████| 135/135 [00:11<00:00, 11.47it/s, Epoch Loss: 0.0446]\n",
"Train :: Epoch: 225/800: 100%|██████████| 135/135 [00:11<00:00, 12.02it/s, Epoch Loss: 0.0442]\n",
"Train :: Epoch: 226/800: 100%|██████████| 135/135 [00:12<00:00, 10.88it/s, Epoch Loss: 0.0430]\n",
"Train :: Epoch: 227/800: 100%|██████████| 135/135 [00:12<00:00, 11.18it/s, Epoch Loss: 0.0438]\n",
"Train :: Epoch: 228/800: 100%|██████████| 135/135 [00:12<00:00, 10.99it/s, Epoch Loss: 0.0424]\n",
"Train :: Epoch: 229/800: 100%|██████████| 135/135 [00:11<00:00, 12.03it/s, Epoch Loss: 0.0472]\n",
"Train :: Epoch: 230/800: 100%|██████████| 135/135 [00:11<00:00, 11.63it/s, Epoch Loss: 0.0416]\n",
"Train :: Epoch: 231/800: 100%|██████████| 135/135 [00:11<00:00, 11.31it/s, Epoch Loss: 0.0414]\n",
"Train :: Epoch: 232/800: 100%|██████████| 135/135 [00:11<00:00, 11.87it/s, Epoch Loss: 0.0431]\n",
"Train :: Epoch: 233/800: 100%|██████████| 135/135 [00:12<00:00, 11.09it/s, Epoch Loss: 0.0445]\n",
"Train :: Epoch: 234/800: 100%|██████████| 135/135 [00:12<00:00, 11.21it/s, Epoch Loss: 0.0428]\n",
"Train :: Epoch: 235/800: 100%|██████████| 135/135 [00:11<00:00, 11.58it/s, Epoch Loss: 0.0415]\n",
"Train :: Epoch: 236/800: 100%|██████████| 135/135 [00:11<00:00, 11.99it/s, Epoch Loss: 0.0422]\n",
"Train :: Epoch: 237/800: 100%|██████████| 135/135 [00:11<00:00, 11.91it/s, Epoch Loss: 0.0440]\n",
"Train :: Epoch: 238/800: 100%|██████████| 135/135 [00:12<00:00, 11.17it/s, Epoch Loss: 0.0433]\n",
"Train :: Epoch: 239/800: 100%|██████████| 135/135 [00:11<00:00, 12.21it/s, Epoch Loss: 0.0438]\n",
"Train :: Epoch: 240/800: 100%|██████████| 135/135 [00:11<00:00, 12.00it/s, Epoch Loss: 0.0436]\n",
"Sampling :: 100%|██████████| 999/999 [00:17<00:00, 57.81it/s]\n"
]
},
{
"data": {
"image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQgJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCACKARIDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwCx8RPH3jDRfHepafpWrLb2MHlbI2t4mxmJGPJQnqT3rnR8UvHuVzrSn1xaw/1StL4kRed8StTi2k7mgPA6YiSs+HQAJco6uueeO2SP6V6UIRcVoYSk0yZfih41UZfWePa1h/8AiKU/E3xrtO3XGJHOfskH/wARUtp4biVil/ZTEEkf6wLgeoPsf0rltWsbnSLnyZE3RMoZJF5Dfj2NVyQ7CUmez6Z4p16fwPoN/Nfbry6+0efJ5KDftlKrxtwMD0FTw+JNdlJAuyf+2Sf/ABNZfh2MT/Dnw39Lr/0cayPHBe20Bo7SYpcAiRsHZ+7HDc+2QcDnANbUoU1Su4pvX8xWlKdkzt7LxBqc14bW41BYZCwRPMRBvcgkKvHJwCcV00c90FAeUk467R/hXzk2qT6h4ei0610u6mit5FvbiWSJyXwOW3kng4GDx2+ld/H8U4bN9Fs4/LlEhU3kk7Ffs0WP42IHzDn649a56ijLWKR0ui4rR3Op+I+v6r4f+HOs6tpt15F7b+R5Uvlq23dMitwwIPBI5FfPP/C7fiH/ANDD/wCSVv8A/G690+L0qXHwc12aJg0TrasjDowM8ZBr5MRS7hRjJOBk4rgkveshLY7/AP4Xb8Q/+hh/8krf/wCN0f8AC7fiH/0MP/klb/8AxuqegeD11G0ljvGS2mWbaXJ3EphT8uDjPv7mqWreD5tNiuLkzKkCcqJWAY8dPrngepz2FbPDVFHmJ51ex6T8Lfil4y8R/EfSdJ1bWftFjP53mRfZYU3bYXYcqgI5APBr0ibxFr8dq9z9uCxoNzFoU4H5V4P8Ev8Akr2hf9vH/pPJXuHivVbB0McemTvBGf8ASGb5Yh1xkj3HTvUU6sacZSkrmcsJVxVaFOnPlXXvby/rqWW8SaxDp5vJtUjCFdyIEi3P/ujHNct4j8W+NZNKju9E11IHRZC0b2keZtpGQAUOMfrkVmavcaZcWRmFyYHZ1QRQ/c6Hgc8cYJ7Z7Zqve3psdIga+3CMTJGjj+EFCvHbBbJPf8q5qmM53aMUj26OTQw8b1Zt67t7dvLzOXn+MPxIt8xT6wYpEfa5NnBn/wBAxXpnjXxt4l03xvqWm6dqhhggMRigEcRJBjQsAWjJ6t3Prj0ry7xTpEmvtbNYt514sgt2ZQSspOSMH1A/zxXf+NrWFfiFrl9eFBbxSQ4Y5LA/Z0IwBx2PHfNVBuaTSOV04UqsoSd0tvPsVpPiT4p1GSKPT9ba3Vn2PLJBB+75x8wKevaqem/Erxutoralqs/nS3S2sarbQR/V+Y+celZXibSl17RobrRpFm8q43TRrkfM2OQMA59c10mpG3vtT02xQBli2XXI4H91fYHrW0aTvvfa3zMJ1YuVlG1r3Xa39IZdePPGttczoNblkEUwgIFvbkbznuI/px15qXxz8QvF+ieE/C91Z6uIru8e+W5kEEL+YI5VVOqYGAewGfevOfEdxcW/iLUWgvJoHabzchyqnByCPpjr7Vq+Jzv+F3w/MpMhxqRJ6/8ALdeTXPFzc3e1jpiqU+WEd+v3Cx/Fzx+YwX8RMCwyP9Ct/wD43SD4w+PGVvL8QlyOf+PKAYHr9yuQtVYSpGEYuzAoGwd/58YzXYal4K1m20JdWnubW7tIgN8VuoVVPbdgDIya3jFtOXQ75UYXjGMVd6EC/Gjx8CQdcZ2PCgWkGM+/7uu+8AfEHxXrvhbxReX2qefc2X2T7M/2eJfL3uwfgKAcgDrmvBppHFzJnG4se38q9c+D8e/wl4xjDFd32IZC7v437CrpJe0jfujz69NKErHUQ+OPFUjANqJAJ6/Z4+n/AHzWvZ+JvE08Zdr9sZOAYYgSMdvlrHg06S3LPJH+7Kn+EnBxnpx/Ouf1Hxvbxy/YbeNZUwFUoCvl8c9TzXXmOMpYf3YU036HNg8NKqveZ3Nz4o8RxhJFvwqtncpijyo7Hp+Na/hjxDquoaxBb3d2ZY2DEjy0GflJHIHtXMWz2+paJBOZFO4dzxk9vrW94XjuIfEFqk0SrGCwiKHPGw9fShVaVWhzxirteWgSpOE2n0PE2+M3jzbka707/Y4P/iKI/jT46yQ2u5P/AF6Qf/EVwQxGG3KGz0zSxqqIkhXO49PxrgVjJM74/GjxyCP+J7/5KQf/ABFNPxl8fBARrwJPOBZwf/EVxsllO0LXK2sogUr8+07Rn3qnK435AwabSuDPu6iiisyz5y+JkzQfE3VZkkZShhPHT/Up2rI0/wAQeXfEFGMOMQI0g46Dk456k5rQ+KpA+I+r7yFB8nDA/wDTFOCO9cjDLGWAT58cHjpXq0/gRzy3PRNQ8RW7aRJs2y3ULDCNIECn6nrxnjHWud1nWhqenQWsC7TLtZ1Zc7CDz/8ArrA1BkYcTgRSuN4bAIKjHr+P41Gs1so2+YWyNpLHFMHboe5+H1SL4caI0jhUjFzlh2/emqcmgW2uaW7XrLeKiyFJNxABPQnHTHH4Z9ar2KXz/CLQ4LG6jgnY3H71xngTNwMZ5OR61seDtKe10j/SLjz7okiRw5K9c4HtjFaU3anr5/mbwtGPNfU43xel9Lpp0+2SaNw8TM8cm1YkCfNgdSdrdB6VzR8L2l9qml6XeOUvpwUafcW2gt8u5e5Az6cnmvT9T0LybmfUJVSSFFLKqDaw6Zye+do5+tRaLokV2lvrVm0IlmTc7Sxb84ZiMZ5UjjkegrOrBys4s2nO8U0yb4o20Vl8EdZtIWJjgS1jXJzwJ4wP5V83+ForSXU5ReGLyxCzATD5CeOp6jvyO+K+kviqu34Na+M5OLYnj/pvHXyjXC5clXm3MN4nd3GkX8GrpbWNqwWQgoIySApPBB9AOa2NeGdMvYbyAyrGMlS4jOQDggn6f4ZrD0Tx0bLTI7e8QyGDCJt+86sRuyfYAAfU1h634gm1aGCF3Z1iUDc4G44JwCR1GD/Ouz2tKKlUW8jO0naL6HS/BL/kr2hf9vH/AKIkr0WfXPCNjd6raS3N7azWkgadIm3LdFV+ULkEA5b/AMdrzr4Jf8le0L/t4/8ASeSuUvLq8FwzS3KSTKQVlQglye+eprz4yVnFq9ypKXMpRdrHoNteyazrUbXdypkyHkVBgBAOFC4xnPerWtXEM9lf6Nn7RLa7bqNjlgdm4nI/2g+MdsVx/hS+Wwj1WWOLz3ePblgTgL83BHOePyFWb7X7a6urnUWtgr3MXlP9nygzxjAJz0HXPNcfJabfax6UsSlh1B6uV7/oTn
"image/png": "iVBORw0KGgoAAAANSUhEUgAAARIAAACKCAIAAADpF1LuAAEAAElEQVR4Aez9d5gkWVYejIeP9N5VlvfetO+e7p4e1+PNzqz3K2ABiUWAxAf6hIQEwgonnJYFFrfLsrO7M7Pj/bT33VVd3rusyqz0PjN8xO+NqhqEHkBIz/P79Bd3ZrJrqqvyZkTcc88573nPe0nDMIh/Hv98B/75Dvyf3AHq/+SH//ln//kO/PMdMO8As3cbOns+XqmUdYJiOIYkKJ63kJRuc1oIjq+UcpJcdVi9JEkahE5zPEPQNM0QlIafJA2SYzlZ1urlAmEYNMvRHGUQpKrKuqaoukKS+EPdnn8HE/3n310QVJ2kOJahOI4zdEXTdYphGYbEdwxD1wyKJBiKIigK72zYrTRvYQiNIEnd42BbIw6WJhj8y5ivho6/IQiK0AxC1fAnMdBhXg1J0gShm1/9fzP2/PMn35jRCVJXKFLW8B1FVVTGYC0uhdRwmyRZIEmLhSBpC0MamqDJdV228ES7RK1mcud/4fNaLkdYGaIsk7zVaXe4fF6GdBQIrZbZUvMZPBZDMaOAYz3Hu1ha5ZkbhayiViKdA40NDWNWf0aRA3JuYrs6kVh1VSpSLkVQaijYwKlF2Roy/A3+jv5qMl7cytM2naQLsizXFcHCOWx1PRps5CtSn6UyL1S/txbHLKTFiztIazJHEFaCsBBWkVBlnjEoliRoRiGwKFyiYaF5VRN1UvXSrEUlKoSKh1UiRPwMRchOgisRao0gm7tasvmKUjYchkTpGmXok0YGszz0lYuETFKMndIpnqRlRXTY7Bqhaari1PQIz9UYrVyTom4vy1F5ukrarVRd6GlsYihyZiVLUVYbUQ7Y6gWVTlVED2tnGcNno5qb+1a2pv1B31d+qBOzOCMdFppkrRTBqEJJVQx8SKxiTpEUgsDCUEmNDoTDqibL+AaFZa7SFG3ICtYiTZMGLejm3edUTVAJVVcNfIvBalcpQ8NPkMWddcyybza6rrGcRaxXZUWiWZpSJJJh6ipuqISbR5KcVCnZ3H6GxV2FHcgGVj/H2TirpssERVsdNo7nSRJLGctGJ0xDEhS5yhmcJJUMVcVMGBqDK9JIfEqSUg38HkOzsBDYCb5Lwm5YlsYaJFka/0djzXEczTI0B2skfH6et8GkzPfBjaBY0zIYgzBIgiUIUcEdMP9qd/x/aDMfTkHQBkdwlAKzpxkGd9dC1zW1WC2xnI3gGavVyTIsFj7DULqF8Alq35WpxkxOP31SCbVYSZtApDXBvF+GVCurokzQnNUmCnm1UsYULOfcmyjcO9a0HRvsaG+rlr08Qzc3HejoVpLrdypUiXLb6dJRJ1PJJHIuR2xjkRIKLoc+2OSxnnpu6PC9+bkFVSLymViFlVzJ7a3VScnt7wq1NUVblxbmbQ3RzOQb+5eDR26oHo2jCc1B4JV0EY52mcWKaSDIFFETVLIKu9RkB8GzrMfcDhhVUisKQVsJq0ZgBSLW54OOpoGBlgvVOUdR5LEHk7ph1A1zsZpD07HYSELXdFW1GBxPUbQumUuRNjwsS9psmqSxTqfDavHgedqcvCcS4LNGtWixWLtC9u2SnCjI8UKhMxRwMARrVa2cTVOq1Xwm5A34+f1cw8rQqqZrssBjXh3/wWwNSZQMbMmEAa8gq6pYFRge261KqhRNcoRqqPhLzbQr1aANGuueqkuirmq8lcfujPfRsOIVRd+f5EOzUWBYlEExWK2MKqp1VWBYlmMsRl2hsOvopK4bqqTQNMUwFngZzdCwEUlSzW63w13ohs6yDN4fNo6FIouiudp5ryILusrqWNe7w9B1jsHl0LidMAzKNGD4G8KgcBc5g1R1g6RZWJVGatjhYPy618nZrFiHhN1mWgs+Nl5x/zXK3OLM/9+1HA63xHQ9/xcHvKoFlqOSCoUNTZFF+F26phusbnfyHMnoHO3hbdgRLYb8w1OrJO+udVkSYvVmNvvTvQPM4YH/+N7bhoRPj0tQJSkvV3K6hs1XJyxuayCydyWeublLpJLP8IXCVqMjkrx7yzh2apiqN9eMdZubrcT0uVvH/fbcZ/515g9+vl4tkRaCCHf6os5v/befcq5kHvr8T9WxayqchbC5g+7WlkPLt6/ENzcI0roY5lYUeW8WuCAHSbkIjSV4HjstwbhprpOw2jTZR1ARQskTtGRtzGNTFmoO3i+pZVlTKc6ty3kaG4i5rgzJ3Mi1+dh6qRB36Hgf1obNW7foeMC7A46Hwx6JHZNA/KExPPw0ohfDRhJWl4vWGEUSOF73swKtK000k66VsRg5UVor1MbaIha4NdqXK6gMqXe4mBxtDdKsSvIVoeAmWIsdn8IcFMIg7Ea6ociKoWGNMYgJNFGD84GpwT3QGonIwDCw1+FTE7JWg8vBnotASYbBCTJpJwlSJnQdnx5f4RkqVRi9udBg8nuz7HsbHgEEghuX02q3W1WCYSlZpwmnS9ElvSYKYkVXFYahsf+TLGVhHYjNLHYLHJ8iSCSNz4T7xBsKvq1LggLj4602VZGwBTG8heXho8xhOhRcCN4GPgKRHIlgD16bgQGwsCEYJQVfpqr5Il8WpXyx79ETLW3mQqoJsCKCNV2TaR5mhLZnMNjK8B3zrXcDtt1Z/u+8ZHnVZuFF0zPyrJ2sVzlKMqwIXCXFL+lcxKG5LZ0i76X10sr0wvf+sKd3WKpWg8PHfriRjD75VKsh0f7or7x/rrK9RWiiIcs09gfaRutEWdDUvBk7Yfi1WKphbGDkgGF/6NJ7b3vah6rp7YXlq639/fcI+qWFtVo1Qx27p3WwJdjalVsepzRDaWojZDWfj89k1wfSk6MnTr/8zlv6+JWdzuZoNKoUUy0U2dZhc1jZjY6evVmchIKImSKwSkSe4OFtBqwtieqSH76cdChmVAqPSqtKtqrVA0xYkhU8wqKcxn6oE9gVOYTJIlEvC9tloW4zDc+QCa2qUh6ChPPdm4W1cHaWRxRC0CS8E5aBGVfAy1oYjiXlctGG4JzhaVoLOBWdNyo1oyKwAXgLpcpaybDFlRQKKvbKUpYO+kWCrQq1BpshIKtQdAore3cIUo3QKSx5juJ1XaTgIGC32NJ1ikLmoGmMzmiiarpAxvzwOqzHQBBjyJJkxmwEj70c4RlCbd5lQc6hS3CQ2NgJxN4wnL1Z9s0GTpfnrTA45AUiwxlKTTEkvVA3nRzDOdweqV7mOauBBQt7pXkGSQZJshwnI2DTVEzOWyw0vLqKsF5meZ5D6GX6aESDLMXuhlZwgQi2zFwEtwe/jagWH0KHnVAM7XAxNIJwhmRoqz0aTk6vba7PHqfpxETh8EFvLUJU6rvexnyA5u/iXwScuApcDGwQ38TU/zeHhodJ65SLQWZlCVjYBvbA+Zg+dTPQc6hso0oNroEg2Y4UIaWzyWQs4EzG5ycSm0+1tbRkjRu5UjiT/rTHfsnrcNzz+Zde+oaiirZgwJA1qYZ9LqMz9r1rmXc0tDWGLr37xj0Hz5xo6UvR0uo7H0RY3Z/daGPJtWjXyc6DvY1iPDfts5PYq+HkDdZF5hLtFNvidx/oaeYP9Frik0c0byud9Wff99vrPpoLlpYeHSzeTAb3ZnEQJB4M1hE8eZmQg4SlUi8iKqgTkoZlSYULenVJiqeJVDPhjhViApG3WsIhxmOnbGk5qWHZmnaisAQ+Nxw/YSeotJkmaUh4qgSCH3M4WJWzOGRJxlrEioB/4zheNNQg1pJUwpJ18RJiDn/Y2esQcrWd3nZjLc7E80Jzg9dmoeqidrLHt5rghSLyMNXBO11WMlNMGXwD9lxzh94doiIxOmagEDrCLikrq8lYlAbSM+QviMcwI0VKGlJHFnEktgTkJLtLWEO6o2JDJuClaJgnSavY4ClCxU5tRpwUifz7fzYbTGyxOpCrS1K9WkyxPMPZXVYKpk+J9SJsx+pwYGc3UypdYzjkuRrMGKsXuz2ME9GU+eHM7IK2O13wjMAMSJ50UF5Vl1R83N1hYH4SpgfzgFtEyoQPY+B3PTY+ChTBxmscabXyYqYkZuLHHrxHJeSf/5c/8IV/+YVPfPl
"text/plain": [
"<PIL.Image.Image image mode=RGB size=274x138>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Train :: Epoch: 241/800: 100%|██████████| 135/135 [00:11<00:00, 12.20it/s, Epoch Loss: 0.0446]\n",
"Train :: Epoch: 242/800: 100%|██████████| 135/135 [00:10<00:00, 12.52it/s, Epoch Loss: 0.0420]\n",
"Train :: Epoch: 243/800: 100%|██████████| 135/135 [00:11<00:00, 11.44it/s, Epoch Loss: 0.0426]\n",
"Train :: Epoch: 244/800: 100%|██████████| 135/135 [00:12<00:00, 10.89it/s, Epoch Loss: 0.0436]\n",
"Train :: Epoch: 245/800: 100%|██████████| 135/135 [00:11<00:00, 11.95it/s, Epoch Loss: 0.0410]\n",
"Train :: Epoch: 246/800: 100%|██████████| 135/135 [00:10<00:00, 12.33it/s, Epoch Loss: 0.0427]\n",
"Train :: Epoch: 247/800: 100%|██████████| 135/135 [00:11<00:00, 11.75it/s, Epoch Loss: 0.0438]\n",
"Train :: Epoch: 248/800: 100%|██████████| 135/135 [00:11<00:00, 12.05it/s, Epoch Loss: 0.0417]\n",
"Train :: Epoch: 249/800: 100%|██████████| 135/135 [00:11<00:00, 11.40it/s, Epoch Loss: 0.0431]\n",
"Train :: Epoch: 250/800: 100%|██████████| 135/135 [00:11<00:00, 11.84it/s, Epoch Loss: 0.0416]\n",
"Train :: Epoch: 251/800: 100%|██████████| 135/135 [00:11<00:00, 11.54it/s, Epoch Loss: 0.0436]\n",
"Train :: Epoch: 252/800: 100%|██████████| 135/135 [00:11<00:00, 11.82it/s, Epoch Loss: 0.0421]\n",
"Train :: Epoch: 253/800: 100%|██████████| 135/135 [00:11<00:00, 11.76it/s, Epoch Loss: 0.0419]\n",
"Train :: Epoch: 254/800: 100%|██████████| 135/135 [00:11<00:00, 11.69it/s, Epoch Loss: 0.0428]\n",
"Train :: Epoch: 255/800: 100%|██████████| 135/135 [00:11<00:00, 12.09it/s, Epoch Loss: 0.0422]\n",
"Train :: Epoch: 256/800: 100%|██████████| 135/135 [00:10<00:00, 12.31it/s, Epoch Loss: 0.0445]\n",
"Train :: Epoch: 257/800: 100%|██████████| 135/135 [00:12<00:00, 10.96it/s, Epoch Loss: 0.0443]\n",
"Train :: Epoch: 258/800: 100%|██████████| 135/135 [00:11<00:00, 12.10it/s, Epoch Loss: 0.0441]\n",
"Train :: Epoch: 259/800: 100%|██████████| 135/135 [00:11<00:00, 11.98it/s, Epoch Loss: 0.0430]\n",
"Train :: Epoch: 260/800: 100%|██████████| 135/135 [00:11<00:00, 11.45it/s, Epoch Loss: 0.0420]\n",
"Sampling :: 100%|██████████| 999/999 [00:17<00:00, 57.71it/s]\n"
]
},
{
"data": {
"image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQgJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCACKARIDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD2u+1FrW8CFwExzxUcOrGVCwydhwx28Vna+oa8bax3DGRxjoOP61lFFWfZJIRHkgbDjca2Si0ZNu51qXzSrlWxzgZA5q+GyAaw9LWMxxrt255BYjNbEPGQfWpkl0HFsS4kaMLtbGc1B583979BT7zJCY9z/KqVxP8AZ4S2DnsB3q4pWCzlKyJJrq4RCyvkD6VnjXz9oigacrJISACo6+nT2NZ1/raxojkscSAAH9f5iqQv7c3ztLGDJv8Ak+X7h4Bx79fzrSKjszqjhZWu7m3qmr38Oj6lLbylZ4BDsYqpwWfB7Y6Vyw8X62WCm+APceUn/wATWj4nkls/AmtXAiJfMONuSW/eqOg+tePp4iWR9gkKE9DjJP41PNCLaaOKUZPZnpMnjXXFc/6ZhV4P7pOf0q0/ju+WNVE7F2X7wjXAP5VwtkLi5gaSOUAHuO9YdvrLySuSqhEfy1LyYOR6CnJR0dtxK/c9l0DxNqt/4hs7SecPbyB9w2KN2EJHQeoFa9vqd+WUy3GVI6FFHP4CuI8BuJvEWny+YHP7wdeR8jV1NvOokdcoyjG3b1zjvSlFc9kgUrLVmy19dYY+eFAIG4bT/SoLvUrq3CgXLFsZwFXn9KdYESR7hCnPL7h1+lF2jxL5QjU7umT2+tRFa2Zr0MifXdVCHyrltw5P7tMD9Kd4g1zU7HVrmK3uykS7dq+WhxlR3I9TSX+0BSq7W5VwTn6VynjTXJB8QpdKgjdkWINPtXJOUUjHtirdk1puYybs0i4fGOuMiyJfHawyMwp/8TS/8Jfr+zIvj9fJT/4ms6ySJ5fsUKAFE8wqxydvbH4n9KvwzaPqfhiCWBvsl8kzxgN1lKuQV98gZrVVKST93bR/qRyz/mIn8ZeIV/5iH/kGP/4muqh1zVT4SsNQ3PNPIzrKyxAn75A4A9B2Fec2k/20S5T5om2yHHQ+n1r0vSdOivvBlnYy5w4fkEqQfMJyCCCDWM6lOrQVSmrF01JTtJlTTde1KWz2z3rvcAyEfuFQsoPHGODg+naueuvGGv28zx/2rGwQ7d4hQbj+K9e1aF1bpoEuoajNI811awsLeE/KgUj7xPUnjFeZTSx3G0LPLvIUPvbKknPAHbnNfOueKjTcqrtr07dDqm0rcp26ePNcRW8y+3e4ij+U/wDfNdl4S8Qz6v4deS4uBJfQHErbQDyx28AYHH8q8attNmgvHhnk2wlQySc7S390e9d38NVliXxFFLGVCG325HUZetsJOr7VRk7p/wDDmd9Du0vboDLXAYn+EKOP0pz3l0x/dSn6ELn+VRO0IiGAM45BqAho0JPfgV7vIieZkN3qeqRPhbnb7bF/wqDR9Z1W4121t7i63wvu3p5ajopI5Az1AonRslnAz60zSI8eIrUkd3/9ANVJLlZKvzHQia7kSGQymIhcyR7Qcn69qjOpHZA4uSPOGVDIBkfTGRVQaqJfNaON8RMQ+8bRn0GetU31ZJWglmjTzYcldp7nrXzdfMKVGMVz66b311V3p/w1zuhScm7ovaZrUt1q2p6eWZ/sZjPmlQM7wTt6dsfkRWi16wkwzhRnAzjk1zX9oz3sztb7RyAQnUn3/Co4dzXGLh3iZHAHGSxrnq5t70VRg2u7dkWqG/M7Hc0UUV9CcpxOsXL3HiW6s/LaMKqrHMGGGYoDjHrWdqhltLiCJkZpZMIhJGCff2FdBrnlR33nLFumjdZM574Ax+X8q55NQh1R4pPKXdCWYBjuKnHAB9a1i9Uc8t2jp9PtpEslKSbvmHBXAT2Fa8JDfMeM9aoWe5LZYSSjqqZB+8rYz/WrcUbLzuOAOh78f40XuXsPvD/qwDyc4rl9Wum+aIzk4w3HGexH0rprzISMjtmuL8Q6VfeVJc2yiZcAbQfmH0GPxok2oXR2YTk9p7zsQ6grtcSiGUArsHy45Gao2V35mqKobdh9rEcknA/+vWUzXKWL3kxS3mhjLbBl1OOQB3J4qfQLzTNU1xJrKQfvvnERONp9Pfr+lYRq809H1PWvFQlHeyOz1Te/hjVFWTyiEibd6Hdk15dqnh+DVEEbAiQYxMDj/Ir13Vo9vh7UAihmKxggruz83pXnEkE6YUQSq5HVULKfXjtW1SkqkvevbTZ21PnW+xRstIuNP04Al47IMsS3BTdnqfug5NT2XhjTtGmmjMrTTb2dmKgcHHABq1M09vaxStbiW38xVeNQSwPODj8vyqyryXMvmyRNvZcDPX1/rWHtcRKvGMUlFXvf9BqMVB92bXhU2jeILYRKNyhsHGMfKa07exlMsMk5DfId2wY79Kh8PWNwus20z4EaBiMIR1U1pxTLHGRGFwmC2TV1pvmTiy6cU/iRcgcqAnlbcD5RjIx6U1ZCh2SwqqYO1uv6VBFO74kY7ckjA796ZJcSFgkRYMzbRg8VlCTctTaSSWhXvrVYYskHGcjjP61j6/p0R8U6lcqkYlkEe5iOSAiiuiAMsbiUA88qWyRWJ4jjeXXLxI5VjchcMy7h9wdq76cm3Y4pxSVzmINb06HVja26xSXXk7mkUZO3I4DfXtVPTxb/ANtCbUriD7c6j9wpG2NmHIA7nkDNY998OtQnu7m9GqwROqZiaBWTcR0BXtn6+9RQeErlPsT3U7PeSbp5pu6yqBtx9MClFSu3y/13Ie251kVskyMy3aQ+YAwKxZWRs5ycc8j19q9C8OEnw7ZBgCwWQ5A4OHNeU3Rn0/R2MTSb0UbCDuc56lscCvQPC+rlPB+kSzqI2mExbjoBKeP1FPF+77i8mOjqyx4hsjqWlXiBuVI3DOCyE9CfTrXksnhLUZNcFulxFFbFxmY8+WeWGR75xXql2YtWkSykU+VI2G2sRu+uKo6/p76dppudPt3ednxIFTJPPXivMxE3Cm3a6R1xTb5WeePp2qreQG7t8x27YeXPy4zjcG7V6J4ZCQRa0Y5CxAt8g87Tubj6VieIYVn8OJHcySJP5QdYW4zzghvf/CqWia02keEvEuosu8W/2M7fUGQjH61yYeryVIp7PX0Jlq+VHfR3gKbhtZs/MSKsq8UmWyPm688j6VwOl/EHw5dTEfb0tw8e8rKCCrY5GcY//VW/YeKfDki/Jq9tNzgDeB0r3ZVIERhNnQPbo6M2cj0zVWwiCa9aMD3f8tpqNdd0mZtkF3EzEZCK2SaZp93DN4ntI4pVbBf5dwz9xu1ZOon1NHTa1sZninxD/ZltLLPGyRqeVHf0rm9H8RwahC948TQxh9
"image/png": "iVBORw0KGgoAAAANSUhEUgAAARIAAACKCAIAAADpF1LuAAEAAElEQVR4Aez9d5Sm6XneB745fTlVrq7qHKYnD2YGmMEAgwyCABNIihSDJMuWTC2P7LW8u14nWdIf0h6vV8miljYpWaQYRZEEQQBEHgATMHl6pns6d1eu+nJ6c9rf81U1Je1Z+xwdm/hn8Z45Pd3V1fV+7/M+zx2u+7qvW87zXPr+9f0V+P4K/PusgPLv883f/97vr8D3V0CsgHa4DKNImkzTg3an1ShYipqqShLFxWIhzRNZ1hLZVaSSqUtZnAZhalpGlkW6qkRBmsq5FOWqqlSrpiKLH4bzSiVJn/2qzn46fzy8zbWuZM2+xHcquRTzPZqkJ1IqS3EuZakkKxLnOMslP5PSVNIUSc3zxJPzTIr4nSJp4pcsjJNc4e+0VEqNUFYcRcuVrc0bn3nqNDf8G3/7fyxXm1a1NYmTNFVU8YnyKJItQ9LVXFYyRQls2+ofZN7EK5asLEntijHXMOZqkhT1c0WV5YqkG5NJ2O/Eca4Xyrqqppms7m33ctX7b//Dn+Eu/+IL361UKnksh+5Oa+mkLfslSys5c6mSR4EfRVmUp46hh77fcz1FSbRMLsiq6ZhBEnnTsD+KC+WKachpEgwDJU4Vvmc6Hua5mkb9NPX+ys/9JHf5b3/185ZqZjmrlua5FuYJny4Lcz9hkeQszmWxZnKSSTlPpuY8q2GwdEomKUka5xHvLspkTZYymXeZc6NMZg0VYow8VqJf+7/9MHe5/vaVgRv4oZql/e+++Pt3dvt//qd+uqqXPDkKPZUt4PmDr3z7S+vra61W8c7dd0JPqtjmNH8rK434uWnEj7O0vHhi7YccZWGn/a/yJLv1llyoVv7W3/y7SZ6WnXnucufOnqrmkzSfTqTIjxxNVYysXilmijocjWsVe8JzeV7DUYMwl2U5U6QgiCNFn4YRuzEOUzfOWYE45gEzz/fjLI8JlpIwiadZ5P+dX/hp7tJv/3pmPpOwLyT5lZe/qcvemVPnS6W6JZtx5HvRgZxuKslEMwzDOS3Lpw82X7y5+bUnHrmv0fqAlzakTFX1MJHYoVquKroSRONrZvl+t99XTEvTzWppibscHZtef5yxfZPQd1W1qCmaNhokSTKWdL1SMuJpOpru1woFy1ZN05gErqFyUowo413mmib7SVrMJUsWO5Szc/jf0Y+WpMPDw83sAi9TinnHmRSrEi87iXmfkqFINqdPkUzOTCaxXpkqhao4P7xzoyRxwuQgN9iJ3CNTbH5VdL4xiBW5JFuSkuaSHnM8xRXlZt+NbNVTDNOyjZTPmPH8cpqFOj+Zo5ZVkkEachy1PMsTzdDkLBkMIjkzatWWput+EGfcWDcjmU0ujaaZrard8TDlvIZHd9E1o2DaXhrlhaoXpImhFbWqy+fIU02WiyUzTFmrLDOLKzU9Doa5Pym1immQm1KhUgytGktb9r1g6kdSrtiFoqEphiK7EzeUiikWZXZpmq3wrjQ94QfnscRnzORYVTJxQ9Y55+E4QRwCToaiyaoiaxrvXAlYMVlLWaSUc5aykqqkKBrfhp1TsEMcM77x8C6j4f7Q5YeUolgyCoU0vTmZ7jcXM1vyTL2aZmatUT99pvXaG19bW1vMzE1LLsVJSzfkRIo4nPxgXeZthaPJ5UAbFORTkjY2pV7oTjnwMoZudqVaIcgyYRpSxbYly9SUXMmS3HLkVrng2Hqjoo1dozudYO00TZdSRTf1PJVUYepU7GaWpYaU8YBxyqKxfxLMBi9omseYtcO7mNOvJfo5s3g29zzHjOfnGsVSXZWtkec6ltIsrarqWpylPHJ7z6s3o9r8Q4/Nn3z+K3/yoY8l5pwhdjQ313T+r+R8Qr0YfyvzF2S1rGoaH+DwLkd7m0MwdKd+nGqexGNwINhfo2nq2HlkYOv0ksNryLMw0iyFreJxzo2Ep9CwbbwD3EUimYb4mcnM4fBzOUIcGH7lKzgfLn6NFSlPxKmQeKGyZGItZ36GL/CKVWEFZTmV+EkJ3xZLapynERbclxXTU/VSIidKknfDrBDlOocCIy5hHKYjPw6D2U24Zcq+wChZqqKkcpTIgZfoumzIsm6ZiaeMRz7vGIuLwQ2irGCE/iDVC5pUs/0wj1gIL4ziRDWywM00pxT6cRCOQxfnGilH68Y5Twu2oxmq7mN8Us3U+EB6io3pxHrPDww31qy4yjN4sl80lKpTYQcEeaJqmHtV8pLedCjHmc+HKjgyn5lnV7CevNNEFe5FXLxpXdH5oLZi+okcJlGWZfijIkeap458VVY1VWWZWE2OBA47DNlj4vAQCXBxNLI8TdKcpWDpExYcK4MzYoHvpbWFot7u7UVB182Chx55rO/dMi25OScl/iBTOl1vLhjqzVbx9P2n0jBQZDXlLWi7surzYVL8nxFxnzgLd9pfN83isv2Dg9FAbuyEQ/vurTerlaVSoc6zyKodhHGc6I2yoWuZoXNQdXycP4xMQzcyOXMxInnF0DPVGMW8QU6GbJiKk+E8I0x5mKijCY8sGabqT9l0SlHOPDZSLh58tmCS1/muZVyUCutalrz/iQ/yTwIv5liXqyWZvSKpwu6wjfXl1lxo2aauZ5WS0+mU//Hf/2f/yX/zn2eaOIBqlOVaLuexN33eTMwkFn6GfSU26+w6OjaWoegqHz5OMn864phzRpRA+MhYU6oEEkEUqlrmqFp/4BErGbpJRGBXjdgfZjnvVY3i1NNUEVbNjkp0z8nwxyNrI0lBKKmmxFsmjIt0/INkiFMi3BO+jnBq5hlSnbBQlSxuY+GLktSb5ge7eRIU60uqaqlRlFwfJ4uafW7ZTxMiIDyf2+9E7uTwkYhaLNNUNfGpJm6uGgrb2zJMoonYZT0Sdm/seZahsZkw0tNpqPDJM2c4wAIkY28ynfoEQBhrx2joNnsDS6/qfCDODXZ7drX0rncQqLX1glN2o0FFK3BKTS13DC/I40kvSOJqvZ5mqeanksUTypGpGmznIE5GQ3y7FodapIQJu5ytkYW7/aGR8jmI9VTP6x/eRefQcBhSJeZK3ZTTO/WVIttmPpM5MVqOgWORMIS4WWyhZij4VTlQOSYE2+IBOaWY7piTyMrgnvA94hXhBFIMmrg0XR2Od4a9O6VT9ijSzx9f29l+6/xqL917sXn8eFf/gd2ht3Ls+Pn77v/8F/9Jbrq20ZTVghuxYyuyOsGZJ3KmEgUaSqZNd/tfMIxWrI7UUtTu3aiUWod3ybLE0qSkYNi2YZmc3VjVJN8XnmcUxINuUnVUx8Ki6wS4hpxZjhamckKIgfeJJMtI3UDTVN0g7NYyi8hBUnVVxkGkmXov1JDGvak172ZxxD2SNMElG5qdhUNpcl0unZOLjZQ9nQaSmuDBCXd4Ed3OUDe2b9/cTCM1kQsiDFLYJVnqdaLJWKt9KlWKKscI93PPpx0dm6mfRWGKxyVMDsNYN5QozPwgmbrewA3nqsVMMpXcm8S8jyTOiorK+VAC1ye8YjeZhsaBYf/zKMQX4qjwXmYx2+GSHf4qvk4oOMtbCMxwOLxLVoFTJJ6PP+Lu+SPWkxPPVxLJsPUkctKFpbi75W/tlypFvTeeDoLoblQyqs5aTbUk9iVJi88nmF1ztUZmlyTZ4qdKaZzEMjEwbg2Dzpa1bdniyLu4x8i0dE1L3Eh2R9jxfpq00swdTiJWwC5lqSvJKQG05FQcxXDyMDNSUrOjY2NxnIKgovmJQlSlcbDGY7fihNWiY6lOEGZn9UCRwqkSRgH/RLc1exxPDb0yHrjjUaQRaJolKTbtYsjmGY5HGDID02U6UShHES5MXIZqEqRgV1I13PG/3ViT9r68b5ceaa2fzNVAJnQzcEC5SG4yrI3CRmDZiJ/TVBVvc5b68HM4eDgbFb/D9hYJJL/J9cPwQJIaCwv1cnP/oNO7dSfKR5PO7s/9yHHF/0pv351f75SNP5dZgRvtvPPmS/uD7dZ8kpkD3+XQqarWUmQ9CPct1eL+Ok4zHAdRN3A9YfcM5Y1rl9J4ZXX9Ip8hSVkQ1bYsQvqU4E1RpmO5xGnIc9s2iW5
"text/plain": [
"<PIL.Image.Image image mode=RGB size=274x138>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Train :: Epoch: 261/800: 100%|██████████| 135/135 [00:11<00:00, 12.23it/s, Epoch Loss: 0.0424]\n",
"Train :: Epoch: 262/800: 100%|██████████| 135/135 [00:11<00:00, 11.50it/s, Epoch Loss: 0.0443]\n",
"Train :: Epoch: 263/800: 100%|██████████| 135/135 [00:12<00:00, 11.05it/s, Epoch Loss: 0.0469]\n",
"Train :: Epoch: 264/800: 100%|██████████| 135/135 [00:11<00:00, 11.81it/s, Epoch Loss: 0.0425]\n",
"Train :: Epoch: 265/800: 100%|██████████| 135/135 [00:11<00:00, 11.60it/s, Epoch Loss: 0.0460]\n",
"Train :: Epoch: 266/800: 100%|██████████| 135/135 [00:11<00:00, 11.28it/s, Epoch Loss: 0.0427]\n",
"Train :: Epoch: 267/800: 100%|██████████| 135/135 [00:11<00:00, 12.04it/s, Epoch Loss: 0.0439]\n",
"Train :: Epoch: 268/800: 100%|██████████| 135/135 [00:12<00:00, 10.65it/s, Epoch Loss: 0.0444]\n",
"Train :: Epoch: 269/800: 100%|██████████| 135/135 [00:11<00:00, 11.36it/s, Epoch Loss: 0.0430]\n",
"Train :: Epoch: 270/800: 100%|██████████| 135/135 [00:11<00:00, 11.84it/s, Epoch Loss: 0.0435]\n",
"Train :: Epoch: 271/800: 100%|██████████| 135/135 [00:11<00:00, 11.67it/s, Epoch Loss: 0.0442]\n",
"Train :: Epoch: 272/800: 100%|██████████| 135/135 [00:11<00:00, 11.71it/s, Epoch Loss: 0.0444]\n",
"Train :: Epoch: 273/800: 100%|██████████| 135/135 [00:11<00:00, 12.26it/s, Epoch Loss: 0.0430]\n",
"Train :: Epoch: 274/800: 100%|██████████| 135/135 [00:11<00:00, 11.76it/s, Epoch Loss: 0.0418]\n",
"Train :: Epoch: 275/800: 100%|██████████| 135/135 [00:11<00:00, 11.77it/s, Epoch Loss: 0.0439]\n",
"Train :: Epoch: 276/800: 100%|██████████| 135/135 [00:11<00:00, 12.23it/s, Epoch Loss: 0.0415]\n",
"Train :: Epoch: 277/800: 100%|██████████| 135/135 [00:11<00:00, 11.28it/s, Epoch Loss: 0.0447]\n",
"Train :: Epoch: 278/800: 100%|██████████| 135/135 [00:11<00:00, 11.80it/s, Epoch Loss: 0.0428]\n",
"Train :: Epoch: 279/800: 100%|██████████| 135/135 [00:11<00:00, 12.00it/s, Epoch Loss: 0.0416]\n",
"Train :: Epoch: 280/800: 100%|██████████| 135/135 [00:12<00:00, 10.95it/s, Epoch Loss: 0.0427]\n",
"Sampling :: 100%|██████████| 999/999 [00:17<00:00, 57.20it/s]\n"
2024-04-09 10:14:05 +02:00
]
},
{
2024-04-16 14:33:51 +02:00
"data": {
"image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQgJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCACKARIDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDc8S+KfGB+IevaNpGsJaW9lbpNCj28bD/VoSMlSeSxror3U9fSB3i1aaJ44xhWhiIZypPJ2dBx0x0rhvEuo2mnfGvV3u7hoEMcQWQDJDGGNcY7jvz6V0KatHC6G7vI2UyO0bR4KOvQD68dBXxGcYvGU8Ty0pNR8uv9fgdlP2fL7xzWueLPiFoErSXHiOKW2dv3DLawAsvuCmQfY1z0vxb8cRtga5kev2SH/wCIroE1e41zXv7OGn2t3Zsx3zyqC0fzHMig9T/L0of4RXHiK61K+sL22trMFvsyKu4O+M7evygHjJ59q9PBY6rUapVvitfT+tGTyxjqtiv4s+J3jDS/AXg/UrXVfKvNR+2/apPs8LeZ5cqqnBUgYB7Ae9ccPjV8QFB/4npcccmygGP/ABypviBC9v8ADXwFDKhWSNtSR1PUETqCK5WyFxrkywWkES3fl4XL43BVPcnr/XFe9KfLFSe3Uwdrm+fjZ8Q+3iD/AMkrf/4ir2m/GDx9e39vbzeImiSQ7d62VuSSenVAOteaMhV9jBlIOGDDBFSXRU3TCNsouEU+uABWu4rH00vifxVbeC/E1zNrCzanZJaiBvs8YMTO3I2qpByCOoIrhj8WPGYspGOrOLm2PlXEYtYT83I3D5Pb+VN8Da/PeeAfGN1dorzW0enRtIDzKBK4BPvjAz7CuX1+zlYLqVrGqiZjMcchw2RgHuBwD7/hXLOTjJJs2hFKD6mv/wALi8crM6trbFc/IwtIMc9M/J0qI/GTx2pP/E/yCDj/AESDKn/v3XPv4e1BtJbUxtaAdiRn5RgkVQ03R73WryWKxi82RFLtzgKAe/t70RrRacubRbilRldK256z8NPiV4u8Q/EDS9O1HWPtNhOZhJEbaFCcROw5VQeoHT0r6BBwoz1r5b+FFjc6d8YNHh1CApOwuChyOMROD04I4NfS+ozeRZysfmB/8d/Kpr4mNGk6r2SZCpty5epBJrSLdMgXMa4yR3rRSeKQKVcfMMivKNV8VxabcR25Jkldj8v3cDHXnt71vWOqi7t7WeKbekqAoVPUfhXx1HO8bRvOsuaMnp/wPlsevUy5cqcTuQzjczHgkYHpXjPj3x14o0fxtf2Gn6obezi8vYn2eJ8ZjVjyyknkmvX7OR5rJGlbLnk9iPT8a8Z8XxSn4pajNHJtaPyiqjnc3krwe2K+sVTmoRqJuzs/PuePOLTa6oZpnjrxZqcyRJrxUFTlxZxH5sf7n61uW3jPW73TUgXUbiC9h2PLI8EXzoc5wNuOcdhXMPZLObeGdWEhflVO3B59OOh6Gqs+rjRrzJglkhdQhEgKlcH1x/TuadPEKErN39fw/wCHOzBU6dSrFTWhrar458X6fdpGNZJjYkhhbRfd7E/J1xVzxH8Q9f03wt4Zvba9b7Rfpd+a/kRncUkVVyCuBgE9AM1zviJy9tb30zYgRSQYMYLE8fXpUXi66hl8A+CrxMKDJehYyvBUzDJ9uQPzp1OaDkr3K9nCGJsl7t+pes/if4quZ7S1/tNTNI4Vz5EXOT/u11PjHxnrujFfseokLPK4jxDGxjUY6/L71534J0aF762utXuDaJLuktY+8/oRnoOMZ9xXpurabaaxod6llL9tmXEqwsoV42A5G71P+FeJXq11UvGT5Vvr18vJfcdnJRjJe7+Hc4zRfil4nvry5hn1QZjGIwYIl3tjp93rxXV+A/Geva7pfiCa+vvNktPs/kkRIuzcz7uijPAHX0rwezup9Mvj5yMlyrbmVhgq+Rxj2PFey/De18zRvEs0s4jW5NpKTEcFfnckZPvkfnXe6sqUnKTbVm9+yFXowdPmSV3/AJnXDxHqpVv9KwwwRmJTkY9h9fyqxHrmqLGjS3Qy4OB5a/4Vyt1rsCTukMcQ2fLyOnP6d6w9V1qfz4nEkmwHI5Hr0rypZpiqk0qWi8+ptTy2Nv3h6UNb1EoGF0D2+4v+FWdK1W/uNVhhmn3RtuyNij+En0rmNCu/7QtS7IwI6kjFdDo8e3WID6bv/QTX0GDruvTUmmn1POxFBUpOJzN/4u8QWGmSzxXyXciY2qsaDfkgcYHbNWT4p8RGGNj5iCQDDbI+D7ccj3qvawWGn+VBptpDDGD90ruY5HJGe+Mc1LcG7kitl8wDa7YiPYY4Ga8hY3tJv5mcsPJaNWKkvjDX454oxqWI5Cd0rxR4jOCdpwvJxWDD8TNfjsmkuNZjeSIFpAIY14zkcbe4rWvLW11G1kE11CHwQHQBnUgHvkciuRs/BWhx2wkGsX14hyHjCeUu7pgnrn88YrSONik3Kb09QjhpXStufR1FFFfSHEfNHxbgtZviLqgR5hckxKwyNufIQrj/AD3rlY7y6t0mtWd8wZAIOcAdcehGK3Pi3PM/xa1O3WRAMwoPl5AaCPOcdaypvKntotThlZGuGO9OCYiMK2Prn6V4mIXLK0tbsPPqd/4Ze3a3sbNgm65TDkghjyR1HGQOnPNepeCvJk8MwKJPOEgMwZjnejkkHn8iPUGvE9KlEWir9olKrFIjYY53RruYnj+IZxx6133wV1y51fTby2kRWt7E7YJQvOJGZ9ufavPy2j+/nI1lJ2SZi/HLQLa4tvDFrEBbRxfadsaDjkxE/jnv715dZ+FoxLChklEQJDMoyVOM+nsK9k+N8vlt4fHqbj/2lXm8F8IZFkZmBb06H14rvxdarCTjF6f8A2pyjGFnFO5iXOgJJcFZHlE7ENHvXBcbRyc9uOn1rCm0qE3CQRq5nILMxPyk/wCc12OpxvqU6SxzJGsfCtyCOTgZ9TmsmCNEvJw0AVh8u9hzkcHB9KKNefJdvU9zFRw0MDH2cVzO3dvz/TXQ6bwLpNzD4A8cQxr5sko08qqvtPErk8niumg08WHh3S9MAVZoHbzN3J2MTyDz6qev8qo+Ep5F8DeMHtzJ5iCyP7sZJHmNnH4ZpUuZPNtbE3QSK7iCxtJJ+9jOwjEik5I3DOa4MylVqqF3pZv8/wBDjwCgrt73KmpaLJY+H7x4FHnQxSzMmflDEjeE9sbiBWb4JtbL7JdiRphJdL84xw5XaWUdznPTngVtS6jexxzzme2vrGW2byYsjzWDcDjHOevHrXBW91LFrDi2naKOCFmg2/N1JwR68H9KrBxqVsPUpzevf+uzNqns4VYzS/r/AIJ6b4TNpL8WtFeQpHcJbuY4l5+ZopQxz/uoMjtn616rqkcrsjmN1c5yBJhTjpzivHfhSpu/GOmyXM
"image/png": "iVBORw0KGgoAAAANSUhEUgAAARIAAACKCAIAAADpF1LuAAEAAElEQVR4Aez9Z5Rl2XUeCJ7r3fPehXeZkT6zqjKzvAMKKHgQhgb0IkWKEsURKfWoNermiMMmu2WGLWkoOlAiSBEgARAgbAHlfaX3Jrx98eJ5d72d70ZEcVavNWv16v88LCaiKiPivHvuOWfv/e1vf5sKgoD8/fj7Ffj7Ffi/sgL0/5Vv/vvv/fsV+PsVCFeA3V+GD84rmmFJMs0JVHsQJGX6g4+l0+XUyZnurevGSpV5ea39xAfiat94/XW6X6dUingulebckhTIPpHjpNGjGddnacbzicj5tuPRhPYZIgRk6NBvrOuYKBnhXS+gPdZ2AzewOEJThBJlIVOmLNX3DMb2GcP1dW9IfI71iOW7DE0THwYx8AkVT0rJBNdum+rAFjmalnhL87KHy9Oz5X67m4znXvvblzHL7zw5/rXrjahAnX10Ao93pdozt5tuujB5LH/h0v10In7vTh0/feRwYXlDDVxnPCnosaBVdzTVEyOMZQdShBVkqdnpOq4tu1RPdcv5dEc1KC6QeWF3uxMumv41IjxKmEL49f+f0fNIgiIbdO93SeK3CUntfYtHCO4phxB8ASO/v/g88e+Q/m8T5gSJ/Q9737ZMCEfIGL5+5oOU7xNfJ6ZFeIGiAy6rREg6QRRK4GPDdt8j0cAdMP2m1SdHnv/84VPPZyrzXq/3lT/7NXt5baZ0Ypi0exznuF1TXzcDQ1JdKW77fEryxqPxyT/6T1/FLP/mOCWVYyNRvlsbruhWKp/n5yt2dofpduJ3KZ2yK+PJR//Jf3jrW1+JGDdPpaqmTTaXyMJtxjeppOtKMukHhHUJFyVsOc4pTi+v9O9024tuNEYWWuS/3A49mu9+5XcjtEjTTOCzAecwtENRCcbRaIZibdoPKNOxKNblJIVjBEHKOLTPuVgui6Kw13jKD9eGwvcR34OPFOCrwMGXvue5AcVSZz/6M/iGf/pvH6ZYdqbMxGSKb8V4kRUtfJ/tJBUieb6uBqYyUikNuq2FHbqDnRY4a7UmzfBjmchIKr26slbIKx7R719a29wQHvlsutFQ052ELosUsXMF7p/82muY5eDY1AdGVOREmUmNUuZdv92hfuJX1ETFqt72U9va0fPRR/Xk2BT5nT+xjk2zr2iyYYkkrjDCkFAWdrVFeXyMCnRsisDWfJelXJ/CTjcDgv8N8Ob3huX6vk0ozmElAVuB4WmcsYFlMz3ZNG1RcohDuaaPBaJclzAMR9H42sO5ITRDmH5X192YwNH4rT5NylNpwgiRVMbsGyNjXH9o7c9S7Q8Zn91sDE8PvfIkd4j3lwcMPzrR3Wmm43JAWekYZ9jO+lKtkBLnsgktcC5u1hLJok+ban8Q4DVabCSWSsddc6Dnyymm1q33BvGIYDmWox88C+FyhMHqYUNQ+/PuHQYcCQydaP+RodeJf4j4JRKsEmr/2Oz/LUOIsPdT+z84IKRN+BPEmyLEDd+IukEic/u/k5Iko+/LrB1J0lqXCDFKZfRENBkXxebQVPyhI0RjqTkrkqCPSZUTz6TGn4w4HscWz4z+hFb//q+M/ezb9IU/3vpyupKNZ2PVbW9E1lmLH7JeJjPqU9L+LM0hOZZQ9H7Qb/hVgxgFMcN2xI2+17TaHeKxhJLl0nS+cupU8+27TVuwOrbr4Abx9BoZ0qQVkHe2ySN5ks9S6qEKk06vb9SYVsuxSVcjAnb+3qAoy6M5EuDmdATWIpxBUynLtu2BGjA1l0gyWxIiAk33SNANqNOMkGprS3E6cKkUS8INQdNU+MsCxnfD0MKn3MDDtULR2DLBwTRJhmvrKqXi52IDS4sLVLehU45djB8dDnSeyQsiPTS7BjPMlfmMUxCjejYlGR6XZjyrd1VMil1TajT6V64NUslYo6qmEqIg+IxM+92kOcB9F46DY4PbV7UC0Q2eOiu489R/+0vrwhX32YSeLBJSFg+fpfudYW3NTdHB8z8h2Jz13e8OS6VgLM+7ajCoWwlFZAPL5QPfoTyWtq3AxlPRAa6Bvh0EsBh7w7UCBnbDo03bHo2RTIHebvv1Nhn2dCpwhzZxHVwnNMPSHsXgNDqBD6tC4XLCj+OweCQwdMf0OcImY9LTzx4pjFVWt3pj6YwWbFe3U/uzDHrhlBLNXr+9S8sVPp4eO5S6u7vR3+lGEnEimR5WmWH7lpN0gkHgNDSOlpTuoCvbdCqV3Oz2zaHVoXa4qIQPbhtqFMtGmHiUbrcdvPP9WYjRJRwOgEqITAi+wDAJGRDCE7JBOu8S/4eEqZDoI6TzGkn+GaHLe9+wf2D2D1v46gnpEucC4WTCwXDBJsc8kmJIcn8WiggmrzM8I0myRAmxZIr3B4UUNRzQGVE1VO7EsfHxmU9tbqxvbL1I179HNe22OHMq+9DnlEeYHFPSU5+d/bn+9vbbzDutFq/wSaejeQFfGKnolju0dvdnGWrE6LnmgtkfeDNJErQb0krgsVavF1o9PBbMiq++PEn+QJg4Ikfy9ebVrS1XYCipQIYtYmjBmkpkgTxj0K5Dt+tL/SXXaRLJoSw+YMJfEY7AZyjO9jyeZYZD/S05/mOGyUfkJGEjaqshKbdpZp1P/2Mu8CT7y5R4aeB9Nio2yt57XfFnSZB13D7xGSdwsdYUQ7zQRvE07bh0aHywr/ZnOTMxRXk0L9qi03Dz7O6u881Xq8OW/fgjmcocd/pQ5urS/YULg/J4KhYv2LqhNkgsZhby4s69e/U1oxNw41PqQ+ePm5tcx6wXYjIxhc1hX+n0PFvWevsv+v1jgxvTdj2eZs4+5lUKamBTZTmwB9xm20+XTMfzB4HPUdRzT0nnz5fHxqtnpqKNId0YeH1KMQeBFrgJgRUZXwtgOYkLC0MCfD/HM6brOQdmAN5JaHeC8MR6bZVtrvkcNmTogLGByzHhlqQYhuztTawMviRw9nwSUBRhPVoUeRPOSnjWGRilW28s3MkuKznm7BNnNpZimXJuf+Eeff6pwbdfGdD0oGtdu12rjGQOHz1+b+VCYHMb692JmUSOc9pDa6CSdeKuGU3GFxPj0cFgqBL3wWwEp3VXw3METk+1A2/YcOG6KjJvOJYsc0Pt4GEC5TEqfFU4J5E9vwu7AwfGIN514m4Rb53UWJLtEPItwkfJ6i+SsX9AuPN735nesyr79xZ+Sg/vc/kpOHKB7VO8SwfGnuEKn2Y4MHheoBlmqFKRwAw0niRHKVdUmCGnUkEpIut0hCRPMZtXB8vNt+7QZUeq3Ygez0ZWOlRFIbWWuuJ+PP8J4pqXRxfW7wx6ohTzjK4f6zar46XK/opdHRB5oZly+E7Mz0hc1nAHm56dCOD4UQwlCwGXTNH9GwXPMEqj2VLxpS9dWr1HjY7SjO1pDlnSCC2TmkWcwMuZ/uHJiReuLJtiwNiM7wQGXu/eYBjZ8y28O5qmh+0NKUZzMrYMlZTcRP7ZGFNnzXdNZ3FG+WpHqwpej2cMwsg98QuS81cuOceIxxyXpyzDp30/tDIs1j8MA/ASPJswB8emkszIHPPau1cPjyqjoyxeuuV0GcmzeH44EK7cWFptaOWxdLepUrTruixt9c6cqfXd9Us2u17zDk0oDxx9OMJSydRud7PrG0Ix4fa2mfHxfKNNaVZ3/1kO7ADNEniBFs3GUk7DZKRZavJBTkoRzwq6GsUqnFr1YvGA8P5XvrokSfY//2f8556SZxM2TalKhnICqq96psv4DOPTFJwX+GIIbgLfTUdJLH1g0+Cy4yvYaRwVuHKmS8zQVaUjUZrFWhCaE0Obi//ChqcGtwpcWpYjFBwnmGIHcRFHKzFZVCiFp9vbxmfPn/vHP/4JTolvrKvp5MHr+fMfXvFyyXM/+bBF6NqGWl1RKacXBgaU54vOsKNitWk2yGWoWMqVYGEJXF4v8Cy4iy9v1FWbgr/smB6uSYXlZc6FrR8aA56XI+kkYQ5cMrgcJPQUcAZwkLCacMDwiRPE+n+T9h8QpxVeDyLcSRs3OfFfJtXfIOQ7hFQJeYsENwnBTb+GayF8DeKDhBwiQdJjcAItyjF
"text/plain": [
"<PIL.Image.Image image mode=RGB size=274x138>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Train :: Epoch: 281/800: 100%|██████████| 135/135 [00:11<00:00, 11.74it/s, Epoch Loss: 0.0420]\n",
"Train :: Epoch: 282/800: 100%|██████████| 135/135 [00:11<00:00, 11.87it/s, Epoch Loss: 0.0438]\n",
"Train :: Epoch: 283/800: 100%|██████████| 135/135 [00:11<00:00, 11.35it/s, Epoch Loss: 0.0444]\n",
"Train :: Epoch: 284/800: 100%|██████████| 135/135 [00:11<00:00, 11.93it/s, Epoch Loss: 0.0424]\n",
"Train :: Epoch: 285/800: 100%|██████████| 135/135 [00:11<00:00, 11.83it/s, Epoch Loss: 0.0415]\n",
"Train :: Epoch: 286/800: 100%|██████████| 135/135 [00:12<00:00, 10.92it/s, Epoch Loss: 0.0425]\n",
"Train :: Epoch: 287/800: 100%|██████████| 135/135 [00:12<00:00, 10.60it/s, Epoch Loss: 0.0429]\n",
"Train :: Epoch: 288/800: 100%|██████████| 135/135 [00:11<00:00, 11.27it/s, Epoch Loss: 0.0414]\n",
"Train :: Epoch: 289/800: 100%|██████████| 135/135 [00:11<00:00, 11.95it/s, Epoch Loss: 0.0444]\n",
"Train :: Epoch: 290/800: 100%|██████████| 135/135 [00:10<00:00, 12.28it/s, Epoch Loss: 0.0397]\n",
"Train :: Epoch: 291/800: 100%|██████████| 135/135 [00:12<00:00, 11.24it/s, Epoch Loss: 0.0424]\n",
"Train :: Epoch: 292/800: 100%|██████████| 135/135 [00:11<00:00, 12.10it/s, Epoch Loss: 0.0435]\n",
"Train :: Epoch: 293/800: 100%|██████████| 135/135 [00:10<00:00, 12.28it/s, Epoch Loss: 0.0421]\n",
"Train :: Epoch: 294/800: 100%|██████████| 135/135 [00:12<00:00, 11.16it/s, Epoch Loss: 0.0429]\n",
"Train :: Epoch: 295/800: 100%|██████████| 135/135 [00:10<00:00, 12.32it/s, Epoch Loss: 0.0416]\n",
"Train :: Epoch: 296/800: 100%|██████████| 135/135 [00:11<00:00, 11.95it/s, Epoch Loss: 0.0426]\n",
"Train :: Epoch: 297/800: 100%|██████████| 135/135 [00:11<00:00, 11.73it/s, Epoch Loss: 0.0435]\n",
"Train :: Epoch: 298/800: 100%|██████████| 135/135 [00:11<00:00, 12.20it/s, Epoch Loss: 0.0429]\n",
"Train :: Epoch: 299/800: 100%|██████████| 135/135 [00:11<00:00, 12.21it/s, Epoch Loss: 0.0429]\n",
"Train :: Epoch: 300/800: 100%|██████████| 135/135 [00:12<00:00, 11.22it/s, Epoch Loss: 0.0431]\n",
"Sampling :: 100%|██████████| 999/999 [00:17<00:00, 57.35it/s]\n"
2024-04-09 10:14:05 +02:00
]
2024-04-16 14:33:51 +02:00
},
{
"data": {
"image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQgJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCACKARIDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDf+JPj7xN4Z8Viz0qS3+x+SrsJIgxBPvXMWvxb8a3pWKFrQzE9fIGKd8Z5mi8dL8o2C0jJJ9cniqvg/wAPM1p/aTzAGba0UW3BC5PJ/IfnXLerKTjAWhe/4Wr428wq/wBkQrkEfZ+uKG+LfiqG4iDz2zI46C2GAav3FnC8twXhRvOUEEDlWA5PtwK57UbKKO1kdQdoBUE8c1bhXU11Q7I7rxL4z8RWfhfwxfWt6sFxfwySXBWFCGI2YwGBx9412/hmbVb7Rbee/u3854wzHYgPPQ8DH4V5f4ylSPwb4JDtlGtXO78Iua9B0XUZl0KCaG4RlVDgO3BHHP0/xrOnJ+2kntZE2uzavP7Ujs5FhuT5qfdk8tTu98Yxmub8Qal4ittG+22d+I5CRmNY0bZ0B6rW1H4hSawZ7h4rZs7Ml+Cx9Ko30kF7aSCeZU8zAHHLdOQMV0T95NLQbizD8PeLtZm0XXbq8uhcy2fkeWCiJt3MQ3QAH8fSkHjTWYpwsgaRNquWVUGFPbp1yelQeGLYWMXimN4ZvLDW2PMTDN8zc4qhfapImpRaVb2Anklycu4VMAZ6EDJHHQ1lTi1DmlIzcnsdKviq/lXdHcggZ/5Zj5j6Zxio5vGF3bws9xdvGQQNvkqTk9icYFY1vYzzvFNdmC1Pll1t7Y7MgnHzDsc4qlqeleZf2v2db54Jdzyy78bWzjAVscdecfStY88leKE3bqdnouv6lda1awXNzA0M5YCPcm/hGbOFHsK5zQvF2sahFL5uuSvIse/atvDkfht/zmtPwlpFppmswfZ7Qb3Zi08km58bG45P8q8TXxBNp/iPUbSwuCUdwiMM7mJOQcj8q5sQ5wklfv8AoXB3Vz2O78Zatb2DT21092yrl9kCgIO5Jx1xzjFZeq+O/ESTAw3MlrGRuAMEbnb68rXmZu9V0LU7a2luSxlUNhZNwPqP1r0GwvtT1rRvtKJb20cQ2rMeWb8OwrzKlatKN4y/4Y0TSlYwdX+KHjSztoRDfsJZZvLTNtEC3PHBTgY7n1r3yeeaOZwG+XIxx7V8t6JqF94v8e2sGoszwwlgAVACgHqfxxX0vPqMf9szWksgRUUNz9B/jXoUK/sklXert+v+QKnKd+ToWJNSaCBpHUswOAoxzV8ShkypB4zmuQvNetniuEhTdDGMNI2QPr9KSXWx/YyhPlMjYBz29Setc9XNqKnJxd4pfj6+Z2RwVTlSlo3+R1EksykbWPPsK81+LnijxPoEnh6HQNRNpJeGcTEQRSb9vl7fvggY3Hpiu60O/S/sMADfEcEY7eteY/HZ/wDkWwhyCbkcHjOYupr06deNWkqkOpwVYSoylF9DnE8afEMTYk8XwIh6brO3JGPXCetQt45+IjSskPjK0dlXds+xwZI/794/PFYUWnFLaVZt7SKpkfyHGI4wOSSRxyR+VWrvQdOgRJtKlnVcHznEgYkYzwPz4rSndzUJLUUJXdpJ3NWLxr8TWjV5vERhQ4+Y2FuxOfYLXofwn17xPrA1w+ItSN55DQi33W0cRUHfuPyAZzheueleJalYfZbA6pDLNJErshJJxjAH8zXp/wAA5bm4t/EDzoy7vs2zd3GZf/rU5TjJ2j6DU4tnsEt6sJAbPTOQKqyanmGaWKUFYlLMMDPHbmluHMdwo8qNkPVm6DFUr+yjuraaS22pMFypxlG9QwosdKijStL37RapIsm7P8WByasRSuz4YiohbrFbrGikKowADzii2DLONzdegPpUsTStoeZap4y16yRZYtSd0kyyjyI8gZ/3eorQs/Euu3Qw2oOuQCGSCM9u+V4rj7ieSWQlYS56KW6CqOna7qWl3QDRPKzPuMZPb0B6CvjamNxGqg7tedjWlg3OPO3oz1GHVtWCs0mpM+OgEUf9FqCbxRqKwo8d2fmIGTGnyjPXGKxH1WS9sBc+alrggsqTHP8Au8DmqemXVjHNI65LKg3iT+LPoParo46pVp3baa87/ic1eKo+63qey0UUV9gSeQfE3RdP1PxHm5nSKYQR4LrkAZbnFc/axPpDRrDtdAOqNlNueCPQZzx/jV/4tXMtr4xjZDkPaKpH4tXDQX9zYSDermJuSPUZ7dqMO0pSshNo9C0+N7+0lLJJuiKy5T+Enjn255rB1h47nTpZUBXCsQufy6Vmz6vEbW3ktZ3ikaXJgY4ZQMbceoODn8KnlvMwgyIIyxyynt6H8a6YTjO9mK+uxs+NLB77wP4FERwy2TYz7rFXReEbO+tPCVtbvDKANxXLY3Z5z/n0qn4hXzPDHgwADaLVx04GBHWz4ea7nRt1+11MASIncuAOMdencYyMenNeHKry4pxYKWtjm/FfhjUdbW3mDMskDDYFYtnJ5J9D71rWN7fWWvLpTbpGt7ZWe4AwOnY9/Titm4vpbKDdLZ3G9g21QMjgE8nsKn0G3TV4XvDCqzSrtbnO0dhVU4UvacvO972/4P6HRKo3HbyM/S2N3beJBeWcqtm3ZnmYkSDcxXGT0GB+dYMfhi0uPEq6jeTiRY8MkMalREexODz+PoPSrWgyX32PxXZalJcF4JbWJQSGZQZGwAfTpTZtOeeZXhnkRjk7XHBGB1PX9etelRXNG6RxT0auxNY1ywstKedxFaFW/c3oiLxlvTpnPse4qZ7bUdVtDaWl1Jp20BlvMq5kB5+Ufj1OPYVTv7G6s0s3g+0zR7ibi3jO/BGTx9dw49/xrndS+Llmb5dL0PTJbu6eQR5lIjQt3HrxW1OTjpMzlG+x23gjw/qtr4vlnv764uYreEbHkI+csCDnGOe9ed+PPh+yQPrPh0vI53STx7lw4xyyEdxg8flXqvg+XU7m9tLi/KxM0bZhhkDp0POQOa89kiu7VpLK3vyswPn23mAJgrwRgE8+/vXBjXySUraG9LVHA/DbQYde1+GK7n8mEHJDNhpD/dU9R1r6Esray09pLK0l6jdsLgkZOCcBfUV4fb/adLe4v49JysoIjJdQEyeo67SRg+2a6u21HUntmvdGsMTR7JJJ5PmCqP4CTy2f5159Sd5a6Fwj1G6noR8MeLDqdvauIZiGmO/djJ/Mc4Peu68RXip4o1AD70QQEZ6gxg1yttqiatHK+vTPFIeP3qbcjOcDAAwMfWrfjW6MHjbVACcnywMH/pktcmKg5UWr7NfkztwtT2dRSHC63aJOXf8A1pPBPuan0a6iuLGWPlynG3nleDiuZuJ5WVXWbAbjGOnGf6VZ0m5ayUzSyj
"image/png": "iVBORw0KGgoAAAANSUhEUgAAARIAAACKCAIAAADpF1LuAAEAAElEQVR4Aez9Z5Rl6XUdCF7v7/P+hY+M9N6XLxQKKJgCCEOABEGQrWZTXBqppelpSd0a9RpJI/VqidJaUsu01JIoeooiQBLeFspnZVVWehsZ3r143l7vZ994kZzpNT969X9c5kpkBSPie/fez5yzz977kFEUET+7fvYEfvYE/q88Aer/yjf/7Ht/9gR+9gTiJ8CMH8O3XvvW9ZtXaFri2aTvMWpKjQjXCcliYcIy7MAi/bBHBDrJEoVUxfJJiouGlkXaoReFCUEKKCKivFC3+5rmOQ7FibnyVEIWOIpyh510IfmZl1/FQJ/5jeLQ1BiCJCieEQtHJi+++MyvcCKf4lPpVN6wRu3ttV5z6/SZ00pp2iW4brNBUMnt2r1u8/Wzx3+DSVDf/t6/myoeDmh2be271x/8mBQEheW5UIoINmTIb/yLmxjl8eq36317d7s58l1BlAlfzJYuDLuP0kqGFdhAs3x2JKXKBC26Vm+gb1E+TQsCEXosKfhEiuMznkmPzG7kaiynBB7HRQzBtVyrL6Vnfdn/yuWXMMrnfiljCJwaSpV8KQyiQuaUnCo2d9fmJgu8wEmSTIkRT7ERYWUy+fvXbl64cKGvG71Ru9vbqm88sAy3a7R8WnLUyDEHNJOfTR3eWVu37ea1lWEly9963cYot1f7SZkJGIqmSYLk8OBZhmSDQGSD+N80y9AETREs4bFESBA8fuQvLo8gXIIw3LCneyHFczThuwRJEzwVabZNEaEckDNlCd8vCnlbIImhSca/hOJowQ9M/FZFkvQwSCREjiIsI3Bsg5UZw3QD1+VojgxJjhdsP+ApjucSAR8Ehm3ZGj4Sy/C6Y1NsQAWBhzkS4bMQft9gmIgIfIJjCJomSJ4gKcINCd8h8HU/IpwwcDyaDW3P9QKSJGnPM00tFCg6M50iGYYInfgDkmEUsCRFElYYMCGNG2N8guAIWcUof/rtr71++wf8xKTv9Nbq5NHpJD5h0IwqSq6UrTTsRmY26xq9bXN1o9vNCtl0kiJ9knCSLKVOKLk0X/K4SJCoBBm6DkmLim25NlNPJome75pbjf/mC1cxyv6ycS3tz775H7t1MwrpdLaakqTu0PICr1LOKayM7+sOG5qmUWTIizLP857PM7TvBQZuFg917wm6SkqyzMAZ2b7PiFwxNzlpGf1eb+Vv/61/hN+AS7dskiRoliKCiGOiQwtPT1YP2pEf+U5usjRFl6anZjqNrmcMrZ4lqfThqSMbrdbuziPBlr3RIzl79PSxj7m+Z1qDTLqgJnhFViSWD23Fw8KlMUnia7u+bNquHo04htPr67xYcoZp1uM9l5IUmlO8vu21uzWs7VGzjhecElXCVyjGcfHB/U1K79Msn5Kwh7B2SJBSyh2t9HfvBH6HUqnhLmZzvGwmq8Uokc96DJ+eWjg8r+TLTs+fzFYbowelRNGJ3M2tjULlIEPwa8u1hUxOVDnXs9q6Mdy5TlDdkOcoLyglqZphDw17braYzWUX1xc9ivFMIhKDvVshAiL04yVDBh5B0Y7tsVgtFBcaAU8HDiP7QUSTvksRQ58IGKmMn0LMjR/GPHKi0DM97HCyzOKxhx5mph8QjOf7PF4BGa/E8eXxMjHs4kd5kp47sOCS0cbSFs34rExznk9HBOkTbIILKU83jdANMOWJIOAIPows/GKGxOPK9WydZUPLoWgixMgcFTqeHuA7if2IBh8U7z1eM/hiiK9jY+QI/Has+gg3SkRMEGIqGF7IswFmX+DSqizaJpfNRpxI4vtZnrAdrOt4zYR+QHqkRxEMRXjMk4lM5NOFaiVlG0QpeyDL6oZve56tZDkqikie4iO/tbFWLhWnyzNHDhwJdJ2kBI4UGKMgCtmSWHSoDhkxdoBzYpiSUx4ZUlKCZ9VhdGOz0S9S7PiJ7S8bmsLj54jI810nslom1q9NSBIfWIOB0aWYCGOHhMWzguN2PYehooQVOumcTWG1KzQZBUFIJBSRY7WQEUxDsQPPMaJcgum2Lde3xoOFAYmHiltkSCIp8LVm3XLNhbnDjj4iNTtKCRmZU+fL3bo8GtSDkDPtEUuH55/6ktlYW777+1WyNzN50gnZesfUuqIqpljMkIimlIgyQzrixqN86ydvVEsTFJ+WJK5j7yqBYfrW9nq3UFSPHXvZs4cBzhfpSKt2XeUyslBiGL21/igxe2zk6Ziugcilsyc8gfQdmxu1Te2W7a274e5gUDOWh6ErEMSvYyA2hw3DzQtzlFI9yKqiu2QXTrQ5hlLmRUFKct3DRz/qev6jpfU/+v7Xv3T8VEBpr++uC9HmhNI1nVChsd8H1Sl+d4kyhoP1R6vbwu7K7sAzQsJmVzf2lw3LMWFIhFRAh8hB4/02igLTiDiZ5fB2sMnh/1t/zXF3pCP/NTZibOVs/EpDPwqxpQcM6UZeiuHsMPJofCnysPGHEYt1hDul9ic0PoybyVcKxen5qsjxREcjDCNTEMNsRIt0tVQ2e17XGAZq1mj28CtCCwdWFJC6LfuSkCuyh/R1T0yksXxOZS+kM+lsPh8RnXu3bg6CASb5+L2QWLgUThtEBvFXMO0jzaJZgUAMg9vCFIxEMqTd0GWxcFK8i7OrPsQxxDNk5Nh4CFQUEpg6QRgYbhA4NEOHuAePCnB4sftvH6fX5fmntwY7VBjumFbL6g1HXi5DMyIjOqpmDpR8vpjMhTlfolWKJz1MeF82PS+diHdg3lcj2kjQpZ5L+0RomhIjh75kbe209ZF9fP7E+F72lw3LsuViWmsP81lssyT2F0lyicgfDHRWRahBSgqbymBEsdOkbcdiaMexmRROzogwHHxuIyHzosSIkrg71AcaPg0dejWZogUmnUkkxoOxIstSJBfhXGUVMUykbJIyLBwdqZSAEMIjXDbeNZRMwvL6mHwcm0gSXOg1NL81feIrnJiYKk2JQhpLzm50Mmp5YDZxXBAIVkiTDON4A5fs+M36Rq7EZQsXe52NO7evc+J6Jinv1KONevfy2U8QiM/CQTJ3FmczQdi0hP0g2Hj/G5nJC0x2guWKumu0d+8Phlv11k2RlbNEQUlemD3064zorj36yXiU9W39+LGyzVLLmzdyhS8k/SM4Avr17VQh7VNiNj25vfWgPmy9f/dusuL+Yeftk3xSIhIyRbU1j/FdvF2VZWor7ePJoqtk6cAPEtGRE1M/+sZjdxQkRXo8CieIiCFYinUZD1MuJLGxRRSDTc2kOYEnqKB53330I0rblWZecZjpKAodB+Gc65GIcliSRpTsazj9I+yodBBhOw8QM/EUg1NJRGC2dwWCJ6TJdq9NrlOT5WKiWnjllRmt1rfYISmQx5U55XCl1+rbPu3Oar4dFfFGlfzmzu57j67X1ze1aMMV+EMLp5lcwm52M5LCEMqd1Q9W66uVcnHh0Mx4FAJbNTZXnHFehA9u9DRzaOFIx6KgKCagSYRJYkrwBw6WBy8UHTfcWbxdOn9o0G8mWEpJFiMnJOLjlqZ5BocrFguJ8IyJ8LBcC1tJPM5uazefVIuK/NgYdNiWJxD9+mg4EibP0EkWAQdBE15XrwsWJams5dEZKYvdRkownMywWIgq2+t6fn+l7rYYzkvJGTOwrcZboU5l6HlBmh7fy/6ywSFOksbcTJKJIp+ITC/0GcZFXI/fRAUcR2UzfLWUTiexx9HNHSLkgnSGtFxPSrFymukPRSewfEuPEOYEEcPagV8wI8+yLYqiRE4cD0aRXrzZ0KRAsFhOT53+uQOz53xtU2ZTeIGI0bHH4hFIHJFMFhFEYCeSOcwXcdKeGZqjTCLPe2mEYiLN5wrz1dacJIdhyPY0LXI8zKjxKJeef+Xxxorj28n85IR5bpBvuGHi7PlXHStc364PbC9FUQ/Xv8Mm05MTly2n2ayLCWpSOESytGJZOzvbVzG7662HmlYrlC5NV4/PzlwKCZ5PJvThdnf4aDyKrdn9tubKKyw1anTuy3OXbT1o6sy1tccnFkS3YyxtLgUcc6JSPqsIf3ZtOccemiontcY6wlgSQbx
"text/plain": [
"<PIL.Image.Image image mode=RGB size=274x138>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Train :: Epoch: 301/800: 100%|██████████| 135/135 [00:11<00:00, 11.91it/s, Epoch Loss: 0.0425]\n",
"Train :: Epoch: 302/800: 100%|██████████| 135/135 [00:11<00:00, 12.08it/s, Epoch Loss: 0.0417]\n",
"Train :: Epoch: 303/800: 100%|██████████| 135/135 [00:12<00:00, 11.00it/s, Epoch Loss: 0.0412]\n",
"Train :: Epoch: 304/800: 100%|██████████| 135/135 [00:12<00:00, 11.01it/s, Epoch Loss: 0.0419]\n",
"Train :: Epoch: 305/800: 100%|██████████| 135/135 [00:12<00:00, 11.07it/s, Epoch Loss: 0.0427]\n",
"Train :: Epoch: 306/800: 100%|██████████| 135/135 [00:11<00:00, 12.19it/s, Epoch Loss: 0.0446]\n",
"Train :: Epoch: 307/800: 100%|██████████| 135/135 [00:10<00:00, 12.33it/s, Epoch Loss: 0.0418]\n",
"Train :: Epoch: 308/800: 100%|██████████| 135/135 [00:11<00:00, 11.80it/s, Epoch Loss: 0.0413]\n",
"Train :: Epoch: 309/800: 100%|██████████| 135/135 [00:11<00:00, 11.57it/s, Epoch Loss: 0.0416]\n",
"Train :: Epoch: 310/800: 100%|██████████| 135/135 [00:11<00:00, 11.85it/s, Epoch Loss: 0.0417]\n",
"Train :: Epoch: 311/800: 100%|██████████| 135/135 [00:10<00:00, 12.44it/s, Epoch Loss: 0.0405]\n",
"Train :: Epoch: 312/800: 100%|██████████| 135/135 [00:11<00:00, 12.26it/s, Epoch Loss: 0.0422]\n",
"Train :: Epoch: 313/800: 100%|██████████| 135/135 [00:11<00:00, 11.61it/s, Epoch Loss: 0.0422]\n",
"Train :: Epoch: 314/800: 100%|██████████| 135/135 [00:11<00:00, 12.12it/s, Epoch Loss: 0.0421]\n",
"Train :: Epoch: 315/800: 100%|██████████| 135/135 [00:11<00:00, 11.48it/s, Epoch Loss: 0.0439]\n",
"Train :: Epoch: 316/800: 100%|██████████| 135/135 [00:11<00:00, 12.00it/s, Epoch Loss: 0.0421]\n",
"Train :: Epoch: 317/800: 100%|██████████| 135/135 [00:11<00:00, 12.17it/s, Epoch Loss: 0.0429]\n",
"Train :: Epoch: 318/800: 100%|██████████| 135/135 [00:11<00:00, 11.44it/s, Epoch Loss: 0.0452]\n",
"Train :: Epoch: 319/800: 100%|██████████| 135/135 [00:12<00:00, 11.22it/s, Epoch Loss: 0.0440]\n",
"Train :: Epoch: 320/800: 100%|██████████| 135/135 [00:11<00:00, 11.92it/s, Epoch Loss: 0.0435]\n",
"Sampling :: 100%|██████████| 999/999 [00:17<00:00, 57.01it/s]\n"
]
},
{
"data": {
"image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQgJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCACKARIDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDvvEniTWLDxDdWtrdeXBHs2r5aHqgJ5Iz1JrPg8Ya806xtcl1cFcrCmVPY9KZ4tx/wld+WbCgIcf8AAFrK024D6gq/Mi9mKg57479a8zG1HGlN3tZPrY3pq8kiW18c68NT1H+0dYa0soSwTfBFuByMAfL8xxW1pfi2/vbB5YteguZMBiRGg2A9BjaDXmXjm+N3qxtzEsSxNtHGCxOOTUHghpLbxZBHFJuRtwfb0bANfPVa2KqYb2qqOLte3p576nqrDU1pbU9J8UeLdes9P8OzQ6mbA3QumuWMEZLBHQJwynHDdvXmsW38Y+K72G4uLbX7iWKJN21bW3DHHXAMfzcYpPiHNNDYeFUUWytN9tjLSoWVcyRnOB34rizr2oWGufZbyKBpQ5WP+4nGcD/vo/jiu2pWxM4xdOVm4xdr+Sv/AFc5IKnFPnXVrY6p/G/jeSW2ij1K7jNxGHWT7NAVB7g/ueKsp4y8WJbmWXXLkgTGL5YLY5GOGx5eRnPQiueit5rEyXsW9r2SIKSzl9rFs5APTj8s1SuLi4jEiI2x49oeTLEOx6MpA6/ewc9R0NYfWsRJ8sZ/idHsYRXNKJ3sPi3xVF4b8WXD6o809nHZvZSmCLKeZIyuCFXB+7jkHFc+3xF8aLGkY1VjMxIDG1hwT0x93jmt3QXWTwvr+IyjLa2KMG+c7/MkznPU5PP1rGtrq2Q3AESja4KxkqWkJ9PcZ4FdTzGrTpw0u7fq1+n4nI6Ccn6nQQ+LfE01hDL/AGrIJWVTlbeIqxxkr93r1GRxU8Pi/Xyn769mVlUdIYjuPGf4eoyfyrmRmKU7dsbSlikTIHReAcnGMMcHp70170y3JSR44JMfM2MBj6YBzg815MsRjHf33951qNBaWPQPDeuaze+IYILrUjLbndujaKMEnYSACFH169q8ah+L3jtmjJ1oMpIzm1gGfX+Cu88F6jcXHjnTbecLAEeTZEOQ6+S/IP5V4tow8u9juJsMFcPtK7to65xXv5bKtKherK7v+GhdHBwr1vZx7fceiyfFLxlcxCey1Eogk2srwQk4x67Kypvit8QVxENXcSMCQ32OA/kNnas3ULQSyIliHkjlTcVjGSzHrkflWbJZlLd0s/3jKMHDZb3IHX9K9W3KrXPUWS04xd3rby/BGzcfFn4j2ksSz64VVwSrfY4MN9Pk619F3+syQa3JZwSl2jjWWSPYMIpOOvrXzJfaBcW+m29vqc/lAbZkJbcCDxx6dOte+eLbK3tdUu/EKecl1ZRbiqLxOgUEr7//AFqv4dzxa+DWHqLm+F7X/U6O11KVLeRpboTjzCFbaAQMdDgAev6VXl1yaaK5gtpQs6DCyEAAH8eKwEvhJbWk8lnInnjdMsRO2JiO/HT/AOt61WGpKt+tpdh5LeMGaJ2ON4yMj35NSpX2JWHps6S31S9O9Xvw7KocYRQSB94DiuS8WeJvFFlougTaZqLRzXRufPc28ZLhXUJwVwMA9sVsGdbmO4ktvLCBDtYADGGI5bPfBFZPivdqGl6BKiNuY3TKirzjev8ATFKW2rscGLp+zh7pyD+PfHqsw/tmMhOCwt4efw2Vbg8b+N5wWbWUj/2RbRH/ANlrNubKGKyjnN9tujOyywMvCJk4z3zx+opUNokYaK+R/lJkDcbCBkj3A9fUGojTno29Dllh8TycyXb8dv8AIuv448dhhHHqheTPCi1h+b6fJXSeEvFPijUdH8RHUL4/bLMW3kmSGOPZuZt3RccgDqDXFX9x9iuI8SxuGCnehyCDjPP5itDT7ud/h74weGRw4NntIPTMx6fhV8vJq5PQdONrxqNqS6dDTv8A4heIrAxytqcDRkncnlxsQMcdBWlpXjvWtTtmbzmRI/laXy49xI/2cV5JlLrcXQYBBYbyHJA4OT+B6d61dJuoxpxSJ2tpGQ5UlyC231x681xKvUbNuQ7+8+JeoW0LOlyXVUJD+WnzH06cUvg/xzr2teM9N0+fUBNaOHaZRCgyPKYqMheMMP0rx66ku7dpAu0uW27S3y4I7j3rs/heXf4haQzxOhYSOcZ2g+TID+HIqlVm5q7Cx9BWMzSwjdJ5hAALYAJPfgVarM028t/sqgsqNjkEYNY3jfxGmmaBK9lfxx3O9fufM23POPSvSl7urHRpyrTUIbs6ysvXbyeysDLA+xh3wD/OuOg+Iskll5oWIFWU4YFmdT16EYx61cutettV04W5vQ91sBZVTAP0x6UQcZPRnRXwWIox5pR0O5ooopHIefeJ7W3k1y8kdhv+XIDYONg7VxANxY3EbRKGYHJU5AGff+tdT4xlddfvUUAZ2ZbHT5FrKWRuJbfY4TCykMCQp7n9a8iVNp1HVldN6X6Jq1krf8FnQmny8q1Ob8W+Fr/UZl1DT4xOsmN6Kwypx+taHhPwymh2q6lfhjeHogPEeR/PFDazbWTpCss/mSHI2LnavYnnr7Vctphdxyyee3lscKHboPevLp5dXmlRlNOn3W7Xb/gndPGJRbt7xN43sYtRsPDG+7jhVEvJFcqBk+ZHgYPeuG8Rafq83lxRALIbh5dxGeuBzjqemcDrXd6xMLd/BKxbLiApqAYscKTvjAzn3OKqXunXUt9Hc+SypOTG6qvAPO1s4rHHVHhcTGG6UVa/khUIxrUmm7a3MSS9t0lv45LNkjtgSk0YILgkBpAMdQeM+1V7p54rbyDCLqSYZjVGOWQAEZ6bSOueOoroLSPUbtmjn0qQMHdUlQq6vERn5hnjkdKzLq21PT5CLnT2iiKYZlQ8kYAXCjI/AV50JrmtbX1PQcla1yzoEl/D4F8UG/jlluEFifJU5f8A174H5Y59KzLa6uYrmIGzCmRCPu/OT1A6+2evFb+g3ltJpPjPyoTDBAtjEEbtiRx3rlZdbxPutbadrWLO9li4JIxwT+FerVUpqnHl+zftu3oeaoq0p362OltbKOTTbne2+a2cPtl+YNnsD1xmuf1e2vmlS6tLaVCRtY7SY3H+I9an0h7+Gae4eRhvODG3GR9MHn/PNWLe6Fvqi3s8Rto5BhUicncfXb0z6muujG6tKzOe3YPh1PcTfEzShcxiN084ABT08l+9eY2TC6ZVH7kj5nMRxx2Ar2zwTAsvxDtr6IFFk8zeki4bPlt0PTnj8q8G0GYJdNFznGVOcfhXq0kuS0eh15ZPlxkVN6PQ7TT7uTSY2NlcBWYAq2d31HPQ0sur3Mt19vMsUcsR2iRY+Hx/M+/sKx7qOe
"image/png": "iVBORw0KGgoAAAANSUhEUgAAARIAAACKCAIAAADpF1LuAAEAAElEQVR4Aez9d5hm93kdCP5ujl/OlXNV54hu5EYgAIJRpBhESZYlWbZsax+HnR177PE+45nxzmqesT27TvJYtixbo0CNSVFgAElkAo1GNzqnyrnqy/nmvOfrKmh29nl2Z+3dP3lJVKPR1fX77r2/8L7nPee8VBRF5KfXT5/AT5/Af8wToP9jvvmn3/vTJ/DTJzB4AuzBY/hn/+xvU27kuT5hWJahaIahwoDneIHh3MB1zZtf/tQHLDH/6M2JghK7sshtbtjjWavS733h2WPVFrPXdJOZLO3YLEunMsyliw8Duun1u6pDkhlxuZV78ss7GOjsnMyxJEaRtEI8n42YIM6TrSYn8J7CRDrPGx2SV4PRUnS34otU5BNK71L7HS8psIJABWIo8wzl0lkhMiIqGaMcw7f9yIyits9LbHjroYFRnrw0apgGw0cCS+KJsfmppyp71VprPx4LKYYvCuRMfnl8gr6xxvWcgkY83eyfSMdZrqPK6tND/Tvd4Qcb1jOz+65HbdjZuOhsNYpOwPnm9iuz7t1N5m/96zJGGS+JhSQf0jQVGiFPuxrFE2n6WEYsxkXCdDcaE4WR/UZ9udJWBLo0Km7sWM5et2QIL7InDKO7ld7/SWQ02hHHR2qceCHRzcH/JYlkksTRSb0/iALu331H75mkR0/lhrKpsUAVXr/87Z3qnXNnnjgx8riaSAaM63m+adu618K7TCkFUU24lhNQ4eLK7bcvv6PEhcmJ2U67nlakI0cuhra9snk9Jww9/Pb1llb967/32xil+HSc5xieZz3LZ2kmNYYvomlFoWFRDBXYvhqPjc+MGL1a39IsRwqDkBdpx6BETvZD3TQsnqOS6Tl8fkvbi8Uomna0thHQPCewlmWu/aCDUX7zH/7m9t6DoYk5mgk7tYex+Gyv17Ts7vnHXrEMb3n95uOnnxfjqZCmItfp93d6zbpm1bL5I/j90PC871NOvyNKSUtrGo7x4MEPbbJfiI/QQXG7fnd5bf2jt5sY5Xs/vDY2mpuaniRRqEr/fzgVQkIMPdrbXu+2Wo2m/oUvv4hRDpcNsVmfCiLC0QjaIrzFgPI93wtdYvCUbrrMxmYurWyem9g7cYx79+a0rptmKorF0oWRsROna4295pXVQsiTbKxz7uTu6Fjz4Vro+erifp6uZTWbehJDESJw9HCaP1ey5oYCUQk0J9otCxJLPXU8XJgMV/e9IAyj0Mtl6c9KdKPF8EFgRMFyjWc8PyWzhQSFdT066rptyjRIVg2ISHsRafbJv/gJ3+7gBgdXMnm01byeFpxSkuYESWGUdIzp98LAMTpmOz0qZpOeY9o/8wpt2J3FVeWjpZHp4e2k01eH2KTunM/W5xK0Os4aNTJT3Dcr7nS61vWTxHYqurxwwj4YhQ6cwMM9Ehof2fGwxPs2SQjRuSPpJqGYjm4TF9/a90JG4ut1yu75gsE/xS0olr+c6Xwc15oNQkRCeaTTI7E4KaSJ7hKKJRRNZOlgEMKEYsrnYglVqPj9zTXuZP6Fs+cW1/1Kb0ueeyLUbZNq2TwlsVnBs0xTiyLP7FQZkWVYhfP5hJwayuQyai4KA4VjTaPnO64SS0yeONUt73TubR0MoyYpyo8UiXUZPCVPb/sMZ9MUF2I1RxHDE9vrrK12iMdEHIdZzXBRQLOJRNzUDRIy2bREsbzAsa1+1bUNSpACxucVMaJVQkVi4B6MYnjR2MIrxK61my1di2F7fvDgPYF3WY7QUZKQdtfcdno7iYRAUTIrybnh6RI9att9Xs7hIZPQrzR2FG5fThQNa4XluioX1BqLMh/sbTV8jTkYhcYmNT4iimS/oUdcXGQHU5w6+LP/yK8+IfihmFVB6AS+5wRuSAUHP+Nw2QR4bn7EMhH2mSgkHMuENEfRIeVTuh8SX3zv/tGfeaqRz6n3t0tat6MKWGWiqia5oDwlXj16Kqx1HSmmXzy2RzNka5GMFshPjIX0BG806Er3yOEHjpjxlDMz7GUKjG9GNEWOX3D/9IqnZMOtPbwMV2So712JhkZ8n3BLm26GDUdH2WY94KhwaFK+fNNQBPeJczRe6bpOO4zPkTBfojo2mcm571UPH47vWhzDHilFLMt2nFJrf6Pnbk8WJNdw2612tdZPP29TFmnsBcUp/9wFErJdxvYWV6OXFG+xxmTGiFj0WC+kexTJ+bpPFbNE8hprK0yUj4oj3sG94Nhjw4Bx8LSYIGQoOQxM/+71CtvuVOkotKVcUfEtwvuC3o7YWBD63nlxqtM3H/r1bcO2FSxvEpeJ7ZK9beIEWH6DH4yHjR0yOpwDZGH8uM+1vXLbDQiLNaqbdMSenHhKW3kXE9czdC8jCdjuLC0hxNiO63S7EUViiaylaViASSmZzeQSUiLwDCaiFD6BCakoamOr4cYofkg8uBdRFPnQZ9IuG9FixBld33D90DGxchgK84FmeZ4K8Mk4JZbBaYZPKgsxhpeEhB0GzdDtBmFk+VvFudFOk7K6LZ/yaJ5HyIK5zhzuZsSwy/29CuPrtm+PTx2pVBZLI7Ku+ZXyYql4rlAceXD3WiobX1/fjfGJTGFqZOKUIsYCYmItr669vbtbL2RGIya5t7W0tXPdI/2JiXyldY/YuxHN0amDWyFzY0MZlat2DI4hAk24w//8n/LLwdoIsCW6Ho1z1aUjgqU0uA6XTeSGEePTERdgGgz+lOJwlOLEIRbHKRHlky75+MGZ0VR18d7GSEzatmnXNIaTwRMny0HPb65Hn86ts0OETxC8NiokAkVeGr5jW+Tj5oxd3zgYLBKjqaI9Pkz6DsuScCVgHq6T4ZFAoKnsQnh7Q/zgpo+N9miO8LHo2gPKcNh0Nrw4wyzMk+xI74++S0sc1arzXc29uh2MmkyO93er0fipmclG+8N7n+xqejMZY3WPFrmIZ7U9lyd+ul1vJ+JKKsUwNLbbMEnCDzaiRoeezvsz6fruuuvyDBvz23fClsEonnD2LLX+sWfbLJWPBIdJiuHxE0Hbt3KFw2VDYXZ6tGSwmsO4ecciJB4jsSRZb+jYo03GHynFJ6S0Ea0EouxyFkvopM1t+YsWCTOG1JWIbhEzIFKBTPGkuU90bbCzIazAmsEUPbi8wN386IHbLo8PT9F+EHYoRs5FTPxU8WJEcWKR89bbTJoyWw05luKwG+y1HMqxfNujQ0lixyZK+UyB5yTfzdVq28yQVCjl65VqpbxuGmFACwejxJSsE9pMFEiqVBwv9BuVXtsO7EBmS3Ii3e+vshLV67kiFxPTEifxSXWa5UTssyIWQY+ELmMbBr5f4QUqm9Uikw0ln44bWpfiCG7hYJQnnvp0u16u7N6P8TFEcRMTpV6/v7Xa5QJL0/d3rtx2Q6PdSSWK8UQqn0pJtHmn0XBafU/kY6arUySob9+lR9P12vLq8lZpKEUFacoRKeKPFAzPO4wC4gllZ68q8HIsHmdpgrd1sHIQ8v6nnTnIVkjEhpzkBSRE+PXoOlw2CAwYisfhy+KQYUnk0hRt+0HEMCyNE8dnCcdXO8mFSerIQrvfdogVnhhjzh/jnb324sfBuz8OHZ/6zKuUVKRYNpq4QCiJdFvE8MjyfmthZPdgMIpEYpz6YI8xfbK5GbSwwQb033hRSeWt47PRUMn/7lt4e4RjokKKevqc/KP37KuL9FyBYNa9/X36L3+NmSlSk8Pu3ha5dIZ5/f0gfoyanWJisdbZWfe71w53FpZBwoMMgRtKsLtNHDXjuuvQkR/Q1Atn3JLnqRq1tBSenqRiPL36wJ886ftFenKYatZIdpiWZujr68xIJyiLYk52hkZJ1PI+usnNnAzSadLH63t00X5EV6gF9njfbzlGr0q5PcpX8vHeTj3ixCBESERe9Ec/HSS3KGqX7fj8vBiPTtonWmFjn/THVlLTQ6pl2BlDOFKYN4aNN8rLd8IOZvJgzXwSk3f2N7/9+3907mdOzz7G+XdZluL9nhnth4qSCPomMhDBdcylvpBXgh5pPdiOul6P78SmPS6PsElaaBX9/U5IGlkmwcW
"text/plain": [
"<PIL.Image.Image image mode=RGB size=274x138>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Train :: Epoch: 321/800: 100%|██████████| 135/135 [00:11<00:00, 11.28it/s, Epoch Loss: 0.0420]\n",
"Train :: Epoch: 322/800: 100%|██████████| 135/135 [00:11<00:00, 12.10it/s, Epoch Loss: 0.0419]\n",
"Train :: Epoch: 323/800: 100%|██████████| 135/135 [00:11<00:00, 11.94it/s, Epoch Loss: 0.0430]\n",
"Train :: Epoch: 324/800: 100%|██████████| 135/135 [00:12<00:00, 11.10it/s, Epoch Loss: 0.0423]\n",
"Train :: Epoch: 325/800: 100%|██████████| 135/135 [00:11<00:00, 11.76it/s, Epoch Loss: 0.0426]\n",
"Train :: Epoch: 326/800: 100%|██████████| 135/135 [00:11<00:00, 12.18it/s, Epoch Loss: 0.0408]\n",
"Train :: Epoch: 327/800: 100%|██████████| 135/135 [00:11<00:00, 11.28it/s, Epoch Loss: 0.0402]\n",
"Train :: Epoch: 328/800: 100%|██████████| 135/135 [00:10<00:00, 12.31it/s, Epoch Loss: 0.0419]\n",
"Train :: Epoch: 329/800: 100%|██████████| 135/135 [00:11<00:00, 12.10it/s, Epoch Loss: 0.0407]\n",
"Train :: Epoch: 330/800: 100%|██████████| 135/135 [00:11<00:00, 11.31it/s, Epoch Loss: 0.0423]\n",
"Train :: Epoch: 331/800: 100%|██████████| 135/135 [00:11<00:00, 12.24it/s, Epoch Loss: 0.0429]\n",
"Train :: Epoch: 332/800: 100%|██████████| 135/135 [00:10<00:00, 12.42it/s, Epoch Loss: 0.0416]\n",
"Train :: Epoch: 333/800: 100%|██████████| 135/135 [00:11<00:00, 12.19it/s, Epoch Loss: 0.0427]\n",
"Train :: Epoch: 334/800: 100%|██████████| 135/135 [00:11<00:00, 12.13it/s, Epoch Loss: 0.0431]\n",
"Train :: Epoch: 335/800: 100%|██████████| 135/135 [00:11<00:00, 11.52it/s, Epoch Loss: 0.0425]\n",
"Train :: Epoch: 336/800: 100%|██████████| 135/135 [00:11<00:00, 11.37it/s, Epoch Loss: 0.0430]\n",
"Train :: Epoch: 337/800: 100%|██████████| 135/135 [00:11<00:00, 11.66it/s, Epoch Loss: 0.0402]\n",
"Train :: Epoch: 338/800: 100%|██████████| 135/135 [00:11<00:00, 11.82it/s, Epoch Loss: 0.0460]\n",
"Train :: Epoch: 339/800: 100%|██████████| 135/135 [00:12<00:00, 11.25it/s, Epoch Loss: 0.0437]\n",
"Train :: Epoch: 340/800: 100%|██████████| 135/135 [00:11<00:00, 11.38it/s, Epoch Loss: 0.0433]\n",
"Sampling :: 100%|██████████| 999/999 [00:17<00:00, 58.67it/s]\n"
]
},
{
"data": {
"image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQgJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCACKARIDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD0fxR4h1bTr6eGzmWNRIqJlA2cqp9CepNZV5411ezMSyyOFlnKLIIAOPQgjg96Xx5d241ZoLSGX7erKzvFkknaNvHTI4qtHq8KWEUcyvc3mQQyD+8SOc8k8GvMnU5HLnl121/r/gHpU6tOjTXtUm+1tdVo35GDrvjTxhY6mRZ65I1mThWazhJzjJHCc1ds/HuuNoa3N1qsqS7zlhbRew2kbfWtCz8O31vdDUhNEjZZ/MKnoVI5HQHmshfDq2t3Kb6N7iRmaUqmQoPXJ49CK0dacU24/wBdOp0PHQi17WglFdUlds9Cl1PU10rS3+2L9pmikeUpGuGxjoCDjGcVC2pav9kvGivmM0CqR5saKDwDzheM8jv0rmb5438H6DLb3gsrTNxnA3F180DbuPQdeagstX+2NDYweZO7xuVKHiRcng9MYC9SehqZzmoq+9l955Lkrts6tPFT/ZYy904Z8MZPJG0DGSM4wfSoP+ErvDZXN6kkkkUO0lBGoYISRux+B/KqmoWlhZaHcyKziK1kDlHO/dJjtn3OOh71Ut5Ek0e61myiSRZCBh8xs5Ugc9sZJ6AVnzSbtfp3JUryLl54s1RdM8SyJciI2AtjbTBFJ+dyDwRjkADkd65ebxx4it5PLl16YzMoMcaW0BByQMk7Pr+Vbd/ZrN8OtanlYzy3Qt2LRDB4lBVfUkZry97m2fzBLK8KeYTG2M54x9a7eWU42hv+Z004QdOUnqzux438SMpQaygZHJLmCI7lGOwXjOfrzTJvGXiy3tvn1ctIzsVdLWIZAO3GCvqCfxrkjYWscbvNKzRtH5pYSHay9sdz6gev5050kdkV4ymwMyuJdwY/w9D90560U6c5Wvf0f9fqdVGgppPlfo+3yXn3PSfCXijxFf8AiK2stRuUkifcJB5ar0RjwQPUCvJk+Lnjtuuuf+SkH/xFdz8PbrHjOyikQGaVXDurkqCEfhQT9ea8XhXKjivouHKEKzqqouZJq19TxMyapStBnbp8WPHBHOt/+SkP/wARUh+K3jfjGtf+SsP/AMRXGBcV2/hbwJN4p8OXV3aS7byKYqsb8K67QePxzz7fWvp8RSwOGhz1YRSuley6njKrVk7RbIf+FreN8/8AIb/8lIf/AIivXPEviPVrDXbm1tLoRxJtwPLVsZUHuK+d3RoZGilQo6MVYMOQR1Fe7eLAT4rvMA5Gz/0Ba5sThaEa0LQVrPovIipXqKk3zPddfUtaT4n1mTUI0vL3dE2Qf3aAZwfQV1JvbqaKT7LcFpimVV1GB79P51xek2Bur6NWKoBg/MeuK62F/Juo9qnDcMpGMn0rxcZCkp+5FX9NCsPVquPvSdvUuaLdX91ZK1ywLHPzAAH+WKg8Rapc6TBbmGXLOH5ZQckYx296bdyPZXa3G8JG6gOhPGayvFF/aNY6Y8h3NL5gQDoSCMmvKr03Jc0Fue1l0k6qpz1aG2nijVJAJ/LMsOMOdowD65A6VZm8VXUQR2iQKykja4Off6Vx17qbWVistvnqEEakgbSDkdOtV7eVtRsg08U0CIpZ2jjJA5wODyfwqo0ox+L+vxPoalKg3qrLuv8Ahz1PTdZjv7USDrjk9s0ahfTw6ZczRttlQrg4BxlgO9cjobSWiTmUySB9nzqpwBzz6k5Fb810t5ol6VDZXywSVIz8w6VzwcHO0dVc8fEQUW/Zu6M9dc1Q/wDLz/5DX/CnjXNRHW5H/fC/4VQUbQSegGTXgk3jTXBqV1ML2Rg42Lu5CjPp06V3VHCH2TjpQlUi2pbH0O+v6iQDFchxu2kqqHb9eKs6PrGoXWrQwTz7o23ZGxR0UnsK8F8D+L30rVWspQrW19OGfg5WQ8ZB9+4Fe56JHs1yDI5+b/0E0lyShKy1KnTqU+WTejPO0+IXisgZ1Tr/ANO0X/xNTDx94oPXVP8AyXi/+JrnIYt3AOABk8VY2w8RRlmmB+b0HGa9GrPBUZRp1bKUtlb+rHLSo4utCVSmm1Hf5fmbZ8f+Kcf8hP8A8l4v/iary/ELxap41X/yWi/+JrHK8+9RyR8dK7HhaP8AKvuORV59z6Uooor5I9w8s8R3f2XxzeOxAJkjjQE44MS5P61SmGo2mr3GoPHDIqKjR8ckbBn8uB71a12NpPiTcbQs4WWPdEx4TMKjcfw7Vdla2uWuEe8ZXZfv4xuAHTHpXBzKrNwkrK+/p+h6dB/WoKChZR0b/rUxLjxZJcrlJlePKgktwuT/ACwc1U1LxJqEt3IbAK8LcrKxwQAMED8qmbTNOjsIJVEG9Q0fyA5LDGGwe/Xj3rOa0ZddhlfJjnPkpEg6BdijH/fRz9a8ypJxraJO3TocOJxdWniffjG60tbTvf1NDU7mC88EeFoza3E/2n7QY5bUcx/vABkHjnIHNZen+K9I0rUr/TvstxbvdRqmBDgKdrCRivbOR06muh8UWcF14b8PXKRx2tvavcqllcD5JW3hVDEHpkZxznPtXGG21CLxMmkXr21vc6dIXS5RSQFb94pyTnbxgA/3q9Vrb0MpJptPQ6yy1SOHwrbWUjKks0TvGbi3aQFSzKWLZyWwOeDjPeoLFNRtPh/fXy3hMUYkeOOIq2VwQWGexP5g1YuRftoc1xcR2M1tKqxqZpnIjDDHDoMBT6HjPJzVfTrnT7bw/br4fitba/unMZAujIuS6gqW5yeVIIGOawjBc10RbUoaJMbj4eeKxFczpfAWYdJuBCPM+UL9Rnn6d64+4Mktq9oIJDiQB54+gOc8Ht0xmun0WDy/CHjr53Wd5LRXAXhXE7jA9s1hXV8ZBbypbmOIIVk2NsVz6sCOeTz612U63suWa31O2jKnTjzS9P6/zG2vmwQK0Gpzyyxsww0QK5JyFP8ALnNRu6tO+VAQ7sBiRtPJAGO2eKrm+LOkjKZArbtrtyx4PzHr/hTP32fKUghm3KvQHOD1P0pVcTKpPm2QpY+8lyaJL1udv8Ppx/wnmj28UStHGJN0wIJ5hfvjpkV5Xbr8or0v4cSKPiJpYWcSKzSAg9m8hyceo615/BavxgV9bwzdKpfpb9TyM2k48qkrfgMC16V4X8ZroPge+TT9PSPUI5UO5FZlcEhdzknAY89OOelcKloTW/YTyyaDd6K6gW1w6uWA+ZXXp+uK9XO8O8TheSKu0097ddfX0PFw+KhTqpyehja9ONR1q6vNu0TPuxx6DngCvoHWdFS61qactgvtwB1bCgf0rwG5tm88gqAeM4PBNfTtws
"image/png": "iVBORw0KGgoAAAANSUhEUgAAARIAAACKCAIAAADpF1LuAAEAAElEQVR4Aez9Z7ht2XkWiI6Zw8p5r53zOWefnCtnlUqqkixZlmVbxgljbFLTTdM00E3fBhpuAxf7Ppg24GwjLMuSbMVS5Xyq6uS4c04r55njfcfau3ge/l3+e+ho1w5rzbHmmONL7/d+32DCMCR/Of5yBf5yBf57VoD973nxX772L1fgL1eArgB/sAzvfv+fjR1R/FfvDBjZdn1H7jGRJ4vMbp5opvGiqluWdOUBybvR+U5jQex9eGOv4WhECEjgEkEhfJyJKumslIhtHBs+9thXuY3rzJU3CeNIsYnwM895A+bEL/81TPTG7/0DNtFoMmOWnmpWlosZ2QnFwOdOTdk823p3I5tRp87F7zJC0o+NJvKXeVmq7t53mz+UBgQ2mLVJ2DIDw0/F3HA03c16f9i1TrnciMFsXdt8UowOfemlz2CWT//Y0WTRDxwuXo05qrvU0xi/k0oJSd7xY2JUlLSYPlGe/Jn8316sLu51yWbj3edmLsofRRpuaUG58vj/xN/c2H5zISfwKS5oXhiNOKFwVjvf0JdOfF5ab4/+7M//R8zCDP9HEhDCscRjiMASkSNMlHgBCVkic0QUCSOQ0CccIT5PWJ4IDCEKIR7heOJYxIfCCgjPkdAjxCEOQ0IXVyWhTIhFklp45Scwy5e/RVSGaDpxGeKHpGeSMCA+LskQxiW8QC6Mk6dmCacQxiPNLqkaBNdNKOShYaJZ5FurpKmRgQx5YoCMpElWxSVJRyerNVLukYEkeWGE/mbnxkJsqyfLLm+W2a7NKmlixb2q3htKBk8NkHTMd3wOH5/nRZ9vtR0/YDmf81nflf2IxERikkB8mcdtswHhHBLgw9ok8KzANj3cdFGOYZbfeXWL5yTq3HABE7IBdg9H9x8bMvT/DBviDnkGq8JxDMfiJYShK4yLBb7vMUzge8TzmYDBogX4DD4uEeLlIcswAsP/8qdzmOXpX/gdLxQYjuM5TmTxfFiX4fEyiQ29gA2Y/sDPeA/jsfTXgYd5GIZjAnwI3/Pw0PAhg8DH0wgCN3A9TOYErBeEHOte/dovY5ZDsdkmNUWPRDS77STdTdlu78ZP1spLzZ3i4HBXHv642yqJYWerM/MV7shj6uCHhbfeDVbedejbIywnMGyEd93AaiU1gY+w7MnHGVUVqwtuJ6r92Z8O/bWTmAlDV1Kikgr5kWKST0alMyOcE2aqnW48GReC2wrZCU3FkFcjyU/1QikemiTghdhA6I6aVpIIarm9ELiZXu/B6SPToru54z8TV4gcH6puerWduyvl5QOxOTfwZG9kfmBrcHC68KB7e3xkuiAMRSOiya28Vb/SY0gsknYLsa4c8Jq/F768fLzEqDw3QBZ6u/ERZrwcdKvJR0dP++3epmNc2S5Njxe2mOU64yaWS/Utjfz8wc34RBYgBVR4HDx/CY+UcCKeBwlF+htIFIfthO2GncxR6cKQFeK5/b8ydNfjeypYEKe+vGFLCSHxcSn8kg7RJ3WN6BbBxjQ8iBcVG5EnDEsCiUi4mE8UjvguSSvk3ADZ0YnukGKEuC651yYtm5g+2W+TeZUMJEhDI8kIme7/wwc3DubA148bbFY1m7a27QpSII2JUkb0aoZVaQe3nVgmm+wJuuq3xiWZRLxN36jZ/Lgs5SW+6fuh7+ZNPh336W36HJ4Z1QSM64S2H7hsGD3cYvjkTIgND92ADcn4TMgIIeQC3zH4HloHQkfXiGPw1fEIj+uxDASRwVe8gAuhf3zdw9YmeDm2dRiyLA9pghBQEeoP05ccrBDDUemDhEHaAobnGIuF3uHwB/wer8fvPUgBA0UHGaHiybOBADGBtDL0FzrmDULfs3B/IhN4nOBCvsLDmzn8z4PF7WJquB6Rba/CNXXLb3KTYxsLjfvxduqG6OyrXuwEs6THBi63Z8bI58aVOh9febtH5CgbVwpznJIt21tsUUodOZJQPX1jXk0r2vhz0obO52LMjHhwS4k837SyaSXJ2dXpEydVofP+f/ndsy/+LSWalOQsuftn7999NfnQucnoMdZyZD40nfZOvTmSPhGVo64QN1hlbeudY2MXWZW8vTRVbomnJycm5ezy9uL63vK1O9hUdDzCXFq91iud3ZX57YTNPKFeHFFn3Zz6/dLN88mjBf70htNb4u5+V/3fBy6eF4fITHfQLRujT2hdLcimIyJbfIafTiyfcFudprD7x8nXm56lqBU7RV5rphq7kb/bn4WENuEkqEniCETqb3SsP54DhAHqDf+w8zmOQC5gZ6BQsavwS/wIY4HvYX88++BK9CvLUjMl8ERmieOSoG8X+jsMW01WieeRiEygPi2biAKxfbqrsHnKNnQxvXzTIMkEcQOSVokRkopG1tvEgpYViCIS0yFlgyq5Wpf0UiQhQdv17Vz/+QeFZtve7il7LX8nZY4nVjpefChwhaDGBE3XF6hQqX7PfLnenRpyTJnxEj7RnNWmsWVJkxFYAE9iI7jNIBQjMLuhptmOw3Z1O56UQ2zYaP9GYTKoSMBwYStT/Q6dzrI0uGZZSEfAhXTD4v+4IR5/gNWiQsZA/dP1IbxjtDTNFKUUDDnEBOLmhx7ejn+EvpQOn2UEAR+F41n84yExrufH4hLWyIbJpv+DgcFiswoPyWFcO8CzEBh8NAgQ/QQ+BDkgggCpCg2T4XgR72Vcn4Xg0udIxyfSM9a1NG46PlLpbDJzfvTiWLMwJ00oR+M9fYNsX73fIr6VjY6u7ngxWewZO81bQ8efJ/vbbnLI8aWezCz2TFVwBTOw7y3xWtmx/Fi4vbG/on95JPKQlOhPZoVMJCJGogNVreeuXUnO5MXBE0aYlXguEUs9+9yP+0KmqUvTTJQLGvvdJavX2t+2B2IqTOf1tf3NejkXUXSr3WNmkkn9a9/69vZK9G/88v9gSiNK0osrm/1JiNyQSDciZuRMIPCT7Ztbf67dPj9cOLFY7eRzxQuTR9c3385zseiAtplYEvb5U7nHw7gylT7aufvtZG6kd7dl7e1MugOaVk5Y5G8MfvG3ey9zU67cjAxPDfYGtYNZiJAkSoTuX+x1qhLhlWHfwzHDc8HOwa7EDoHk9E0NVht7HN/isUCW8NUxiYS3wFJAa+LtePgC/RNUKYGfdihR2O7QwLgSxI3F44OFU6h5k0X4QNSj0X1qTxIyYRSyViUST5LYIR6ZKpChJHlllyztURM4naMeGsxUTiGQSHwcPPjI4cMnqufaTZ0vuH6s1/GXGHdGbJKoqXDwzXTLifjV4SDCSMx+UrISTuAaXFucb1u1TjCrSlyru6awvBfqnjIYJ5HQ8TTf4WBoI6Li6PBs+AOx8VieD13qJEHgccMclRM4UdiT+BEbHbfU/4nzYZiol+Qx2M/4GxxhLDq+I1Jlf390IsExIuxFAJHzsNA8FTm6znRQOxRCDvAuFtbBo9aEa2iMgDdwsFs8LgPh8Kmhg8nG84HNwltCGCiYLLwXryHwQemqBwIeGicE1I+ghovayv44XLmxRFEbNG7EtuKVFKe3d5c3pAX/+IfxwedT/iiDB9xcLu2TtnZipdgUMyu2WDCSk1r7Hbfj9zYj1bphbxY7Q0LqCTvvd32OFQO+sffudT0WaCccI1E9mGyrEh0tFiQxE+PmZSGmWTI0z/rW/XNK2jdDmJexobH5u9dqO/fm9+crRlkMEvmUv70fbfXKC7sWo8knnv30rYVXjp56Jufuvvhs5Ma15TsPVrPFS/76jURi+WCWenejG9v/4r2fjwaTu+OvLJdWXy3fGIMGZNhzUSuoVF9gHu1WN4dbP/8bW7/7XPNzY9ULjbVvjOTC6HrmsYd+ZYX70cbYKzMlpd4ICunMRPbcc2TnXmtdjkvJ8mY+vXcwC5GYvs+EBcRTZYkK4wI/AFsff6f6kz5mmBR8TwUJv0RQArnCc8AegFWBsOEx4NlBwPAeKEA8fY++BkEOzEp/eHg3R1R4cxA0SBwhqkxMm+RU0rb6PmBI9jRiw7x0yPEUadukYpKeRi6Pk+EoeXiIxjYKZuvvuoJ
"text/plain": [
"<PIL.Image.Image image mode=RGB size=274x138>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Train :: Epoch: 341/800: 100%|██████████| 135/135 [00:11<00:00, 12.20it/s, Epoch Loss: 0.0424]\n",
"Train :: Epoch: 342/800: 100%|██████████| 135/135 [00:12<00:00, 11.15it/s, Epoch Loss: 0.0424]\n",
"Train :: Epoch: 343/800: 100%|██████████| 135/135 [00:11<00:00, 11.52it/s, Epoch Loss: 0.0444]\n",
"Train :: Epoch: 344/800: 100%|██████████| 135/135 [00:11<00:00, 11.73it/s, Epoch Loss: 0.0428]\n",
"Train :: Epoch: 345/800: 100%|██████████| 135/135 [00:11<00:00, 11.97it/s, Epoch Loss: 0.0423]\n",
"Train :: Epoch: 346/800: 100%|██████████| 135/135 [00:12<00:00, 10.92it/s, Epoch Loss: 0.0432]\n",
"Train :: Epoch: 347/800: 100%|██████████| 135/135 [00:11<00:00, 11.28it/s, Epoch Loss: 0.0435]\n",
"Train :: Epoch: 348/800: 100%|██████████| 135/135 [00:11<00:00, 12.06it/s, Epoch Loss: 0.0432]\n",
"Train :: Epoch: 349/800: 100%|██████████| 135/135 [00:11<00:00, 11.77it/s, Epoch Loss: 0.0421]\n",
"Train :: Epoch: 350/800: 100%|██████████| 135/135 [00:12<00:00, 11.18it/s, Epoch Loss: 0.0424]\n",
"Train :: Epoch: 351/800: 100%|██████████| 135/135 [00:12<00:00, 10.65it/s, Epoch Loss: 0.0407]\n",
"Train :: Epoch: 352/800: 100%|██████████| 135/135 [00:12<00:00, 10.78it/s, Epoch Loss: 0.0442]\n",
"Train :: Epoch: 353/800: 100%|██████████| 135/135 [00:12<00:00, 10.50it/s, Epoch Loss: 0.0449]\n",
"Train :: Epoch: 354/800: 100%|██████████| 135/135 [00:12<00:00, 10.91it/s, Epoch Loss: 0.0444]\n",
"Train :: Epoch: 355/800: 100%|██████████| 135/135 [00:11<00:00, 11.44it/s, Epoch Loss: 0.0430]\n",
"Train :: Epoch: 356/800: 100%|██████████| 135/135 [00:11<00:00, 11.57it/s, Epoch Loss: 0.0428]\n",
"Train :: Epoch: 357/800: 100%|██████████| 135/135 [00:11<00:00, 11.84it/s, Epoch Loss: 0.0431]\n",
"Train :: Epoch: 358/800: 100%|██████████| 135/135 [00:11<00:00, 11.97it/s, Epoch Loss: 0.0408]\n",
"Train :: Epoch: 359/800: 100%|██████████| 135/135 [00:11<00:00, 11.59it/s, Epoch Loss: 0.0426]\n",
"Train :: Epoch: 360/800: 100%|██████████| 135/135 [00:11<00:00, 11.53it/s, Epoch Loss: 0.0447]\n",
"Sampling :: 100%|██████████| 999/999 [00:16<00:00, 58.90it/s]\n"
2024-04-09 10:14:05 +02:00
]
},
{
2024-04-16 14:33:51 +02:00
"data": {
"image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQgJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCACKARIDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDofE/ifxVYeOtYtoda+yaZD5Qtovs8TdYlLclSfvE9T3qObxvr8McmdVYumP8Al3j5yPZfb8qz/iFam58banjk5iAGf+maVzs9wfsyIJ98iwqAkILbyrHk+2QPzHSvHr1ajm1Fn1NGlh6dKCcU21fZM30+JXiF4pGbUZEO4BcW8RH4/L16mnQeO/Fs0M7NrGx0PC/Zoskdjjb0rl7S6EKpEEAQgEysCGD9+D2z3xVlpzJmZIblZCVKtnIweufc1j7Won8T+8740KE9FTX3I9Q0nWvEN74X8OTPfj7ZdzTJdv5SZZA7AFRtwCMDHGOea1dZ1u50mwhkkvmhaRiEefy1DezHbx1zwO1YVgyReFNBl3BChuHQ9wwmB7ZGOOazNT8TaJ4k1jR7DVLa7jSKWaQfIVDybSNpPGAM849B2Ne3CT5U/I+aqUuSp7sbq730vZ7ef9dDrH8ZxRXAthKs7EZ3IVyxxnjtj3/xrOs/FOq3lo8ou1xGxDMiR578EHsOOa8ovNCvtLuLqVpovs8bMYws+9pFBOFzgc4AJqjp2p2E0t4sEzmJV3LFvJG0nkfX3HY0KT1urM7MHRU7qUFF6b/n8/I9isPFeqy+FdWvJbsPc23lGJhGgO1nK5IAxzg1hf8ACd+IXbC323/tjH/8TTdFtbS20bxZHb3XnI62UpbP3NzMdv4YrGmmSJCxBbHpXfRiuV3XU8HHzjKu3Bcq7HUxeLdfAw+pKx/64x//ABNX5/E2ri13JqIV+OfLTBP/AHzXml7qsVvc24VmAuN0SqR37fhzV17mW41AjyyI0wN5HUjtWcuW9kZwlZao77wz4o1e/wDElrZXd55kUm/K+UgzhGI5Az1FeSw/E74kTrL5ersfKAZz9jgwFPfOyvQ/Byt/wmOntj/npn2/dtXH2b2i6bqN3CFgsBLGHj25VjhsAD0ySfbFZ1VZroVTcb++7IzYvij8RZY966vhMld5s4QCR/wD3FTw/FDx2UkeXWwAB8oFrDyfT7lP0zX9HuE8vUI/Kt4V3CKOPPmPwCfy5xkVFBo9pqsMdvZSPI0jqyyOeIRlgQyjpkgEfWso1FZtrbcFTqVIuUNbK5Rk+Lvj1ST/AG536fY4P/iK7rxr4u8cW/jzWdM0DU0jtbMQsITBESgaJGJyykkZJ715dZ6fHcyzR3Q2H7qkj7p5/wDrV6NqkFtcftC6pFcPtYwIYgejOII8D8ske4p1PdVyaUuYxJ/iL8S9LkYajdTIi/fdrKHav0ITHcVWk+LfjcbmXV2CE/KxtIcAfXZXrdnZWK2uL2aO6DHcqYB+XOAPp2rO1vQYtb0u80828cMcqgR+UoyhzkHt6DiuX2lzo5NDyk/GPxym8HWsnPH+iQ8f+OV7T4L1jXPEXgnQdUutUdZ5hcG5kWKIeZtlKrkbcAADHGK8OvPDek6dqc2ianK0OooMxXccm6OQnkeYD90YwMDJr2LwdBc6d8LtEspo9j5uPMI52r5zH+RFaKd72Jt3O4TUJdyxlyWJyWABGPyqO6ub77OZIZWVmHyjavH5ivPH8WwrOqPN+4kmIQrgEhBzj8cCut0jVYtTtyQ0pCEjc5GT9PbGad3a47q9jgvGfi7xloarNbayY0PBT7PC2D9SlVtE+IvirUvh74q1BtR3ahp4tfs8vkRDbvkIbjbg5AxyD7Va+IbBdLuXkiUAgnJ64/pXF+DrhIfhj40ndNwik06QqDjJE5IGfwpxd0OVrDP+Fx+MLa7jI1+S/jZAWiWxhQoxOCM7Oo4+ua6tvGvj3xTqMEPhe/ktcQZuI7m0iHlyZPyklDgkAY+tSfBzTLBrafUmtIXv7qZpGmYgssecrheq/Nu+uAa6rxD4q03wlq0hitJLm71AiYxwjL+ZtAGQenCrx+lHMk7dTM8j1D4o/EXTpZobnxEkdzExR7f7JAXVgcYP7vjp61vfDD4m+LvEPxB0zS9V1k3FrMZRJD9lhQNtidhyqg8EDp6VnXKWFmtjc32nI7srfaI5Lfy5XZuQxLH5z1/Os34WiFfjfpiwRLFGZLlkQHO0GCTAzTTux20ud3ovj3xPc2t5Lc6rdTXI+SKGOxiWMShCSgO3LHIz1qGw8beNI7CGXUdaX7VKnmeT9miVYkwSN5CcN7e4qlorONAeNnZbiCBT8kYA7/NtGAR2P4Vzut6sqTpa+a8URj2CNSqtv4ABOMr/ABZ+or5uGIrVakoRk9/yXTy6/qetQp05u9tDpNa+IvixIUXS/EGbmSPzkia3gJZcnOPk7BT168+1cxB8X/H0g3jWy6rywW0g4A65+Tis6L7JeXZfUQ73AAiiDEhVHoQOTnPr3retLzQzdQGW1t3e5iNrdQKvlrGflIwo75zyPxzXoUa8qaUJNyb/AK/rz9RYrBOD5tEj6booor1zyDxbxzlfG2pMpUPiMLkjn90v5Vx0891cRDy5MtAnlKVOFPAyRx0H15Oa6fxxA/8AwsHVppZFW1zEHXdy37pMcdTXHi43iSFZGZixUMnuf0rwq7bm0u59tRpXowl/dX5CwQvcQr9qBPlDIbG3oewFaErz/ahZxFt8ibTHHkn/ACOcfWqcsiRiPa2QoHzj7w5qO88YxaJIv2S1ja52fffk47c9fwpUqUqkrF1akKNP2k9EvzPSddvRpnhHw032d0lWaTmMglfn2ke+c5/CuZfxIt7pnmzCNo7dWbDR4ZMEgEfgcH2I9KyvEet6q3w28F6ulyhuXe/LswGWJm4wO3AIrjdI8R+dfD7QxjklJ3yhiVIIzggnjpjj1r3YWiuXseHRxVGrDXe7f3ttHV3niyymQ+dEuwttkjZvvAZHGPfvXCjTpxcGe3DRl33R4645449qlj01H05tRUkssmGjPQAnGa0re/aJi4ORjAHqPeuatWlHVI83F5hKq4yjpY9K8Jk/8Ir4rilZZdi2QO5cEnew5/Liue1TUGgUINvPQZ5Hv9Kv+BpZbzwp41d8FnazIGeP9Y9Qy2MMds7XijYxHzIdzfQZrvoOboe7uzzZv2k+eZmWdsuqTW7PGxEZJV27E9/0rT8h7W3EUbS7lZmBl+8T6j261Uu76XFoumI+5AQm4YLAdh271bg1Nr9lSclJFTlCDuQ5xxWtON5O/wAS6/ITdku3Y63wUCvi3TgzZY+ZuGe/ltXkdvqUy2Ij80G2nB8xSASCOPw7GvUvAkdwPGmnl1Zo18zDkYx+7brXiEEbzymOIsF5GT3NRiVdpehK+HU2Ds
"image/png": "iVBORw0KGgoAAAANSUhEUgAAARIAAACKCAIAAADpF1LuAAEAAElEQVR4Aez9d5xl6VUdDJ+c7rk538q5uqtzmNCTg6SRRkgoIyGBkBDY4Nd+X4ON8Wdj4/Rig20wNiIYkbFQlibn3Dl3V3XlfHO+J+dv3a4avp//9N8f5ydpRjPd/dQJz372XnuttckgCIi/u/7uCfzdE/g/eQLU/8kv/rtf+3dP4O+eQP8JMHuPgQwxBEedYIXPCvScH4REIlWYYxmB50gvEvUCm2GJRmMhLEohLkHZqlba4kSe8kTT4wIu5DTKREQwLEtTtIgo8STl0O4SGVvlzdc8krfNl64VsdDSL/2PYFWf/ewH/9Grv5l84FGa5v7xwZOcmyoTxF/+yX9/+IkHz9Sb5hFRWM8EH5jxBgXCFWiHKbYrIU9hn7lj1h123Io8OEt+f4u4Q/i5CNVR5q9cDw+zmbFxY9yJ/9xPYZVf/e0XfM/3GZ/0KJIIXMJz3KD/H89wAo/0aIb2JYZKCnRUIDj8iiDQbZJn6UKEZWmaIIOm4aq6V9M903UENvA90g8CmSVon9Rd4t/+8y9ilXhuUGDpwPNpjuQZwtVMiqM93zNcb0aKx5jQemAbjO+5PuEEgSAxfDgg/MCl8GMxLElzIh4v/lxT7XiG4pmmSwU+ViK9gKB5wd1d3sUqh6ZGLZ8UOcbULZcmcC++i3/vI9qJPJ2XmbkoGUpHbu4QQkysdPRWs5PkfDkW79qurug0Q7kepWmmbQVylB6TfddwFbxOgm3peBDsxlp/lV/8v39ZU5rJZOqxMyePzIy3WtvTsycIVqJdwrV0VVNCchwrqlbLtZ1ao5SMFXxD63Va25vlRrnU7LS7Pe3O4mqvqym6aXqu7XoMQ8WjiWwhz/LCn3/3W1hlfCDv+qZquTwvqF0FT0bkmYfO3BfNZXWz9xMf/SAp5taq29/967+8c2tVDofVtoKbogmGIplms+r6NI+3wwSB7/oUxTB0YLkMzVi2Q5IUKdBaR8Mq//7nxjOW/EvfvBMeiH3oRPq4JMxODV2333v5GVPwrAHmwHJXEaf0j7jdI8f8BUvqOdwr1/VM1PvCqPX1V5IPa73/ZdibskgQPMuLgd6WWVog2R6JBf3DefmZc1tYZX/bEKTAEcGTQxPHpFA0cFitIkbD4sCEV90gOIMKu3pXz46NddbLlkByjY6Nj/DgDBPLdtoNbkeL9SJKp131AjEm0KzM0KROOJIsTK3ZC1TPygtYCZdXiL/2+pVXXlZ+41/+a7EwqVOEM1+2okFkUH7sp5462BhtKxuEFQgPHiDxU/6w7cSFbanCjdR58YS9cN3Z3Zb5af93NunDCSJc1sM2m4wkN8hIIJbfvEqlJuJ3V8GH5eMLswOPcF3XcwjfNQmXJSg8eJrHmixNcT7rao5FUthWNMMxlBdiWZ7lBJZhSF+gWI8wYq6xa+o2zSoBh+/cdgOBIRjavLsIgV8Z0IznW5RHYHsi1XV8lw4oiqDXez05THm07zg+XiobsH5XJ0XPpVjC8ihbZwdyfCjEOoziaIRhMqZH+fhpSYoJXD+gfE/X9jNnVcV2oiia9WnSJ3yy/48DnmERBTyCqmvBez1b2KmPjGWwepj0OpTPkb5r24bjeCTlW6SP/9v/nb6mE6bv4usnTdemfIrmbOzQu9fsaP7+Yx/IpLOGQ4cjcjqR9W1XEDjNMKVQUtFtjuI8wudJ2Qt6Q4MHXVsLqATveOGULiBMNntyrdHpKapZ5PFALS/AvvZJwjU0VRUcd2+VWCy6W9QH83lDV3WScbChJWZpY+vM4GAhPW6qfiROD8ZSMTHECoyhqj72rOqwnM9wLouLwnsKPESOALeEUIj7o03bl0QuFuJV3N7d689fUh8MKSNh9nMf8L7weSIaKGpr/qUX7cUGG3F4hWp8/B738EEioo+Xd9eameDee6yJtB9OeG9flw+Mu3bV3VylSBc/voOQE3CcFtA2xbGIiQHRtvazs/1tQ7nEYzH5S2NTIZ/1xnPE1h05LHuxiGqEghk5EF13cbXb3OEzdLfRaaq27DPmbj2KHzmfdpeq7GhaaljWtmKbXjRka7FwPDs6WverkRDXclqmt3dLzL2J288YoylXjObMhYYdFbx2i41ybNO7l5XVa+/WX1ouHP+iN5wgf3SJLNnBJWfoKaHZ7Qg3627AObGkh88OR4NBuh+YDXFxd3E5lS/oN3Ykkhbp4b1VuqaLKO4EVoDPhcbDD3Cg9L92kpQYOxTGNxgIlCtQPk9QHrY4jsaAJIn+d8kTrmc7Es1aNM4QhqY8nqANEn+ww/g4GlyR3n9w+B5dj0acY1k/wrGKTdq2K4aImIhPyLJtk2Ipt78lBYrAN+T7lheWOGzngCDTkRwnxzua4vfaAYGTjvJtkqMcnyJJnw4Q5J399yKFJNyGphssG1D4Wsh+YPUd7HvSIX3PCzybkUQ6bdO6awYubtqnGNpxHMvBXqb6sRlfgEvgN4UIzzO9losfhLJ4wg4Cy9j/1I4OJ2Taz2SShkUq3WajrchDUU8XVFVtdTq5XMHUe5ZjibzM+QFN4bjkEJZ4ISTLiZWleZbmU7l0vpvWsE10q1L2PGxNP+jajlFvyCIid//qqWrAUtlM8uFTjzt6+y9+9O7I+EBL6X33By8W8gnbvvc+KT6aSRC+zeP2eI+TJYLtn7CqZUkSQ/OsoTvRuOC6dqeHMyjwAwJRbiAVSsfCKzv74ayrGR/9cvbHND6ItzNCyeyosYRQrbOGR5kN68yHop//lFrrJF8+2267gbbpLpDUPeNBKBd0rhEfvNd86c2AEUSCRLAiqUAIWBI3gw/IweanmI6+v8r+6znFc3PxaCgZZgzWY0kycPSw57SWan63vtyYygtyOloyTLxApdpW24Yj02Sx1eg24nSI3FTbOSOw8Egp0rS4eCy474xYaVlGbTAu/BQf+bZf33twPs0MPjz+xQ8/qS+X3JZluqHQUEpL2tZfXRwwJCfOT//S14ixXOvtW6Hra246EUqxt96aD0c6wXJAMrZNOKrp8NjPAm2+/qN8b9DlfL9ZVzpl6cMTWm8lcncZzXA838QXiG+Qsj0S3yHCNR4xTQk8GUVqiNhN41Rn8CkqvoszRyb9qECF8U8JkrYCpKa+z5KCn0mnO6rBWf1PErkHEiju/fPZR/qAlMX2Uywtsr4tsxLJEtipiEB+QNIUi6gZ+HI0wTKi6ziBabE8krYQoWqMFEXYD3hkeE7A84GBl+EhIyZoyjcsJDg0ux+hPY48mssPJeWtntnptUiWXdtuuaTbT9VsHDyE6diCFC62jf6b9m2CDjQcVgr2Bi2GSJrFMYbEAA+MsC2yyVMWSWgUjZMRHz/1fqoxkBniwiEHzyEiSHyUyOW3i7ues80Qoq5aSrcVi6Wau4v9JJTkYnLYNLSt+i5Dyx2tFUuneJqxPb9QGNUNY2u77CMs4xgjCbufeTo4evbefiIWNh2zXKq0egPpuOxTwcXrd3BoMiSxtbbz51ulldXi1z7/VLdlRDnxUx/5yNHHPnD95s1v/c1f8H7w+JOPrW5tDqVTWq937uK8o1vIoQI6cA2vWCeanR5F8Xur3HOEKZZst+ncrDlOiCokuEqDVoqe1fG+8rHB//gv/LUftK12jiOZpz/qV9Yco8iSPPHD+bAQcqQQeXKKurXtnlXpiBggteVxCdg6eNCG7vptj91bZf/J/cZ0BmGbaDdMx+/dNEKS4iUNrpcQHSdV7mZj8WqpuVvSODrwbUuUKBaxkQiikbBfUemCiI0kEkw0IZiCROeGye0aIoJrKUGtEw+700JobzGq7A+OZOm2LcXodoy2s7w0FGZKzZgb15FnFxf5yAy/ExjkRmNQGVry6xPiXxTf/MyppyfMrHJnQeu0qVAo9PCodHBAO2W0l1peJ6yVSmwhRo4m62ev5e8uQzNkfytgCzhkP21yLYISAh71DjIDmhYDhmL9fsGD4O1Q+H+cwFg60jJHa3uERMqcGFAWYSk+wbCC4Ws4h/jANz0fsbvnGnv3wg8ILE+2llVSpBTNfvzMSd+Kn1+/qJkaHWa
"text/plain": [
"<PIL.Image.Image image mode=RGB size=274x138>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Train :: Epoch: 361/800: 100%|██████████| 135/135 [00:11<00:00, 11.40it/s, Epoch Loss: 0.0459]\n",
"Train :: Epoch: 362/800: 100%|██████████| 135/135 [00:11<00:00, 11.55it/s, Epoch Loss: 0.0399]\n",
"Train :: Epoch: 363/800: 100%|██████████| 135/135 [00:11<00:00, 11.91it/s, Epoch Loss: 0.0418]\n",
"Train :: Epoch: 364/800: 100%|██████████| 135/135 [00:11<00:00, 11.49it/s, Epoch Loss: 0.0436]\n",
"Train :: Epoch: 365/800: 100%|██████████| 135/135 [00:11<00:00, 11.38it/s, Epoch Loss: 0.0429]\n",
"Train :: Epoch: 366/800: 100%|██████████| 135/135 [00:11<00:00, 11.81it/s, Epoch Loss: 0.0418]\n",
"Train :: Epoch: 367/800: 100%|██████████| 135/135 [00:11<00:00, 12.02it/s, Epoch Loss: 0.0415]\n",
"Train :: Epoch: 368/800: 100%|██████████| 135/135 [00:12<00:00, 11.13it/s, Epoch Loss: 0.0431]\n",
"Train :: Epoch: 369/800: 100%|██████████| 135/135 [00:11<00:00, 11.38it/s, Epoch Loss: 0.0410]\n",
"Train :: Epoch: 370/800: 100%|██████████| 135/135 [00:11<00:00, 12.12it/s, Epoch Loss: 0.0446]\n",
"Train :: Epoch: 371/800: 100%|██████████| 135/135 [00:11<00:00, 12.03it/s, Epoch Loss: 0.0429]\n",
"Train :: Epoch: 372/800: 100%|██████████| 135/135 [00:11<00:00, 12.10it/s, Epoch Loss: 0.0405]\n",
"Train :: Epoch: 373/800: 100%|██████████| 135/135 [00:11<00:00, 12.20it/s, Epoch Loss: 0.0401]\n",
"Train :: Epoch: 374/800: 100%|██████████| 135/135 [00:10<00:00, 12.69it/s, Epoch Loss: 0.0430]\n",
"Train :: Epoch: 375/800: 100%|██████████| 135/135 [00:10<00:00, 12.49it/s, Epoch Loss: 0.0418]\n",
"Train :: Epoch: 376/800: 100%|██████████| 135/135 [00:10<00:00, 12.42it/s, Epoch Loss: 0.0447]\n",
"Train :: Epoch: 377/800: 100%|██████████| 135/135 [00:11<00:00, 11.83it/s, Epoch Loss: 0.0424]\n",
"Train :: Epoch: 378/800: 100%|██████████| 135/135 [00:11<00:00, 11.98it/s, Epoch Loss: 0.0408]\n",
"Train :: Epoch: 379/800: 100%|██████████| 135/135 [00:11<00:00, 12.18it/s, Epoch Loss: 0.0407]\n",
"Train :: Epoch: 380/800: 100%|██████████| 135/135 [00:12<00:00, 11.24it/s, Epoch Loss: 0.0451]\n",
"Sampling :: 100%|██████████| 999/999 [00:17<00:00, 58.73it/s]\n"
2024-04-09 10:14:05 +02:00
]
2024-04-16 14:33:51 +02:00
},
{
"data": {
"image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQgJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCACKARIDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwC38RPiF4o0XxtqOmaVqvkwxGNY4hbxORmJGPLKT1Y1x0vxR+I8JRm14GNycYs4P/iKsfFqOZviZrJiG11+zvGw6kiKPI/KrfgDQJ9ZkVdYtk+wRsWTYMKXYH5c+vfHtXHXrxowlOTskTRjzzauZ3/C1/H6jLa8AAMj/Q4Pm/8AHKkk+LHjppoSmubY8fvALWAk/TKVseLfCFvpDuy2xkjkX9yqfeHJPNee2/kEtJgoCwVFIzgetYUcXGvD2lN3Qq0JU3a56trfj7xLaeCPDF5DrrRX9+l75khtYv3rRyqqZBXC7QSOMZ71zb/FvxaihF1a6ZO87Wtvz2+XCYxkGszx2gi+Hnw/R2LnOoAMPeZMfpTU0rVRD5PkC9giJIt1Xa6AcD6jnNeipe6rnbhrNJOK03Z02nfErxhdx4/tWZp3UmBWtoVV8A8n92cdOnpWgvjHxrcQzTz6zd2jR7i0UFjA6oB6lkyTXDar4Y1c28NxaRO2n8O00D5CFuOnXAHXiprrWLiz0c2V8J4biFQn24MGEkecjIzyRnA59aIzt8R10/q6k4T6f1ud/wCHPHfiS88L+KL241SWaSxNp9mmmtYoyu+QhxgLg8YHPTjpSw/EDxHJBC7aikbNyQ8KLu4yByvoQf8ACua8GiAeC/HEKXxuURLHzTj5FfzH3BfUcDmsttQha0Igd2RIyTvG3aOCT83U/wCFeXjpS9olFtej9Thk4c7tsdxH8QvENyUCaiEMkgVF8iPn81+lTt4z8TxJMX1E+ZGVQIYYxycHJOz0PtXGyw6hGltJs8pQpPH8Q74I/PIq3Lq0ds0sMrJM9zhcMfmc8ccfnXmqtWjbklf53I5L7nZeFvGGvX/jXTdPvdWWWC4Enm2/kxggiNmC5CgjGAevY1g23xF8UXF3PCNSxtHyf6PFzx/u1m/DO8EnxNs7WNVCIZXZVUcHynGc/jisa0uAmoST7P3UYZBjqegNevRlUdK0tzLd6HYaH8QvE96zxy6kJGBzuMEQwPThauHx34il1MxQ6l+6jT5h5MeSen92uR020Fzf3X2ZgirjeQcEDPT68GuqXw9pjWcN09w0Ui52jdtdNrcg/iD1rq5Zy2ZUXaOoul+PPEksUzXepKCZP3Q8mMfKMj+7W74r8T69p/iW8tbK98u3j2bU8pDjKKTyRnqTXCalE9vcPLbWqvKcgGMk7T2GD0GTXVeMyV8XX5BGB5ee+P3a11YVe8+Y5sQ3GOjKR8d+Jc4/tL/yBH/8TUU/j7xRGQBqYBPP+oj/APiaxI1eRy/kso3EDceMZOP0qO7RVYzNn5UIrtdagoe0srHDzVW+VNm3/wALA8Ud9U/8l4v/AIml8a+PfFemeF/C95p2q+RcXouzcv8AZ4m8zY6heCpAwCemK522iFxLGh/dlhli/ReMnPtT/H9nNfeDPA5ssmM/bGyeCQZEIrPFypKCUbJ7/I3w0qkm29UNtvin40MSB9X8x2Gd32WHgf8AfFaI+K/imO0lje7iL7tqTeSmR7kYx39O1chpWi3c89v5zx20Llg0hYNswOCQOeTgfjWiPDN3f28sqyqcZJJBC8csT9Mjp14rw+ad97HfGnOWttDYsPiH4zuXlM3iARQxws+/7NANzfwgfJ/nBrRX4h+KP+Fd+LdSOqE6hp32PyJTBF+7Mk21uNmDlfUVx8eg3k8DPFdxsRgFE5K8Z/GtC40+Sw+FvxAEjIxd7BtydCfPBP8AOtKcnz2bKcJRSbRzUPxn+I88oii14u7dALK3yf8AyHW6PHvxXhSJr7V5bbzpFWMvY2+CCGJ/g68Dj3rmfAumWklve3c02LiMIwiKBw0ectkfh+ld7d69aXliq3IRJUfMUbH5Sfugj2w2fwrzcZmVWnV9nSjdLf8A4B30MIpw5pMz7z4hfEOGbbH4k/dLAszyvZQcbuigCPr7VpfDz4i+NdW+Jmk6LrOsedaT+d51ubeFT8sLsMlUBHzKDjNWdDsDc/aWnEDW77WRnIAG3vz16cYrG8C21jbfGrR1s0uJH8+6M1xIhCuxt5OFPfnNTl+YyrVnSlrYnEYdU1dFyw+I/jfVrgx2Oss5PAH2WHg/XZ0rSvfG/jPT5zD/AG00wThpPskIBP8A3xToorDQ7CKZXRZSoYnbyfYmuji8MJq+mzzSOFRwvlEY5Pcn8x+VcMcwxNes1RT5bN/dueLBy5tTlH+JHi4KCNSwf+veLp/3zVe4+Jvi+KMt/aZHGBi3iJz6/dps1lFdapPa2W2V0JARDnGDtI/MGqes6DcW0yLFGCrqOB1DY5FOOYybUZSafqdNf3Voz6Tooor60o+avi28S/ETVVY7GZIhv7D90mB9f/rVk+GfHGqaTaW0DFJbaBnuUilX5VkAPpyc59a0/i3EZ/iPqo27kRYiQBk5MSfrx/KuTggWTTpWWPLYIAYYGfX6VwVaUZpxa3OdScZNo6HxT44/4S67Mvkm0t0TCRly2Rn27muOnbawt4U3YXewH8I9T/nvViKIWgYXEgw6ggKM4A7VJFH5s92YTyIvn7g9gP0qKdGFGPLFWSE5OUrs6vxRqFvp/gDwI1/ZfaYZYtRR4yQCMzIQf0rRTRdWtljvdGmkMbxhkjkfdnIHyZ7A8VgfEkP/AMK58Cbwdy/2gM4/6bIK46z13WrLTlMepXCRNlSgl5A+npXba8Fc9LDVuSLi1dWLmo6prNrqt6iySxRWLGEIpyiqxOAfXPNSadNZz2mqrvWSU2TiDcdzBgoYk59gyj8awbe5MtxCksaSAyjJKZZs8HJ6mtDw1PnWbG3YBbad2ikbaN3zqVIz6c1FTRNnPJ3lzHY+Arl4fht49KqAVGnjDDu0rAms7VIbWaGFJL/yo/LJRuSABjb7k5/rWl4Bh+1eA/iDCjpz/Z6hmO0DEr9TVKze3Nvm5hS4ZQIo8jIQ56gDqDk/jiuLFu04yXQlaE1hNdGxtkurp4ftG1rURsSBgFWB/Mce2aqMzwaghV2ZGm2K55ByB3pEu53eHLMsttkWyKOFOCCPphiaNRnvDmK7AEY3xgAKB15/njPtXJGL5rO2t/6/IqTVrHa/DjT7VPiVpdwkhlli85Fbbs+UxSZ465znrWBZ3hidtPmh2zxyhvNYcOp7/nWv8KGgh8aaKigHzZp1jB6oBA5J/HJrA1OK5uYbeZDmQMMY9Tz83tXfQbVP0en4D9DrbN9P0yKU7UVpXAmlPIIP6+9akWnxxRG6D7o2YlmbAfuQMn
"image/png": "iVBORw0KGgoAAAANSUhEUgAAARIAAACKCAIAAADpF1LuAAEAAElEQVR4Aez9Z3Rla3oeBn47x5MjgIMMFCqnWzfHvt3NDiSbTYpUk5IsiSI9HkmWf0hjW16SPR57aY3XWLJkjawsyswU2WySrc63u2/fVDfUrbqVC0Ah4+R8ds57ng2gKGnmh5bmN79VC0DhHJxv729/7/em531eKo5j8ifjT1bgT1bgP2UF6P+UN//Je/9kBf5kBZIVYI+X4fyXVgKfGpjDbK7SPWz5VhgFIeXFjEvHURThNULxAs1SccBxRIgEmec41nStyIgjJijmU3y6RNIeHQWt7YmnmYEVK9kMn6XNyPd6gXdgYSJVSb9cvTxyx7camwrP0yx7Osz/8ot/9rC5MVSj97of94gdiuHTldO0o1CGths0FlNLKZc+W3t2eeW81tzb2Lv5L3c+smnND5yUyNE2PWTiaoZ6gRFsh/56s41ZPveXsrVZdz6lVIIFNds0jWCc0up9qaxWK5QnF3Br5mjgDkx3pUy/2WCW1VqzLjjcvFgNI66rHXhskJ476/R6aoqUBMnfXH8/2M/lhNqguymv+b/1603M8sv/1S+LCt3qdGjCT8mWGo3yqcnITL+5w7i2ncnIV1ZOz+ZnadbJ8DrlhYFPqxLjxNF2vXm/3WFD4fVnLw5dTTN6j1rjTsd69vTa1cvX6p2+G7iSmvmbf+2/xyw//7d/NYgiLyQ0zTICG4chiSmaoknsBTHLxFQUh3FI8RITxCQOoyikqDiOKOJHgefjxTCOAk7gfLwrJgwd0wR/nryRignFBd//u38Vs7CySscCLXhlXjCFIF2SCwWZEYelpSgmtDVMhUEs0rmYl37yC58aaunTl35x2Lzdbt/90fd/ddwbat5wrpD2JnR7PE7LqZKS2zsc5WSFlk05I6mK9I2vbmIWiuIICfEDITHNkIiiWRIFQfJ/XBPuBJeNq4LxkxaI5lLJC3QsSfhKuJBM5QjusasRrEEYEawJ3swyyX9xlXFEju2mn/ziZ9upvYNwx+9RuTxHRY7vEM8jtktSabFQybK+kaaDgphxbIZjxUKGiRmGwraOeDsa6eGAj7mIUdnQZZRhTE0HXa8vDKyCr49CzSS7v51YZydiY+tBzHCKmArcmGEFigu9yLZHFkMEEnkcPpljCRtJsujGru3HxKXwJ75t455S5UK9ZxTYyVyqFPFWyAW2HhGNUCWjOD8V9jxVOV4sckleeSH/VJftrXe2vnT58xcW1+bcvNPreuNhicp9hT19MJP7kNqYmJPZ8nSuXPryymcZTV6unfsXv/mPqbBvDbp6ff9vvfKfN1XTtnwpdCQt3Pf0Funu7tw5JyWSicGoPk8yOz3mfqf5wkV3fpbr1NV7Hwh/6kv6sDvUecaxSKvHcYI0ifqMI+1ok4UV1qC08bgkRyPFyc1fLpHcLm+c7bV67VGnUqvRVafbPlgQi/fH3eNZ5CxvTizP90yjV80WzTAn8erDnicIRBFVnCmaZYx5XRYYR3fyaUkSBUZkvMFgZDoBxZ2u5R3P5+mARFyvY4ZhZBFsAZ+XWMZnWO7ECqA5hvYgJRT2R4TNgidME4ai/UjENoEskIihKOI4FGHiCDJFQtcPQ4gaTjuawv95TnQhMRTFUDEbJXKTiBUePR3GMXN8L4qsZPFrWnaJr9ASE0NGWVak9Q4VODlWtkM7VMpKqz34F//sV2fmM173cWu8OdJ2bNPgRUkKUp7H0WzMEb6ULXzm9U/duPmIZXiOdyzPMJ3x8SyEHInI0X9wqQS7nSM4hH0fl3nkKhzJDF64tkZ+eDcRrbk8ubRI7IgoKvlkg5gmoUKCtaFpUsyQ+RJ5dEhG2pOPP/rO8rKaKyh6W5PdgCVqllAeiUy6xFBLs6cEOmVMHsfa0AoCiLFLmWPfFx01dFxeKbph4LkMrjwIIp/ry6zQc2kqHHvEERkSSHRoZY4nOxGbiFCKJPmU4NseCWlFZVIKP7SIRDOhz4SOx7BRSEPIAqgICBCOTyYOlGw6XSj4FGV6tufY9e44k/FTKd5Ju4EXVWcEnpGmiilZPjo5CHkmc2YhnRUd92pm6Ryf4QPz5ub9O1xzf6nxwn3psiw/pXN+pVJ3W/ubD3IXzmj22PQOP3zvk/cO320x6f12/YvXvvLiuSuc69GWkFLkQDNx1NXZ6HcDUTt48/iWzFHYD3x+pE7PzNDsg/X1nu6ee+Ylea+1E3qx0wh8VmaJsJyJKJbPZzM0V9PdnZFtyoFAuWylKkbxgW92NjY3xTjDpPoRX1qYHhp2Ox6dKxeSwwbDMKzeZGI4riAzehhn8lk3pUS9VkwbhJFFkfRtayoX6aOux+Kcw+lNHNe3PFNzdDq2i+pCGDpQuO2WEZoeK9M0x5u+F8WBlygD93gWFrucoXkc04mGSU7kCGcvi4cSQQBo7CyCtY1ZwkQxRdFQLviVH0DZxAw+Bm938BcEYkDjeA+pCOJI0xBW/ClNgpPjTI5d/AkHWVdikaFpirWG4VxWMIzYs3UINsPEuHKRT2ndfjAxmw9+OGEjI/QlkXPsmJO4ICJMGCi8fPXcxXyGiaLJ7kEvlc+oBaIF4+N7+f/9GvqJ9kk0BgQcl3k8KPL0KnnrAVkpk+dPkzxHVk+TdzYJ9BLETpVJsUxW8+SDLfLgkAQeSasE+sR+IpJNbyIlF0Plixzl+zjtoWRdM/rUp58u5snm/a5gU0ThKMehKZ6l8UxsaF/YUkcrmY7DwI20II5gZg11A6LOSS5W3jNjZxBxkI6j8URsPKKm6NEkcC3obiZwHU4I50q5XKqouyOYOHj2thA6ApFFnvdYKoI4xiwtMALneb4kcxTDVHJKc1jPpVRDsdiMFHpKY6s7O1+2Ia5HQ6M69CAV9usrmer2pHW4983dVmtSoamhqFPs9Umf81tSm6kzTD5TcA/2O0IQuPYcPfPnv/jL9fV7M3OFFxafH26uW/0+4SSVUTc79fqo3gr79+0BnzuehExlV3h3f9r2GyN3cW6BwUaLOosz0/ZEdi2mMfTGvjUlM7tDb1EQQz+OnMHilFhUpwbO0GwzmSpfKZcbVoswGyRatR39pXQ5o+ao6fEb67ura+XjabCyQeD3hxMYOIVcaFieIMpzOe7OgeeJxHVp09Ea6VQtpc7lZzjG9SPXnjTHtqb5YU0uuSxHYZWhI1iB5+iFxTmV90jsMjQryJzj6sezUAy2N6QF5gvF03EAgxiaxPf9kGJglEGEaGgJioYtRccUx4f+0Q6ASHghpAx3joOZZfAJhGISgcd32DiJYsNJCXV0NCSZktRsJFqxjyPTKmZzQQD9pXaaXci/lOWtKBR47I6IiEw+xdkDtxtYNmdLDC8IVDov9pqeSikeTy5evETzWi6vxNhmmgZFqD3Zasdz/X9/xSXgTo42CER6JkUwscCQapFam44rRTIYkNkyqQ3ZlBAoCvnJ54jIk1vbxPLJdIVwEbFN0g7wGSfDEe1Gf4f2/Hyaw8LwccjI8enny6+8NnmwsRWKIvQicT0RipfTYjpiKWhrSBdWRAspNaIsGMVQnLEnxA6JFM/KxKrDjfuBO45j7j8UG8dwYpca9r3QCQUqEDMZVowXq7OcF1Sy8v7YH3kmVYRN4eBRSCmVjZwJ/JDIs10ddrOPiXHvts3SEs+mU6IpZaAd4QLFrUEnsSWOxlvN+62s9pRcnElNbfv9bc7LzM+5EMaQURm/w/uKKxxoQ6Fcevb0hfGj9Y/e/2Bt6tpLly9vj/d+7tzrN7f+cG/9e8NqKp9bucQKjGQ5D//ww2G0mi7k89W7rYPjWSizzsulN+v6n5p/9cNHv/b8bGohm3788ODZ8pweBR93uibPEs8o5plmOz1yrLSXnboiemPsPQ+Lo4sQrMeHm878aX5+qr31SGGi9fohP2KpQibz8SPYpcmIQg9WCO42dh3Td6JQqsRBUfChfDS4E1imwJIETsmWsVtpmofl2tc0LYx5Tqrkq+ls3rFGDFFSii+n+YV8SmTlseb7LHwSX5DEk1niRMfLPE1xNNQGldhfcRDQPAVNAUGBeolheOFnlsW
"text/plain": [
"<PIL.Image.Image image mode=RGB size=274x138>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Train :: Epoch: 381/800: 100%|██████████| 135/135 [00:12<00:00, 10.82it/s, Epoch Loss: 0.0418]\n",
"Train :: Epoch: 382/800: 100%|██████████| 135/135 [00:11<00:00, 11.90it/s, Epoch Loss: 0.0415]\n",
"Train :: Epoch: 383/800: 100%|██████████| 135/135 [00:11<00:00, 12.16it/s, Epoch Loss: 0.0422]\n",
"Train :: Epoch: 384/800: 100%|██████████| 135/135 [00:12<00:00, 10.76it/s, Epoch Loss: 0.0442]\n",
"Train :: Epoch: 385/800: 100%|██████████| 135/135 [00:11<00:00, 11.26it/s, Epoch Loss: 0.0404]\n",
"Train :: Epoch: 386/800: 100%|██████████| 135/135 [00:11<00:00, 11.53it/s, Epoch Loss: 0.0432]\n",
"Train :: Epoch: 387/800: 100%|██████████| 135/135 [00:11<00:00, 12.00it/s, Epoch Loss: 0.0403]\n",
"Train :: Epoch: 388/800: 100%|██████████| 135/135 [00:11<00:00, 11.93it/s, Epoch Loss: 0.0423]\n",
"Train :: Epoch: 389/800: 100%|██████████| 135/135 [00:11<00:00, 11.77it/s, Epoch Loss: 0.0430]\n",
"Train :: Epoch: 390/800: 100%|██████████| 135/135 [00:10<00:00, 13.30it/s, Epoch Loss: 0.0452]\n",
"Train :: Epoch: 391/800: 100%|██████████| 135/135 [00:11<00:00, 11.50it/s, Epoch Loss: 0.0404]\n",
"Train :: Epoch: 392/800: 100%|██████████| 135/135 [00:11<00:00, 12.19it/s, Epoch Loss: 0.0414]\n",
"Train :: Epoch: 393/800: 100%|██████████| 135/135 [00:10<00:00, 12.49it/s, Epoch Loss: 0.0442]\n",
"Train :: Epoch: 394/800: 100%|██████████| 135/135 [00:12<00:00, 11.06it/s, Epoch Loss: 0.0431]\n",
"Train :: Epoch: 395/800: 100%|██████████| 135/135 [00:12<00:00, 10.98it/s, Epoch Loss: 0.0435]\n",
"Train :: Epoch: 396/800: 100%|██████████| 135/135 [00:10<00:00, 12.27it/s, Epoch Loss: 0.0419]\n",
"Train :: Epoch: 397/800: 100%|██████████| 135/135 [00:11<00:00, 11.94it/s, Epoch Loss: 0.0419]\n",
"Train :: Epoch: 398/800: 100%|██████████| 135/135 [00:11<00:00, 11.66it/s, Epoch Loss: 0.0437]\n",
"Train :: Epoch: 399/800: 100%|██████████| 135/135 [00:10<00:00, 12.36it/s, Epoch Loss: 0.0416]\n",
"Train :: Epoch: 400/800: 100%|██████████| 135/135 [00:11<00:00, 11.35it/s, Epoch Loss: 0.0439]\n",
"Sampling :: 100%|██████████| 999/999 [00:17<00:00, 58.54it/s]\n"
]
},
{
"data": {
"image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQgJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCACKARIDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwCh8Uvij4y8OfEXVdK0nWPs9lB5PlRfZYX27okY8shJ5JPWuSb42fEEAY1859fsdvz/AOQ6PjXj/hbet56/6Pj/AL8R1whTy0R9wJOfl9ulJEdTvF+NXxCZM/29/wCScH/xFIPjV8Qz08Qdv+fK3/8AjdZumLZ3ZsmvEjkih+TYny5A9cVJqXhDZp0usaezPaDOFbhlIPP1GKFq7I1dKaXMtj0XV/iX4vtPh54O1WLVtl7qIvftUn2aI+Z5coVOCmBgccAZ71hwfFrxy8AZtbJbr/x6Qf8AxFZ+vhn+E3w+wD/zESfb/SBWLZwyG28yNSUAKsR7/wD664683F6M5ptpnbxfFPxqzgNrPB/6dYf/AIior/4peOYJ1EetkIf+nSD/AOIrm7SIux2qTsXLHHQdP6in+I/ISxtBED5nzszexIA/lXFGrU59zNOW9zttL+JPjC4+HvjLU5tX3X2nfYvssv2aIeX5kxV+NuDkDHIPtWHb/Fbx5HBG9zrm7f3+yQD/ANkqnoDhvhV4/LDHOnbvp55/+vWQsUdwzwyEKuw7T9Oa9BzfKrs+tyHC068Zzmk2rWTOsg+K3jSaSJBrX3iAf9Fh5/8AHKl1L4oeNYbNZYNcVWDbW/0aEnn6pXnjT5vJRbn54gpHPHXH860LuZbjTnV8K3GMdqKcnyPmZ7HJgq9GrGEFePVLsr6Hf/Dn4l+L9d+Iuj6Vqer+fZXPn+bF9miXIWJ2XlUBHIB4NZ8fxP8AHR+ZtYYru5ItIDxjJ/grC+ELs/xi0QnoBMMen+jvWRZ3BQIGywLHAPTnHP6VryylHR6nyNDCuvGXLurHdT/FTxjamNH1cu2N7H7LEOCeB9yrn/Cz/FTxCRdVZSwJC/ZoiO3fZXCareMdUhWMBzGqqxxw/Oa1Zpo7vw5akP8APHJseNepBxg4+grmnCfK5czujerlzpUedyvJdOljfT4leMTbu/8AbjklsLutIRjB5/grrfHPjbXtD8V3dna6l5NupjEUQhjYnKKTyVJ6k/nXmFxco6mJPnK85HQ/Sun+KMlsvjrUXeRGliaEiPPzDMSc/wAq56VSpKLbvueXqy6fiN4n+dP7X+Yd/Ii456fcp7fETxRHIWbVD5fJINvF8o7D7n86yoNCu7nw0mqhoRLITKQnzGSPAPHow5zWK19JYTosQZQVzIrrlgpwAK05parm231JszsJviL4nCqyamACAfmt4wSO+MrUfjv4i+KNF8G+F7+w1bybq+N357i2ibzNkiheGUgYBPSuJvppgNzZYkkjB654GPbGKu+O4vtPw/8AAm1hjF+cnv8AvUrowjnKVmXTpynJRj1KK/Grxvwr66QWXAYWkHB7H7lPT4xePdkhOvKxUKQBZwcjufuVwUqOIzHGQzufmx1O3J/z9KmkgMbmIANJsA4/PGO/Wu/lcr2Rc6U5yfItt/6+TO6k+M3joRhf7XCsq5Yi1hP0/g/pXT+FviR4w1HwL4u1G61cSXtgbL7LJ9miHl+ZKytwEAOQB1Bx2rxaOSXe4SLEhAw2c9P4a9C8E5Hw38ek9CNOBwehMzZH6ispaRZzq6dmaUnxd8Xu7LHrIiZWxt+yxHP/AI5TJfiv44hnKnWtwBwwFrCNuBz/AAVw+kWsuoXoiUbn3biM9ADgn8KFkS6vrxFYYaRyue4zxXC5NLR7HTPlWi6HY2/xj8ZO8ayayctk4FrD06/3Pwrrfhp4+8WeI/GNnBqOqmbTpd4MRghUkiN26qoIwQK8WtVO8FtqjcygehxgA16L8HIWh8c6UWbbvaYqvcgQyf1oU2pJX6mdrI55PjP8RGdUGvFmPYWVv/8AG6vx/Ff4hm9a2l8RrGfLLgvZwADC7uf3ec9Bj3rgtNYbJHAJk3AE+xrbvEhZl2s8koYBEPIDFTuye5JK/rXXc0Ubo6K3+LvxBZVL64TkZH+hwcj2+Sqtz8ZPiFDOVOusgIyA1lb5/wDQK5+CSSQCOJdwhAaSToFG4DA79SAKy9VkWe7Vg6kHrxz15zSV7jcUkfdFFFFaGR8jfGsE/FrWwBz+4/8AREdcCmGzG7Ac5Oa7741Pj4ua1kcKIMe/7iOuAj2rJuPOBmpMy/Z35toWTYCgYNkHDD6V02oasyeHfssco2blkxuxnI4/nXEks+WC9SRSjKJkPnnpnpStrc2hWlCLierahCs/wm8BmQZx/aP/AKPFZOlWryXXkxg5mARRWtft/wAWl8BAHG46h/6PFUYN0NoJFcq6t8rA8g15WLf7x3OKfxanSR6PZ2Flbz/aBL5iMLmMYBTJAIz7YrH1bT7eNYg0gkGMjPYZrO3y/YZJPO5wQQTnJJ61DaXE0qD7Q2SMYP4VztaNouU4uNkjo9OtCnwu8em1Q73WyI2+gmY5/KvNLK9vWjVEjaVgmA3YD3NeoWM0kfwu8ctARv22IGfeYg/zrzaxlEGiy2e/9+z+avltg4xgA/rx716UNaKvqdeFr1aMeam7X0KpU20xUsG67yp7+n61O8zPaGTOE3AbcdvX9KbcWzMrOnUHL7jznpiluUMM0G1gYiFjKEnAPqactWrnZTxM6NFQW0r381sdf8Hgw+Lui7jkt9oJ+vkSVi6Wv2q3cIMyQIODjkE9R9PT3rd+EbKfjDooAP8Ay3xz1/cSVS01raGyd5IsrLBIzE8EEABfx3UTrOlFO1zKjipUJqS2e5Tt1Ml65dgGjG7njgHmqk1wUgfYW5cPkHBqmoubxFYEFyfmJYDPpV2306ZoVmmBEMf71+Ow9fzrWVWEdz1KmYw9m7GvbfZ4rK3JkKHDL5ajPIb7vvXVfFTMXxJ1EiFCJPK3SMAQR5UfHPpj9azz5Ot6YDDbrBHtDIykZJQEAjHc7jmtP4ugy+PbyKOMmQ+UCc9jGmfp2rjoy+K/f/M8Hmu2yv4UuJ9VuP7NjMsdiY5Yo2DZCMQOg/M1oeKrSxNjNdl9t2zhBIG42hcYA9M81S8K6hP4eRJ7ZY3EqkupOQDnt2BqPV9bs9W1EpbW7LHghpZFCknGSQOgrou3aK21vpv2+6xKSvdmBeFls4YGYlnHD98D/PWtrxTk/DvwHIvIBv8APHHMy1ztwJ1fYZogVYJGRyGBGcfpXReKisXw18DxsxZW+37j0/5bDPH41thVaZ2YO6rRscFbwxSXjsSu4NtU7f1xV64tFmIlDKYhMGdx1HPp2HWo7WBEZZufJGFYk8k57VdWVYxIQGQNgAFcZGefwr1ozpuPLHoz38
"image/png": "iVBORw0KGgoAAAANSUhEUgAAARIAAACKCAIAAADpF1LuAAEAAElEQVR4Aez9Z7Bt23UeBs6V887h5HDvufnlDOC9h/yQSIJJpEmLpNSWbEsi3e1ymV3VXbZKrWp3ySUr2WpbomiRbRYpM4kgAgmAwAPwcr7v5nTyPjunlfNa/c29zwWRCAIW8X64MOvWuSfsvVeac44xvvGNbzB5npMfjh/egR/ege/nDrDfz4t/+Nof3oEf3gF6B/j5bWCKDHEIkQjJCMFSigjhCNEZIgkkSkmSEy+jvxdZknGEFYnEkVwkJCdpSHj8NSeRRz8sISSdfYLCkzQlYU4/geVyx8eB1AajFPhMzbKIZCHDKLksE1HlBJknYZYIWRInmsznUpxnrJDlhOcZlWWTlJMJL/KJm4aTzLFSf8pkAieQJGPwMjZPkzhmcl6Y3grpJTEMvuLkDEIeJWSLSA+QcyIZVEiMK7xN2mfIAyrJR6SfEjsm4SFZ/HHyAZ8EDBuKuvy5Dff3Fi4/9oU9hySv4j0Cw2dkwuRE4KfTxHNJOrPP9zxSZiOOzURWt+jJcYIXyorMZYrpHuZrmxsnlopHvZbnTfJSUjaUcrnGkOntfVfTWMbPM01lo6gkC0dvTjOTn0YcU4ub92VCLI3achbIr7y8jav4mV94SChqE3vPKBn9TrS6qoR+4k4lUSOCIutMzrLiaOTlfHbvI+df++rbceyVl3HpgiyWyoYQhCHJGU7QRVFxA0fI06GVEJwrI6Zxmsf57/6rL+Eoq/c92rp+g+VZlhMbYf19yaZHzM9v7Qi5WF9uul3T2RtlPKufWrJ6PZbEkloSykLq5ikekhtpzfriiabo8YPhkMSZa5v+1J2OTF7EE02IwKbTAT3K/YKuCO97+PTIsl3PxZMfHSm+ncpqLIfeUrXQt8jVg0OxlAqLfIOpk3HKNcWO1fXd+NSZE0cH3ZgkfEnMo+h0Y226mx84bSfwwgEpNbV7Hqx/9g93cRQ8fUxhRWaSNMcFZVnGC0yS5XlGVJkPwiTALSFkpVGLotiLfDZlYiYVOFGVJFkjmpDHCcfzcp75Y9ONkiQN0jAmmUgwDXjCWDE+ni6F2cCsFnBDZt9jzWDqx4RVBcxbkrNEmP2e/jKjq8gPSBARnEjikgCzCytKIHSu0nVEv8ErseowffE9/poHs7+RXGBzMRPway5P8FKWIUomSpmMM5JCJqVvSLU4SUnKZpFIMiFJs5yROF5LczHlRcIIHMcTUcolkdDHrGAh5Hg0eZaHOO3ZwJGxfnHKTbpm2ApeSCyTWLhYgUzx14y8HRErJ1mKzyM5XsAQVyHDUjYo++ypgRZOLIvDlXMKbpGU21yOM+P5LAuOrxLH4Tgi67nvhaySKyoznoSeM20uVGO3yJKyoDCDaGJPBiGfBjHjZ8TOLDOOyw2uuZIoGu5rxEukPfL5Fa5xiltocKtbeamAc+U4kWFUuv7pUWQxjVKcsyaylbKQpVK5UpUVbrG6IAm8amiSpooSVnTqDiYnTzWqS4asYsZE7nSSpDEnGpIiyRIb5bFnm4GJzcn03UGUBgyu6e7DD9xEUQ1ekAQ3VxJhSHaXiXqGWU4TbIecUNNzLc94xj/o4d3YNbAeEje3etPECXmWY+NksHvYPxq2tvcOdnZcZyJJpFBiMUMznstx+2cjT9jUS/f6LezCkYnlz3lBLsQ58fNx4NxomYrISMWMbwhcyvatcahEmZrGfpKzebvd0YuaILM1yaio5TQKcIv0St5skIQh9UUjmE+/2YEklrD4J+MBZ/h4XCWepawImJNxSmeorqtFoxRGXhpHcZ6qiijLbJy7mLG+S7I4E0QicJKMOZDkKTZMUeQYDvs0x+HddNy9c/OJhl9gotDlRC0PE7LJNMNMJsHsV7AkdGrmBPMaxocJ6Fng+YY4F2pMCBYEThkTVsWHcMfLBqsrx+ymQ2ZyGAgsQxydLhGOCPgmx6xNhQSbRM5zmRDw+JmNWOKxfM5yURyzGYMlw7C8JCg6k/H0dTn2OSEX6Nymq1GUBRVvmw38h1MoEfIQNhXCV0jRJt6ApNgAPBJinbgkMckUNjQlrEXyVcJlZJqTPGZCokQn3cJ96dlIUmMsm5g4GXFCIuH5l2Ba/3zZ4ImkKVPVijBsWS419HxlURFVoVounHu0XFrIehO77yV2kJs26fXio4Nw0MNUFXCzQjHSy7htkSozharC1NPy/V6hHopizimcqDC6LM2vhWWwPYgLxabEKAzDhFE2Gk6KhYodB97Undi2F7oRx8ehNJiM8JOkyrpaxobK5GLo0L3P8SPqHSSZIfBe4sVZHsWOwIYCI+R016EDN/nMfRekENsS54rTgEhHZDweTqMwtfpDURIELNWSRFTcbdxsBVNQq6txEGVJNB31Ons3BsOR5Vt4HEpR5mV54k6zxMdmxrGEEeebLmYHg1tmW/no0I27YeyJpVpluaRhVolNUlEFFW+vq5zCOl46nURO6E37tmtmvk8mfQ9bbhpGO5fanMBbnm11PCzziDCSzjRWCjCh82uhkwczJGdEzNnZ7E4TVlSILHCaqGCnxEzf3FxrDw8fe+TBaq0UJwmmogj7Iok5cXMmKxVKWGhRGBm6gqmaZgyugs/xRcKEOT7K/D9qHFKshJmXNV9RGo99jnoxZkawKPDL2UZNsH4xsJbwc8bSFcLDOqTUUsGTgW3BeeFz5rYQ37CYbfOFiI0h52LMGvpaPsXCykMWdjfBk4XlxMclCRdlKVZezjOchE9lc4ZnY9hdFlsOiz2Ey2WFjfFeNsNyYzlYHiLqsMT4h4PRgacES/0Q4RawrxClSVZgnxLC4TFahIPBMAkZkhBeaYFwfZLjCgpaRSiVsC0weSjJ1t+MP1ojCy6JJF3B5Ygh0Vew/+PE6cXNRzFbZ3w1YcLUx4LnHCd2gmxvey8hLq+xtpPZXhBzGcxlEuWmm45sN8a8DIhvsYkncpksZ1k8UsxtaW9HjOC4Rbw5wZUnOZcIWK+zwUm5ouWswTkJMxiEqYfrVcIoyqKMk3hvEgqyWikUS+ViwSjiwWCThelgEtUolhRDtM1REsN9tkQec9zjdH1hfSVn2CgLeepc0F0QQ26yt159044GPmv6bOQSpU98ZpJKE3l0p2v2pqwksbxAVIVVBOyBmcKGrsMZeZIKglYuVA2Zk6LIC61JYDupj41OSnhVKkiSpLN4nrPBwmkolPJIvjUaxBkjZ7liRrK+IvEqw9SkSsEWYiKzDJziOE6wzTESHMkghutBmAKZeK7ZSUVNCDHM2Om6ox3Xn7Clcs4XJiqHx0gHtQlwNnMGUzLFjoHdMU5Dnyhi6cKZBwxDgcvRPjpw3OgD7/7I/eceMIosXhYHAc9zmKqyyE9NZzqdOr5tTuwY7h0cmSASeI5nlQzeyWwcX9JxTHI88eAbEuLB9UlotIOBV82Dlvn3+CqwHNYPjANcDUxeNiMa7MNsacGnoAsddpEjikQkHns1/RD8kYcnmSJQ4vC8BGpDYXZYhCcMiTi6pCWYQphESRSxNcFUsynegqthsBHk2BxzVmCkGpwinBocdEZkBFFgsYWQmKVLdzZkkcNqXCbcKimcIu8qkkKRLMZE6pNwRNgJyW16fV5AEpkkWMKego1OiZIANtOHVY/sBd9/RDiLRcIVU5y7WJSsSAg7NF76+rJ5b3DmBLfFK3JhKzDKuWasLa5UuSzimdyz8tCOAtPDeo8EwtvcPZeVJ1tNLRAjJht2mOERN+hlkSVx5QWxmEcj3rPVNJNIxCbwo3M/ypz5tZQqVbij5tjrtSxzlLlRsNEoZ1Ho++M8d3mGd8aBG4SIWyZWlLKxrhEcWhVZBA/ToWtNPLM/7h0NumNrNEk1Wc1sf3NlOY/tIJpiF5oPZ+LjsuHrqVLZFyKLmXg4FeLB25MSwbzWiS0cMmY0gcg8rFwwCXnq4WE79HieFTgDEyfG6uKFYrWSpX7ixEIs8KLIsiEzc0RwIC4Ti2VJKeLJ5sNxOrrVzfbHg1vXWZdhbUFaKY+CIAszjoFxYCWZVUp6SkMTuMfYjZkh4sQB8cw4dbHf8HGQJFK
"text/plain": [
"<PIL.Image.Image image mode=RGB size=274x138>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Train :: Epoch: 401/800: 100%|██████████| 135/135 [00:11<00:00, 11.87it/s, Epoch Loss: 0.0421]\n",
"Train :: Epoch: 402/800: 100%|██████████| 135/135 [00:11<00:00, 11.90it/s, Epoch Loss: 0.0427]\n",
"Train :: Epoch: 403/800: 100%|██████████| 135/135 [00:11<00:00, 11.87it/s, Epoch Loss: 0.0422]\n",
"Train :: Epoch: 404/800: 100%|██████████| 135/135 [00:11<00:00, 12.05it/s, Epoch Loss: 0.0390]\n",
"Train :: Epoch: 405/800: 100%|██████████| 135/135 [00:12<00:00, 11.12it/s, Epoch Loss: 0.0413]\n",
"Train :: Epoch: 406/800: 100%|██████████| 135/135 [00:11<00:00, 11.85it/s, Epoch Loss: 0.0434]\n",
"Train :: Epoch: 407/800: 100%|██████████| 135/135 [00:10<00:00, 12.30it/s, Epoch Loss: 0.0438]\n",
"Train :: Epoch: 408/800: 100%|██████████| 135/135 [00:11<00:00, 11.28it/s, Epoch Loss: 0.0429]\n",
"Train :: Epoch: 409/800: 100%|██████████| 135/135 [00:11<00:00, 12.11it/s, Epoch Loss: 0.0420]\n",
"Train :: Epoch: 410/800: 100%|██████████| 135/135 [00:10<00:00, 12.35it/s, Epoch Loss: 0.0433]\n",
"Train :: Epoch: 411/800: 100%|██████████| 135/135 [00:12<00:00, 11.15it/s, Epoch Loss: 0.0431]\n",
"Train :: Epoch: 412/800: 100%|██████████| 135/135 [00:11<00:00, 11.72it/s, Epoch Loss: 0.0426]\n",
"Train :: Epoch: 413/800: 100%|██████████| 135/135 [00:10<00:00, 12.28it/s, Epoch Loss: 0.0402]\n",
"Train :: Epoch: 414/800: 100%|██████████| 135/135 [00:12<00:00, 10.78it/s, Epoch Loss: 0.0413]\n",
"Train :: Epoch: 415/800: 100%|██████████| 135/135 [00:11<00:00, 11.51it/s, Epoch Loss: 0.0418]\n",
"Train :: Epoch: 416/800: 100%|██████████| 135/135 [00:11<00:00, 11.49it/s, Epoch Loss: 0.0435]\n",
"Train :: Epoch: 417/800: 100%|██████████| 135/135 [00:11<00:00, 11.72it/s, Epoch Loss: 0.0427]\n",
"Train :: Epoch: 418/800: 100%|██████████| 135/135 [00:10<00:00, 12.42it/s, Epoch Loss: 0.0424]\n",
"Train :: Epoch: 419/800: 100%|██████████| 135/135 [00:11<00:00, 12.11it/s, Epoch Loss: 0.0444]\n",
"Train :: Epoch: 420/800: 100%|██████████| 135/135 [00:11<00:00, 11.27it/s, Epoch Loss: 0.0417]\n",
"Sampling :: 100%|██████████| 999/999 [00:16<00:00, 58.94it/s]\n"
]
},
{
"data": {
"image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQgJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCACKARIDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD2LVtZ/sySZprgRRLggsBgcCuat/iPFeXzQ24cxKRmRlAyPUCqfxaeddIYwrx5q7m/ujHJ/lXmVoyWkaWsd2PtswDuT2XsAK+DarVKlWbqy+KSSUnZJPyPqsBgaFWipzWr/r7z3eLX/tKM0Fyr7RyMDI/DFNuNcuYogNzB2yAwQEAj1OMCvKNA1qWyu98zgqkmxmxyR/WvTlMdzbCRcOrD5TnrXj4jEYzC1YqVWTX+JmeKwEKDVldMra1rutQJokljI+y4M32lvLU8AqF7HHU9PxqmniPVjLKP7T3KiBt3kpg5z6LVPx5rDaT4f0sQyPE86zxqyduVrltF1O/miMsluskGAJJGYcjpnHfr/OvvoVqjw8Jxe6X5HgqjD2jc9r27HRv401uOZUN6SM84iTp/3zVv/hMNVZhi7P0ESE/yrM8y0kYWqhCF+aME4Iz19/SmPGkOWePK4xwMmt6Nfm0k9TzcT7lRwg3oXvEni3xBp/w98RatbX2y7thbfZnMMZMe+UK3BXB4PfNct8NvHPjrxJd6gmp6qfISAGGV7WFAJC2B0QZ4z+Va+m217qXg/wAR22rxxG3drNkVs4YCYkhsfQUl3Fp/h+2B02Hyop8B4GOdpHTB7Yya8vOswlSX1ejdSktH21/4B6GCoyqpSkbevav4rttFtVsdUJvt5WZxBESScBcArjFR6xrXi/T/AA5ZNDqAmv8ACiaUQR/MxHptxyfTHSuUk8SNHdxzXDEKzh/vdcdvpXd2F4l/Cs0Lh2+8MnPPTGK+VqZhj8OoOc20m3u9fL0PRlhYa2MTwr4w8TXHj600LWL6NwVYyxLHH18pmxkKCCMCuJ8T/GLxVZ+ILmz0u/jFvFIVVngjO7j3X1rtfDvhO9tfiXbayViSEtKXUNyAY3Ax+ma8q8E2NxfWktzDZIRBhJbqZFZI8ntnvg9q+xwmMVbDKqnzd7d7I4qNN8zpvS+zavodqnxC8Vad4eiv9S8QRvcGISmLy7cMWLD5NoQY+U5654pupfGnWbTT5lltriB5YibO5EKZc9m5BXHrwf5VDeafBrGu2fh3TdOhuW0+YG4uLiLIEY5y+B17An+tc38SLN9K1aHQY5If7OjiNxGI0OU3MflGST2FddOUpvmTdjrnGMfcSX3X+8T/AIW78QDYiRdcUsTkn7JBkD6bK9D8aeNvFFl4w8QaTpGorEtnbxTwoYI22/IhbJKknO4mvBdI0e+1nUk06ywZpFZgHbAAUEn9BXuHxIug3iPW9P8AszLJPbDyLmMD5ZfLTAc9gRkc+1bV5yhHTv8AgcElzW5VYzLH4ieNjbxXl3qYMMzfIqRQnAAB5wmRxmprzxt43j1Kxjt9f8yKWU+ags4crHjJJynoDg9/euAiv5tOtQb9NskUDRW1qR74LnH1Fdro0bX+kx3F0hUzKMdiAGwpB6EDH4Vzyq1IzTT0O7D4aFWDinqXNL8d+Lr9blW191Em/wAiUWsH7vHTjZzyQDWxH4m8ZXvgjwzq0OrFGka7XUZlghzJtm8uPAZcDoemK5/TIftPilYo4FWJYXTzM4jiOQRn3ruIdPtrTw3oOlx+TcQt9pYsRlG/e7j+rfpW1GpUquS8tPXU48RBUp8pXsfEviQW980mpm7R4zLbzC3jXyQQflYAdQfXNctpPxP8U6ho11MZ5fL+ZIr7yofldQOCu3GcHIr0B9HhttNuIbJUhWaMg4JIU88jJ4ri/DPhLT4PDLxSPLtluPtJGOQuACuB6gYr43+2b+0m5P4lbfTe+nTbbY7Y0NFojFHxN8YQaZEZ9YZ7kHDbbOL5ifov8hXp1hr2qQ+D7u9v9R33USQkytEihWZ8EYAx3xXIyaNJeXz28Ft9lsrUY2qn71T16D7wx755q54ct4oNM8TabI8k0MQsyFmXglpHwce5A/KvosDmUXSnU1k0uby72vt8rmFWhdxivQ6RPEWorZRyyXoJduG8teQeAOlTtr99AwWW6PbcRGuBnpjjrXN2l0kIkBjU2+7KADO3I5x+NVY9Rlnuyu8CXK+WpI5I6CvkMVmOLxFeVSM3Fdk7JLpt+J7VLAwhBRkk7dTpJ/Et8s8my+YLHwy+Spx6dvar/h/Wr7UNRRJrvfEc/IY1XPyk9hXN/aPtUEsQKKy/K7DHU1s+Go4o9UtgvUbgMnn7p5rTAZhi/rMIOo3dpO7vpdd/+HIxGGpKi3y6oqnxTJrN2lvpPieGF0DFgYUO8qOh3D5ee/pXE694+8avCf7P1AWUkRy6tbRksOf7yn25FeceFtang8T2F1PC7MSH4BANdXqWoCSeS5d2QMcBc9Ae1ffRU73bOTC4SGJvLojNm+LPxH06N5LvU9yOhVCbWAbW9eEqDTfi18RtS1COzh18GSQ8brS3AHf/AJ50p0ePUSIpJnjR8g4w2R+PQ1hT6Dd+GNYhkhmS6EiuYWUbSCBzuHbr61o7pMzxOBdJqVm4d+p9k0UUVseScH4/t7qTStRe1jSZlQM0bnGVAGfrxXgRtm1C9gvY59rJ9/sVNfTGs7ZZri3f7siYPuCMEV4Xq/w81q01F/sUga1kYmMg9frXwOFxVOGKxFOclF80rN+rufVYGpeioSXbyKNndi/vGtLYb9rAEj+Jq9otFC2UNoDuEce12HAz0rjPCHg6407NzqCRxyKRhV/nXdRTKvAAwODxXkZriIVJqNLVLr5nRi6zqJR3sZXizTrefSNFW8CtFH5+QeOSQRz26VzupWGlLBHFHNLHLKuGiX593oQM847c9q6rxbbvf6Pp1tCR+8Sc8+xHNcBZ2/8AY9qRNcxpPc7o0d0zt5zxnpx+pFfcYN81Cn/hj+SPj8T7NVGpv4vw17ehkWUFva3TyTrqTzmQLDFEjb5M+ox7Gul0jxDNrGu3NtcQyQ21qinyWXD7myCfwxW7N9ghWVLG1lS5kjQLNkHaR9egx6A5zWPZeHYIbu7muPPkupxkXaDyxsP8AA9wetdUuXoae1o07QSUo9dLN+r/AK2N7wjrltc+H9fvpYWSGOVF5Qneu4gEAeprg9d1S41G/wBs0LQxn/VoRggf4130KWtj4Q1pTIFtoRbnK8dJOn6AV574mmRrmK/G0RP8ihT14968LH04/W4Stq4/qzqwlRcjsZ8+1mR3G5eFG7oBXT+EdSMWpskMp8p28s8ZAbrj+dcDPe7Aybi4PT2rufAaiLSrq+Mqq5lHUEjOO/8A9auLH01HDNy9PvOijfnd+p3EOrO/xC
"image/png": "iVBORw0KGgoAAAANSUhEUgAAARIAAACKCAIAAADpF1LuAAEAAElEQVR4Aez9Z5Rm53kdiL4nxy/nyqm7uqpzQgYRCJIgCVAMIkXlbI2t0TitsZbtu+beGYeZa18nWSPZkmWLshUpJpFgAJFTA+gcqyvn+nI8Od99qqq1lufPrPnPd4EAUV2ot75z3vA8+9l7P1QUReRH40dP4EdP4P/JE6D/n3zzj773R0/gR08gfgLs4WNYzpOMS3iG8AaxfCJFRJSIFxAO3yAT0ieEI4OAJF3iY6dJxAyILBKnR/hCaDxBvDrtXSZFj0QyoRhCh8TIey26v274ubJlkslHb2CiF37jC6Vk8vzjFzzfXmxYAU2lGMHz+nTSZ3jmiKw0DXtgRbaHP9GlhORYvqDzos5kc4JYTthMOAj6UUB5QdqLeNkvaH46LbS89rbd1xg++l9//Z9gllSZGgwIoQnLkDAgIU++/Dz9T/7HcHWLLKyS9TYpKOSZj5Izj5JvfJ185aWE39JvtCi9F/4fv0F+5Utkb0CMNfKH3x7Sg7DjseVMkvZ2SFhkAo7naIOif+/f3cIsm//td+y1y51bf0XxpQ+rzL1m7WQh3GPdr9+1NzT/iXz6V85MGZr+xnbr00cmThzLVFX1+MWPubRaGs0POv10Jvn7//J3v/bytVv6QPVIlpaOZbKV0uRrrdUNuxFSUb+hYZbPPTPZJ4Unn54f9Dde++4lIhXz02mLbfaXfMHPFpKlsZJCU3uV46PB/SutNT8lFu/6/K2VLcNwLpy5kFYTvmfVtnf2+l0uU3jm0VNDo6Pf/sY31zd6rJQqp9UbKzcwy0xRDCkukZTLwxMXLnz0+2++Qrubv/bpxo89T9QhjuoL//DfJ67d8p4e7pfy3tx5sTgjdPpB6671d38vU+tTUxnt1z9rixK3th7oGjvwCpJUqvppIVd84pM/H8mZ3/jiw5jln/7OBxIdyYJHE0ZOSCdGgpT3l179dydyAw+vKyK8TVgst5D0REYpP+5oVSncobj8Ff3TufrX0r0maxCZI1SC+CLxKUI79Mvkz3rMrCNk8vy9L7zwCcyy/Y0/5MuVkC133r7S+eDSH/WuhiPWc0PVmaMvRN5Dq+mhjY21u69/89uvv+8zLMPyVOBzjO8HdOiGIzT1Ox87qlvBP766sWL4oR9FNIWfKfIhw1EYDE3VGz6+8mDb8CahaILvCWXC2qTrkKxFWIkYNNkZEG//20KGzCskxNcJEVjiUMRPENaj3UuRzRKVIyZNJDP+QH5Iwhcjv8mF71lhmrATmAmjlM+vNxqTjpUqKkMi70VCxgg93aNEy5cjX6BCl8gu5Uds5HO0xSh9b9hJcFnSyosBz/mBzdNpirJtm5DAUzJNJaJpRnKZjBWahmUdzKJhz4TxXz7CT4YQndhuqJQJ3SBhRBiBzEyRC2eIIJD1KhmRtPwEafpkx+WPVtyNJSKIRCkSjRWruqE7+KlUKW17/KDW5QVWErnMwSx0UqC86N37RkPce6k1GBjRuwbV9+haPzg7Vf57Tx7ju93S0Nj8x5/6o2+/VtyhR6e9K9/4N0OnJm9+r1UuHa3MP/6F5x67dOP+0qCf5USZVxw3vLW3XvUbdMR4eLb7w3D7zS5pNHbzSZmmxK21HTXL2IKrqNwQm8oOpbOltFttZlPEydPaNu10++lsWU0kO4OtpfWVv/kLv9FsrzUaVXzwMxefK88wvtn96V+88Hv/6WqvFWr24RPLSEI3IvPz506dP82wiUy2WN3a1YV4LfT3PElmBFF5+shA90Wn76fa3vEzdilBf+cu9dR89/vXRFF0Oj1i9TxKIrwXqpTW84qUV5+bf6RSKmJFHnwWlqN44jM0FxHadEVFuDaV+ENHG4QmIS5hsBNw0knxmZwOAn/7LSlBmDIhzvZD7H8IsLgEQvbiczAq4IvE9QglhTqeOPPh2dL7Z5T/Gn+VEC/tc5Wsc31QmDoiuJZ4bylVyPuErnd3lrZrAyVpNYwkGyQUXvdZXqQjh/UjP6T8gCK7hLyytFMLzCU7wDnC0piMDrnICWlcHVhTEZbT/niwbQSOiC6JbBImcV6TEEuMkJpHLkf6PR67kh2J2HREJh3C8CQIiefH20ynCA4Ku0sJFOlakUVTZSX0fcpKU6Lb72g+N8IFJZ4/fjDZ1k7LoqO9rb2kdDStMgVOEAd9fc8cUop5X+uo3AfE9nwtw3AN23TpkA3Irl53VYEEo2x3hFL4wGpxVCtBgmZEOxQfhnuBWQg9KVRKQbd2MEsUf779DYO/40l6zMI2kZPBzARJpMneHpmfJDwXf++RHNFVItvk0ZHIPkoePkc4HGYc+d4rrN7ojqf71+x8z2Btt8DKQVMnc3ncX8bBLPlU6rYZXTG5W61+2yWaQRouYSk8bjqVyFSmpr7+/Xf87vL/9Mgjp4cmX7t96cuVcW3b/K333+aY8DPH2opjvtaOXqtXPdaNIkmgOIZy6MgNcMT5tPTg9UilfHtnq91Pnz73dKF4e3dP21trW4RhPO3YRaW5u65EmTTF1W6szk6qw88mo5rQkSuezTQaW8kE4dMpbxDKKjUlT7Fid3ft8tGJx2Yfe/jzhP2r33m/Wu0dfBaOcmfLwoXTuxOjM8nC/OiRv3Hpld/mQl0fDKiAWLo9mW1ttrMLqwbNcO+vBG/fIB97PMTNMDbGJhfDuWmSTJKTKulr1JpHd21i2PWxkcyFuXMUK2OFH8wyRGOpExzNEcMVknpJ+hrR6lh3bkh4LEMs7RQhCULUeBdRVUINx99MRBK5xLMIj5U7SqJ0fGJ73TjW4QTyOfnnrCBQZUIf7k2SnDvJmCLtVTk+kymP/NqP/b1SZvLNt196+c0/znHHwy4X2H5GThwtFLBT11vNXuQwFAkiyqMwD/l2w9gwwsinaCHC5YKjF7k/7hkcwREVlDHr/niwbWicyfgdA+J3SSTE18u7dOOb7PYKFXjMkXmGM0MR1wbWTSYkOZokEqQfESEkmDOSSNDHFeSREDcCLQWbq01ZfpMXiq6bC+xOt3OztD9Z1zImxyZIxKkyU6boEY9Y/c1ObWu+YOZDrs2KgaPdJD0vJDJDW66tumJXwqVv8PoG5ZPAzyd51x84YkJUOddwmr1Ol3H1QnYsn5u34me/P7Bt8MDxe+E6xddCkk1xSSHAtZcrk1ySKAyhnHi/nxmPr6BXrhGlRL780Xh7ckp8WSoy9eKRbr1HrtDUzFHqbz63+2ffye92ZccN6CTeajz8vnFld+tqX6/5BI83m+McMbTsMOkLJyZmjOL8I88N0atXhHbn3t2bN1pG9/X7Kza5thsWk6x2p7r2/u7tJk40wuN3pANOIkk6Uv2wa1EDitPDOBLA6OtmJiO1ag2LDQqT4lGeC7aTcjpLc8H4mTP2javdjSUpJ/PDJOvzCSJQ5+bdrU5mNCFukZHxsm/v9Gq3E6lMEMks61ADUlu5GRzz6PTexChbq8XHM8bF84+l5891Ov81Mv9rMfudE0/95tCPf+oP/2QzcWUwM00SHpmaZP/Lt5qtBlFT7JE8/VfvBJksOTVF3Mg/Nu5LHGlqxNHwwPlGj+/brqH1k8UnmfSIG/o0hdMrHjRl+G6kcLIgi8OZVsr6lucRjyecThhcMkVCcGLbxFsm1B5xs0RATIFXSROvEacLrLP/TtvEtxBqEET+FN6XG2RHCY2HiLtof7jVHi175WNj2srmbvFSceQzqcTU7ENPv3rzRrtmcjYjcmoxEp8eP5mIpD/RL7teKFMRLwo9S+t4XtUOLY+mGITJAaH4iAoJhdiJ8Vz/pyeOfGbkzMEsD5aaGJFOSByG1EOi+91XyMLl0DQphaMIH5m9KCkydhTJL9N0mpA8RbKI4gg5ypBA9AIctiFdRKAYWa4r05LZM978Yeu55x+lwh0sNZbuHkx2bGL4xNFxs1MnlM10RVKts4pTm1F6NFMwtPTq/Uc4x1EDly8ve0q76/l9CykM4SLKCBV5h/H7TEAFEaO7uhNYlMvSlConj9MSIhzdYoLDj4SDh0c8Gj/zDE96Pvv3fsru4bhKElxfQ8PErRJ7EJ9
"text/plain": [
"<PIL.Image.Image image mode=RGB size=274x138>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Train :: Epoch: 421/800: 100%|██████████| 135/135 [00:11<00:00, 11.77it/s, Epoch Loss: 0.0416]\n",
"Train :: Epoch: 422/800: 100%|██████████| 135/135 [00:11<00:00, 11.51it/s, Epoch Loss: 0.0414]\n",
"Train :: Epoch: 423/800: 100%|██████████| 135/135 [00:11<00:00, 12.13it/s, Epoch Loss: 0.0413]\n",
"Train :: Epoch: 424/800: 100%|██████████| 135/135 [00:12<00:00, 11.04it/s, Epoch Loss: 0.0411]\n",
"Train :: Epoch: 425/800: 100%|██████████| 135/135 [00:10<00:00, 12.35it/s, Epoch Loss: 0.0443]\n",
"Train :: Epoch: 426/800: 100%|██████████| 135/135 [00:10<00:00, 12.44it/s, Epoch Loss: 0.0430]\n",
"Train :: Epoch: 427/800: 100%|██████████| 135/135 [00:10<00:00, 12.53it/s, Epoch Loss: 0.0418]\n",
"Train :: Epoch: 428/800: 100%|██████████| 135/135 [00:10<00:00, 12.27it/s, Epoch Loss: 0.0439]\n",
"Train :: Epoch: 429/800: 100%|██████████| 135/135 [00:11<00:00, 12.10it/s, Epoch Loss: 0.0426]\n",
"Train :: Epoch: 430/800: 100%|██████████| 135/135 [00:10<00:00, 12.38it/s, Epoch Loss: 0.0402]\n",
"Train :: Epoch: 431/800: 100%|██████████| 135/135 [00:11<00:00, 11.32it/s, Epoch Loss: 0.0406]\n",
"Train :: Epoch: 432/800: 100%|██████████| 135/135 [00:11<00:00, 12.25it/s, Epoch Loss: 0.0422]\n",
"Train :: Epoch: 433/800: 100%|██████████| 135/135 [00:11<00:00, 11.85it/s, Epoch Loss: 0.0411]\n",
"Train :: Epoch: 434/800: 100%|██████████| 135/135 [00:11<00:00, 11.58it/s, Epoch Loss: 0.0409]\n",
"Train :: Epoch: 435/800: 100%|██████████| 135/135 [00:11<00:00, 12.19it/s, Epoch Loss: 0.0423]\n",
"Train :: Epoch: 436/800: 100%|██████████| 135/135 [00:11<00:00, 11.99it/s, Epoch Loss: 0.0416]\n",
"Train :: Epoch: 437/800: 100%|██████████| 135/135 [00:11<00:00, 11.27it/s, Epoch Loss: 0.0414]\n",
"Train :: Epoch: 438/800: 100%|██████████| 135/135 [00:11<00:00, 11.81it/s, Epoch Loss: 0.0420]\n",
"Train :: Epoch: 439/800: 100%|██████████| 135/135 [00:10<00:00, 12.34it/s, Epoch Loss: 0.0435]\n",
"Train :: Epoch: 440/800: 100%|██████████| 135/135 [00:11<00:00, 11.39it/s, Epoch Loss: 0.0419]\n",
"Sampling :: 100%|██████████| 999/999 [00:17<00:00, 58.71it/s]\n"
]
},
{
"data": {
"image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQgJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCACKARIDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwCz4/8AiJ4q8O/ETULC11GRNNjWMxwpbxMVBiUkhipOdxJ5/lWF/wALP8bspb+3BGpAePdaw5dcc8bKb8VPNk+I2uBXEe1Io0JbAJMKYB/GuIAZ7hFuZBG0AMaMSSDjGcd81wznJyaT2OKcpXdmdnN8WPHHmiOPVtrDAO61h79/udv61LN8WfGKW6OdWMYY7CzW0OVPsNnsetcdIqiY7Z0YqRkxkjjjnBHoT0rTvLbQ/wCz9LltbkvemZUuGuNwRDt5zx04PSoUp6bii5Prsej+JvH3iPTvCXhm+tNUKz3v2oXEot4jv2SBV4K4GAT0FcTL8YPG2Co1hkfdgf6LCc/+OVd8QwyXPwy8GSEkMhv1bHzZ/fAdfwrgZ4gxWAnY7HcCOePauhNq12d1P4Vc9MsfHXxH1HTpLu2v5HjiyXZbSE4AGemzpxVGH4n+Oypkk1aQQ5I8z7FFgH0J2cGuRspT4dujdJHHfWyKS6szIHOBjoQc9a6KfxNaa9bRtFA2myTkl4kO9JCQcngZBI4zUNyT8jWytc6jTfiJ4quPAPi3U31Xfd2Bs/ssv2eIFPMlKtwFwcgY5B9q4eb4xfEGOR1/t5lIOMNZQAj/AMh1s6XDLo3wz8au8eZF/s2UK4IyPPJFcb4h1rTtb01ZvJEV4JAARyduORmtU3oZvc10+Mvj8uP+J6SO/wDocH/xFTH4xeOjGSPEBB7f6HB/8RXCwMZJIo40d5WwoRVySfYVNJZAodsm1owQ0bLzkdRj1qZTaerEj134bfErxfr3xB0rStV1Xz7OfzfNj+zRLu2xOw5VAeoHQ9qx5fir43SeTZrzFQR8rWcHGRnj5KzPg27t8UtCQ8qvn8j/AK4ScVy0srvJuJYgtu2qMkc1M5SSVmRJ2O9k+KXjsqWGvCPHKgWkPzD8Y6il+KPjtCAvibccZ/487f8AL/V1xSLKY8vwOONo4470OCq4eMliflPTOfUViqk11E5HYH4t+Oyoxrsm4AFiLK3wB/3x9K6T4iePfG+k/EbU9L0nWjaadD5XlJ9khfBMKMRllJPzE9T3ryuLzNxB69R657V638QI3h8davfbIl8qaBg2C7Mohj6r9T29K66EnJtGtD327nOR/ET4kG2Pm+IZI5X+aJmsbcIy/wDfH1/Siw+I3xCknAu/EzBOQfLsrfK8HB5j9v8A69TvNHfwSLHOqo58yNZIssUJK4JHTsfx9qq3badZ3FtLcW0ksskQGxJF8sDdjcAB74xntWvMk7Pz/A7XQVr9NPxLNr43+Jlwu4+L7NOCdslpEp6ZH/LL+Vb2uePvF+neDPCF3HrUbXt+bwXc8dvEVl2SgJgFMDAOOAM981kQ3Ek8DRCCK1V7otGZQAqnaOM9MZ6+/StbxPJDceCvCck8Ecb7rz5QMhcSjdj60Vp8tJtKxzVKXLJa6P8Ar1M6P4neMfMVJNXAyM820Wff+Crdp8QvGVzHH/xN2LljkfZoRx6/crAi+zy7N3zEqSBn07VoWem3Nna+ZImy3bBTI+9/nBrw/bzbdmyeSz1Ylx8RfH1tGzNrW7LYA+yQ8DP+5XY+DPHet3Oh+Ib/AFu/knFl9l8ox2yErvdlbARec8euK4S7WJ0LE+ZDzt2nue5rb8MXsOgeDPFmo+WXCGwDoOvMpXP65rqw9WUqiTYSjbVHQ+B/Gmr+INW8S2Nzr5dLOESW0vkRJsBzkn5B046j1rO0zxj4y1rwu19a6yo1FJpt8C28JUKg3AfdzypGPU1HeaI8uoPe6VLbSrrWmtbTQScb1Ybkf8DjNcj4dvD4RttcggukvNYvLc2cVnGj/K2c+YW45A3YA56etd0r7XFGF4N9TsPBvj3xVrd/cw3Oq7liVHA+zxAkHI7KOP8ACt0eJvEsXxg0HR5b8nSL+CVngMMfLJE5+9t3DkKetc/4VXT21c3lohjuHsbb7ZGQV2TbcPwehJXJ9zXothNY3viCxfZG9zDu2tj5kyjZ/TNEW9OpEba3PGZPin40aRlTW8bV7WsPJH/AKpH4rfEC4uxbWuryPJjcQtlASB1/uelaGj6BpVxpe+RUE0rBkfJAXsQ36/pXQ6P4bawt3hWWOUlz8zL8rsRkc/gPzrxa+cQp8yiruPd2v5/8Dc7IYOcrczsn/X9M4ef4t/EJZmjXWm3dk+yQbgR1GPLzTZPi/wCPWWVV11onhGXElnAD+Wz9K6WOLTE1x57exmF1aF4pAyhl5PzHgZJrQbVPDWsagIr3SoxLuBD3EQDNgcA9yOehrKedTVn7JtWvv/V0DwaUV7+v9fie60UUV9Ich88+N7nSIfjLqQ1oPJZbY98ca5OfJjwT7c1xOsXGn3t/fSaPbSGzgc+SsajpgZPJJAyD68fpr/F4rJ8UdYtxuUkwuzA8AeRHjIrjIIJYFnRLhop4nQ7wAFKkdevXtXDKEeZvqcclujptLtZr+e4trE2wkMDlcjPyL82ckcZ4GR1z6Vj3Rkto/stzHhyF3RnqpB6H0P8AjV231e/0+Y31kyw3Eu2HAj+UxkjIGc+nYjFR30kN9qN7LIf30khkbYdw3burKcDnPGOtRHfyJ0sdR4ixbfDDwTbn93xqHHXaRMP5E1yH2k5kZ23B+VCLwwA7fTH4V2Ov2tzJ8OvBShA1yP7RICnjJnBxXGvBcwxL8jCLHQg8MRyK3Z3Q+FCGZWR7cQMQ3UdQPQfh71c0aCKS5CCfypbfBy33SOQf5is9kktrgxzbcsMkK4OBjr7UQJLFGZ1ZnjKES+3P3iPSjfQvZ3PQZbyO++GvjryyjIo09Aynr++xnNeReWIwQ6/LnDexr0Pw+iH4U+PNjjDHT+nQfvz2rhWtXWCRmJ2jG3PQnPIP6VT0SIerH6Xe/wBmata30S7xFKHDc9BUmo339oajNeRwGBnyxHJBJ7/rUOn232nUrW2ZSVd8OqnHyjqRXsF5peh2GgTQXkKeRDGUWROH5J5BP4UmxJHHfBY5+K+k4bcCJsn1/cyVz8NrKFZ/ljVRw7NknnB+tdF8HI41+Lek+WSUBuNp9vJk61jb0DRIqbZJUCkuODxj8uKyrPRWJkhREiq6nAVl+csT1PWqdwsayL8zsxYZAABxj/61XGRGRgy4AOPmHPNNlBO5QUK5GGx3/wAj9a509SWrsrM0phAWQLyDknoOea9S+IV1p1v8QdfMglMiRxNK0an5SYowOehwMHB45ry6Q24BSYkHIDOiAkV03xXu7q2+LXiVbdWO9bfkDO
"image/png": "iVBORw0KGgoAAAANSUhEUgAAARIAAACKCAIAAADpF1LuAAEAAElEQVR4Aez9Z3gl6XkdilaOu3bOyKEbaHSOkxNnyCE5DCIpKmfRkiyHY8tBx5Z95SzJx5IlS7KucqRIikNRzOTkHDpHoJHDBnaOlXPdtRsYP8f3z3nOf9aQg5keAN+uqi+873rXWi8ZRRHx3eu7T+C7T+D/zROg/t9883e/97tP4LtPYPgEmP3HQKZIXuGdgCwX0uc+cfTtN19xBDavKNqezaYpjgoGN0it6MdkUhb5VC7uWnYwCG01CgSbF6X2Tn9kKhHLsbVmL6kQXkWcPnd45cZ2Y82cfiouxqV3f3URA508VWIZkqCCiCAFMUYEAUn6lMuGRKiqpmX7DEOLEi2wJEsymaxgBn67p4mcpIdU5PuRZ4lMRDOcwNOBT3EE43iU4+hESPgElZaE597dxCjpkoxvFhTfdiJfI2iKJHgyclnPdQn8HgaDBJFLMPgl+CCBr+QYiScHVui5UYz1SHymgPZdwg1Ckohcn0qIVCbH673AiSiHCLpVC6Nc+OihxpZVXRuwbHhohMwW5Q2TESRViodELaDiysAIdrcCLwwpIpAV2eyRjBv5dCDRrB8GzsChWJcfYcLAyyQl3zHEQUQS3ICOHCcgFLK34WAUihQFgsHnDggM+n+PC0iC4NOCSPNEa9DDdzIE6f9v3zD8afwxTRAB4REEhx8f/jPNkZGYUCSRIA2tMwhUfF98NEdwQTwTj9NqSnFohefYEPeaSIk7dadQiMiQ7NYIy0mUcjRLWp7FaI6QTxum5zcqYa1lOaGfSTLJOE0ZpBExAf5iqAwfyWa03Qhur9gY5bNf/lIulfi9P/ns22/fLsacLM98/DM/8eQTT11fXPmDP/2NJ8+fXHx3seuExx8+3GpsLS1f9LgkzYqubfBszBmELBH+7Kfff2lraWHqwZHylCDHcunMb//Wbz/3rVctN8IduoM+RjnxxOmHMsl+37yy1RpNZwa+7jima3sjqfhe34gnpLrmmGJgeaa9ppLlmJjNsAytbVc5MqQZwjAYFg+SJlieTKRYPLIwFMyBaXY8mgk8TBFt+BYOlg0hEbGS4Pd1LVIDin7kwaevXrzFG6zphL2qMXk2FRO5PaPDyEFIBb7Fur5Gxyht03L9kM93SJJXQ49TYlKYmhwvr5vNnXeaRJGQkzQnRBwTYiRcMZGW8fooLiDwGyLb8BKpeCwda1abDEMGfkAEJMXToiI6ZNjWfZ7HpGdtx3V9ghOEwKVU3Y0rgWmRcUokmUiIK7zN21Y3tPB4gv1RyJDgJJLHDZOkR0aRT/lEyHNYoqxjeiQT8grrW0EURmGICDXiQz9w8dmwlEh8PN0j44lI74cMzZhBEKMpTAJLNQ2XxsTDbNgfhU2oyTIfOYmA6ruUt7xt0SKDX8nQTjskraaTiwf3H2F3WoxEp+oDtTjDeBbhOzFREiKyTvcUjfZDQwupuO76qWQ+GfcSvrdpeV5ASO7BComI0CIMLBGWoGKkZBBegBlCk0FAvP/U/QKBGyC/fuMi5gxL0MPdg6DwrBlGOTF16Mc/9vSXX7n4ypXnCQK/YPgLA4Km6QKXnug3r/fxizE77l2C75AyflcQYcVQBCV4lkPodZ+mrBjHOHYg8hT2jIRMRzSdy3O2JWkVbiKWJHqux2xoXMR5nITdjgrwUlzVI0WK5ahICut1N51h90ehGIGIxR94/HE31K69cU2NuJNHH0mn7MfvP9LSfvZP/vMv2but7/35fzw9M8dG2X7fXlxbisscHxejgLIJDzPjjQqXTzzsxko2TSscH0b0+bMPXnn18obapd97L0ro73UHPp/NJ6OebVESNxpTBnqfwl4bGb7gRnbEmCLHBdFonE4pnMAG+KxszNN6Y7Oi69D1NuGHkZgTGS6ihYjqkOFwxvqsyHn6wUw+WDa0xNB0XEmxZGRefO6dqRPTJxYWbi1d1xuGMEpqvkGOkgknE/JuJNjNRosULWeXKY5we9sDrU0qouR2nWq9l6WkpZe3DNPxVyMpz48ejZeL6Wq9vv/gRJ4JQxdvNvIibAF9td9q9/PZdET6PEemZE63Ayoke6ojclQ2lbBCI56K4ZgJNRtzNohIvHbf9ViZwZGUSKQNfcAlBceXIkcPAkya4YU5xXOuIFBYMpYZ4eWJLo3lEeGQYSIuYiisfTLyApLGwRKGnkfhKTABlRQJF6dJEKXjocgRDY1kPCbERyJCO6QYKjRMkosOlo3ASvwoSYQmIypqzydUOy2RAoOXwmNqx0wi1WOphDUSo0KOMwKCSzkjZSx/vd7mqZ7PTWgZLjXYs5O8aHtOKIRdyjUoelBl4oVMIX3wXnKJvOEbIoPVmzg9XbSMsGtaTbM7MLyJbIYPXdPzzoweMoy+47u+b5NsPJ+NT8ViuyG9tLX5qQfPMe3Ka5UdWS5FfEIlpJB2iBRDhCWCELC77D8xjnYYivZCK8YkdJtjLS4iNFagXCvkYpE/fCcUHpluDHIyXxL4jmfLvtrcliYOj8iWWPCNgOMTSdpxsKZDX/Ux32iW5gxXVAj6YBAilRBozyrLjNZxfN4NE4ySYbPpjOfoF0akX/dzbaNSnCieP30sl82lCnIwsCu1CkVTXsRg5jpGRFLcySNHLTIQeIrD3uEHI2OjWFS+RyA+2b+XrBQLfK/VUmlBchk5IeFDEZpLG5zLpgVMMC/0STtU+wMhk0DUE5hOJLhUMnLbTO+uE8YQzQROn4hxcbfTtUIi4ohEnGQcOhRYXTgY5eD1pKYFfUeLdI9LR5hQV1+7ydBccZqjykyM5zI5yZbtjFmq7+qDVifkIqkrBa2IX6C4PZb1qMMjqY3GTqjxA9MQFCrOicYDtrrsieVQOBrk2cT+LTU6Ko0bFENJ4Zwgsi2cgHSnryUV3vO8btfhYrLu4wmFsiDZVISdYOBaqXiaoFnLMOIyr2oezhBbd23SEUOXYsmOrjMcT5Ku6wyjmuHFBIZGIrCwfDJiSZElEyFRx5JhsOoYHDKu4YcIf0IcqwzFsI4fOWHAeYTNE4pI+H2i28d+Q9iOz9JsyLEkdlHPFyQKwUCIg+ne1drrlRLcoNGzWDpbluIk1zA5tu9MH/YMQs5lcEwEY0nsRuylzd5YkmUkHx8mITgZkm6GrkNyptEWi4Raa4gii4+ub1JuhKlB+gbb1Q7uxfIDnMmZRDYfl4RAYAJfR3AWKUmFvbSxVha5eD5+YWykb+Ubhkn7VjYtk4woBAyrDrZCkdmtjVHJX/7AiDQ2K8RHu1ysIqeT+cmOHW3v7tjOMELDxXIeIlScq5N0wvIpx1a4wljbWbc8RgwdMRbgPSXibL/rY+8JTdoZWMWcyzHlvq1nEAZko4hJcYTaY6h+ECSF0ETMFJESwmiG2RscnJyXrywpcbeUFZ98/PhS5U6j1b6y9Nbpwx8lWS5RLBfinM8m7ty4/Mnv++jrb77cNnd+9u/9/V////zSIGTilNWwAtoRxjJZkhckXx8eZgTtBYgM0wtHj27uvRK5BxPaofWIZXiNqTU70lje4/0YHfEDBHu6nbL1fiRGZsvFZJApT4wsL6RoBOtiQOdKnNdxQpOSZbx0ol0xIyswXY/KUZJM5CbZnmExxsHJebBsZmZSixWNlihaJr0eAjGKV+hcMi/H1G6bcdu+FCd2tVXLZZgETbshIVEqqdNLAjsaWjrRNw3Cpay6FysnklN+TJPvXNfdXtgr1HbbFtM/eHBCIh8Ypu+HA9XF7E+mUqTnqGbQ79gh1j2NM4EQ+TgjRrFi9r5jcz82Z31rJ2zpzAtXbzU6nZF0JplMugFhqNagr0ccYiTftjSW4jJJvj84OG0o5E8O3e/ajBAEDt44fndIOiRCQDbGEgjD770KiqUjxH4MIQi0iUwmxEGLIIwSEOMimUCKY5OBTMYkyvWwkVO6iXg3tMz9mYbUiMA2aVtkVuLitGA4Ji1ohMBVm3KKVj1RMHFYOnzDc+kEq9nEaC8YJMQtN2ztmqU8z2Dr9EPTYkLs40RgDkRGCJF5lMeYVsWJmIPXM59KRql4jie7Lg5Gnpe
"text/plain": [
"<PIL.Image.Image image mode=RGB size=274x138>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Train :: Epoch: 441/800: 100%|██████████| 135/135 [00:11<00:00, 11.61it/s, Epoch Loss: 0.0444]\n",
"Train :: Epoch: 442/800: 100%|██████████| 135/135 [00:10<00:00, 12.41it/s, Epoch Loss: 0.0445]\n",
"Train :: Epoch: 443/800: 100%|██████████| 135/135 [00:10<00:00, 12.43it/s, Epoch Loss: 0.0442]\n",
"Train :: Epoch: 444/800: 100%|██████████| 135/135 [00:11<00:00, 11.71it/s, Epoch Loss: 0.0415]\n",
"Train :: Epoch: 445/800: 100%|██████████| 135/135 [00:11<00:00, 12.20it/s, Epoch Loss: 0.0456]\n",
"Train :: Epoch: 446/800: 100%|██████████| 135/135 [00:11<00:00, 11.39it/s, Epoch Loss: 0.0392]\n",
"Train :: Epoch: 447/800: 100%|██████████| 135/135 [00:11<00:00, 12.04it/s, Epoch Loss: 0.0432]\n",
"Train :: Epoch: 448/800: 100%|██████████| 135/135 [00:11<00:00, 12.15it/s, Epoch Loss: 0.0429]\n",
"Train :: Epoch: 449/800: 100%|██████████| 135/135 [00:11<00:00, 11.55it/s, Epoch Loss: 0.0445]\n",
"Train :: Epoch: 450/800: 100%|██████████| 135/135 [00:11<00:00, 12.13it/s, Epoch Loss: 0.0419]\n",
"Train :: Epoch: 451/800: 100%|██████████| 135/135 [00:11<00:00, 12.20it/s, Epoch Loss: 0.0432]\n",
"Train :: Epoch: 452/800: 100%|██████████| 135/135 [00:11<00:00, 11.39it/s, Epoch Loss: 0.0419]\n",
"Train :: Epoch: 453/800: 100%|██████████| 135/135 [00:11<00:00, 12.23it/s, Epoch Loss: 0.0421]\n",
"Train :: Epoch: 454/800: 100%|██████████| 135/135 [00:10<00:00, 12.39it/s, Epoch Loss: 0.0426]\n",
"Train :: Epoch: 455/800: 100%|██████████| 135/135 [00:11<00:00, 11.61it/s, Epoch Loss: 0.0438]\n",
"Train :: Epoch: 456/800: 100%|██████████| 135/135 [00:11<00:00, 11.59it/s, Epoch Loss: 0.0440]\n",
"Train :: Epoch: 457/800: 100%|██████████| 135/135 [00:11<00:00, 11.88it/s, Epoch Loss: 0.0451]\n",
"Train :: Epoch: 458/800: 100%|██████████| 135/135 [00:12<00:00, 11.13it/s, Epoch Loss: 0.0424]\n",
"Train :: Epoch: 459/800: 100%|██████████| 135/135 [00:11<00:00, 12.12it/s, Epoch Loss: 0.0411]\n",
"Train :: Epoch: 460/800: 100%|██████████| 135/135 [00:11<00:00, 12.05it/s, Epoch Loss: 0.0398]\n",
"Sampling :: 100%|██████████| 999/999 [00:16<00:00, 58.77it/s]\n"
]
},
{
"data": {
"image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQgJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCACKARIDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDV8Q+MPF6fF3UNB03VjDpsKxlYhbRNs3Qq33ipP3iTya3fDur+LGtln1fVRI0e8PGkEQDnjaSQox9BU2t2FjF40vb/AMiMXMuxHmA+Y4ReD+GKinnUxhLfCs5BYD618BmubYh15UqLcUtPuvc9Ghh1JJstarrHiGW3ijsdTNtM8qhpBDG21OrHBU9qo6t4t1m10ma7h1JlSGBsOYYyZZMYHG3HX071Alw5eWcZKSNtTPYdKz72F9Xu7e2Cg2kB3SKh+VjjCrn261wUcfi00p1HZavV/wBeSNpYeKvodGNX8SDwXo+o/wBpqt40cr3IkSPMp38AYXHyjI4x+Nc1c/EfWoMt/aSgYyAYo/8A4moviHqsWjeFfDasJFL/AGlUVeScOvfNeH6jrE11J8pYIBhRmvqoQxOIkp87SaXV9kVSqUKFL3oqT16H0jovjq+1C1idbtZ2kY8hFG0Dr0FVdS8dawk223vPLXP/ADzQ/wAxXivgbxRNouqMzJ5sJXe8ZPp1I98Zr1nxDp9vewWur2Cb7a4QSEqOPrXLiXiaD5XN29Trwv1es03Ba/mWNU8b+Ibf4deJdVg1DbfWX2XyJfJjOzfKFbjbg5HHIrydfjT8QSCTr/H/AF5wf/EV6DfWE978MPF1tax75nFmQg46TZPX2Brzjwt4P/tGUXepRFdOiBZwSVMnbA/HrXvZdUcsNFyd3r+bPKxlL/anTprt+RoW3xh+IEsaM2uE7s4/0ODn/wAcra0T4reNbrUUhn1fzFb+H7LCMfkldN5emPZrY3OnW/lQOJYQkeNnXGDXI3Xh2LRfEwkDFoJk82IZ5BJPB9a7JKTWhnWwk6Mkm9zv/DvjPxJfeO9F066v/Msrlplmj8mMbtsLsOQuRyAeDXDwfFDxy4OdaJ/7dIf/AIiuo8D2d1L430m52N9mieZix/64sufzbFYeh+FC89yJwpMbBRtOQeM/5+teTmGL+q005P8ArQuNFc7juUJfil46jYj+2iMf9OkP/wARUS/Fbx03/Mc/8lIP/iK6HVvCsEyfKpDdSQK4m90WW3l2Kp56CuHD5oqy0lqaTw/LujYHxW8bgjOt5/7dYP8A4itr4i/ErxboPxF1PS9O1Uw2MHleXF9mibG6JGPLKT1J6muIOlSRKDKGVs4wRXVfE7w99r+I+r3ryYRjDhNh+YiFQAD0zkdPpXp0MVHlblI5akLW0MaX4veO8lk1shODxaQcf+OUf8Ld8exCOV9c3RsMj/Q4Bn2+57Vj2GlW8ts/n3UCSZO6OR84x/P/AOvXX6Z4L0jU9NWe4e5hBwEjYBB3yQeePQVvVxMKXxMUKUp6RRmwfGXxiI1NxqztnLERW0AYDsOUI/Suu1z4keJbP4f+GNUhv/LvNQS6M0nkxnJSRQuQUx93I4A61w2u+ErPTLiOMS4Eo+Uop+UDJ3EdvTk1p+N7T7D4B8C2yP5pRr3GM8/vkOPrnApRrKorxZE4uOjNGz+IvjaawW7GrzSFk3bTawYxuxwBHn9fU16bF4+hTSbfUZnkaCaPLYQFon4+XaBknn9K8mvfGEC6fbLsW3vkjETjGBuC9RtPQ7h/kVa0LWre28NXUMqmZ2lDxZUgnKjBz7EY96wnVqX925201SnUVNLdfia+sfFy9uIZrPTb+4s71HZ43NtGxdMZVGVgQCc/hipNB8beMtZ8KeLrq2vpLjULJbRrNRaxApuY+YAAuGyo759q4mbS4/tN3cXl35EscuJSyknzCcqAvf5RjNdp8IIbm2sPE8r24iicWhhKMGVl3Schh1qamIqUqM6i1sm9fJXOT2cm7NaNnTaZ4k12/wBB0+8GpESSxo826GMe7ADb9RVHxH461zSNEvr9btUEEG2ImNDvlckA8r2Azj3rZkjjj3lQAGJfA6bjWLd6Hb3gtn1BVkEEnneX/Az4AGQeuP8AGvhqOa13U5p1Jct9rv1t+h2yoJRslqeWj4vfEKPHna0yZUMN1lAOD0P3K6v4b/Erxbr/AMQNK0zU9X+0Wc/m+ZF9miXdtidhyqg9QD1rL+J114ftrVYBaxy6pMu8GIgGLsCx6464UYB6n3wPg5IT8W9BX/r4/wDRElfeYDFTxVNVXFxv3PLnBwny3uXU+MHjtmA/tw89P9Eg/wDiK0U+KnjXagOtAswJ4tYf/iK82bJmQir8SkkMz4I64PSnUnPoykd5J8VPGoX5da+b0+yw/wDxFQS/FXxyke7+28c4/wCPWH/4iuWSLzCTnPH60yYDb196wVad7XY2fY9FFFe2SeM+PdaS08VanbvFll8so6Ngj92hz9eTXAW2v6pe+I4o7iQpb3Y+zB8YBOD+TZrR+LevxW3xB1Sz8rMkflfMQOMwoa8/sLlp7l4mYqrSK2M9SD1/Wvmp4Fc9Sco7t/8ADo9SnVXLGKZ7ZZGG4X7D9r3PGTnd8pBPqPXrxWgNNuRFuV0W2XjaOCa4e1urfVFVbiVo54gUE0bc7c8Bl7gfnWjYyXsV0DM8c8bA+TJ5mVY9/U59utfLVcNJN2dvJr8jsequXfiPpaaj4N8PRnHnp9qKeX0++uR+grwK4hkimZJAVZWIIPavofxtfNb+GvDcsiKrf6USqnI4dcVnaJYeENWdNQvrG0l1AsGkVs7VPqVJwa+qw2KlRilJXXLH8kcc6UZ01be7/M4nwN4Qv0urTWb7TA1k3zxG46Ovrt/lmvXLrXLLT9K8u2iidMYWJBtCD6VY1TXrWKIRW88UqkZATkfQ1wGu3qMC7AKGOOOBXm4ivOtVPQo04wparY6TTFOoeFfEMayGNZJ7H5lOOPP5H5cU2/tQLSa2Q7IVGwKO3Of60/4fFW0HxBnlQ1oRn/fY0+8fy5Zu4dwf1r6TARUMNH5/meTiasliJSj1X6IyPEcUtpKzLuLMVMe0/wAPb+ddetvFLa2sk8MbOkQ+8oJBxVZohLLbO6BsAckZxgVckcAY9eK9KKIr4qVWMYvoaegR41e2IAAAbAAxxtNY9tAImJAwWAyPp/XFa/h2cNrEMeeRuH/jpqnJsEm9O/UV8ZxU7Kkl/e/Q6sud3JsiMClhkDnNZN3osM1wrhcbeTn1rcLc896bkBucV8XCrODumeu0mtTl9Z8NpPaK8WRMGHzk8Ad+KwviO13F4+15obkRR77Z8B+WYQpxj6KT+Vdxqlp9ss5IW8wpICDtFea/F23C/E2/uGfaMRMqjuREnJr7HIZyq0Zxk72a/U8bGRtNWMGya2sdah
"image/png": "iVBORw0KGgoAAAANSUhEUgAAARIAAACKCAIAAADpF1LuAAEAAElEQVR4Aez9Z5hlW3rXCa5tzz7ehY/IyEjvM6+3VbdueZVUEqqSCiFAanqE64dmxEA3PcMA3TRP8zD9DENPg3qgR8AwSCABMsiUytetUl3vMu+96U1keHPieLf9nt+7T6R6nvkEn6dWxY2KjDjn7L3XWq/7v//3XVqSJOqH44cz8MMZ+E+ZAf0/5cU/fO0PZ+CHMyAzYE6moVjS/Ehhd8p19ee/qK6uqvt7qlhVn/jY8hFr63e+FT37vPGX/3KUhCrqqtFQjUJlmKrdVN/6gfrq95U7Up/8mPYXfiEJR5k48O5dV6/fLb/0fO9Xvqo++khzx/H6dbFpf/WLlc9Pj5croVlUej4TjHVtf5xL4pHSzUxsairRLL0QmbZtV+esIxdz1eMqHieZUhSEWuL7++2DfpgN9/tb14Ju13fVKDENPTJyiaZpupc88T/LVTIFR0WB0kzdVroyvFGSsTRlGLGmxUkQ+1zIKFatUiUTNYMwTjJZK5M4nqN0TSlNT+LYyWSuXDp6dL5cyGhB5EaaHodapzW8enPjQa+1deOAqzxzXosj5dgqo6uMoUxHhYniA6JQ+b5KdBWGKg5VYqS/TJQfyOczaUYsr2SudV3pljL4MeaySkvkXQw9o5iKb78pz3KkUojiyMrxTIGVzRl6Jle1x0HQ3R0p7t0wI48HCk3H0oNYBZGWScyM1e3GNh+SM85crLf2RqMwCAL/xJHcmZXGd79VNGLLivT63Pj40eP/+N+8x1V+4stLi5XpP/zgum8HnqcXXafbj4I4yGb0yyfrPav6rJ38V3/1b1t62281SpXT9tETWq3Oo/V2D9rXfhDvufqZM8a01uq0f/5P/587Wtcxnc9furjfHH/vnRt5PX+v2+Qq9Stavqy/fDGuzJZ/8uNRe3fA1BUy6v/13eIv/Gg/1FXOVitLan9H/ZN/Zf7UT4cXltRX/g/q1fd1wzJMI2LCLC22nZh1jBI9jhLN0JJEUx4TxS/14cOQqxw9pcWxik2lxzKfrDzbgLnN2Mq0VT4j027YSoVK02Rp+M4u4XsQya5hXQJPVi1gB/F2S8X8xleRp9xABOR+upMPxUY3Zal0ll9Tlby68Hjx3tcGI1c5ZjBVNT7xePSZz0cZSzW3VOzLTeRyyjZVzlJL08rKqR99Wf+Rl+J6Xnmx1/XU6i31xU+OytWk01KPPzl/YXnI8zA+9XhfH2fcXd9JlJH4eqDzUb6pJ5ER9eNxrOt6lNPiwA9M+yCJRv5gXzPscOuOUV8KeRS9XM7s9VZvqvHATLRA0wu2ivk1G44n5fnTEcUB06n4igyVREyp0ixl6Uy2SJduRHEy9kNjaJqRrnEHPHaCDMjr+Cw9SIys1ux16qVM3rbj2EiCyEgsO5bpH/f8yVUs/s8SSTD5bEMZujKZXyQhkqsFrIquIlMmnY/XmXFkOFYma2YoO2LV5AXcudw1N8uVTWWz3ogWi8hnpcOwtChkd+ijsZk3M/lCNaO4h0GUmGYGoYuiyMzpZmJErGshbw0j3xvp+ULeyHgoisZWb+y6rV1/bmau10iuDYyV48UzJy7V5guvv/u16zt3J1fZHGz97Pmf3rravBFtzNSM5H7xZ1+6sjCOo6i7Zw9fDdZv+GrQ9o6unFalqjvoB3u7lulp8UjvDstz9Xd2Xmtvbz83/2KSbf7JH3vpd9/9RquZ3Hfbdbto25GTYzPKQIl0Gtq9dePvf6W7vKjGNXWwpVp9dbTWz2SV8hR6kI179UO1eCJcmVXv3FY31mTqzHwQ+jqPwwJFrCDbPYlNI2Et+Y/1Zf4Qo8lVDBYmlLVgMKusCysysQ4sNZsCSVCBwkhYpvJjWTvWRUQoUaYpKsxn46QLxHtZGj5dPoSl5CueXARBS0fWEkkyMyIGC8vq5An96Ioz6KIzOycvJJ//vDp1TiUD2YQaRolrI6/IGG8x1fEl9bM/E8/WVdAWXbuzo5bOqhNHg7HrVBx1++q25R8K597C7Pix6X5BeX35NAQcFZl4uu9pYaAG3bjbjnsdFYzZDIUwCbxxs3Xtzc7GVqx73u7DYefu4OG70Yh3Osyjxt3wUH7CvBgsDTsuHWzUkK2KWmEXJmh23dA1HWUSJ0wBshPGWuylMZ3MB/tdufJULAgfGOoZO8noHddt9PteELA0ScKaxIaum7qRoHPSgepyTOUgMzLdskyWpWWZ4ozGnGBVEAgmip/lttK5Yq4xNdwZv2TNJl98DtvfTIUfyY9i1uxQZngflo4NwiKK6NtGz+1uHRyERpzV7TCIE9SDOVG9eqSpXNmwbSNUgWEYYWTyvdcOB81wOIhK5RKPuvsws98YvfnBnd/+xrc+eKfXaR8+y6Cn/uV3/2BD3ztoq25Xn1kwLhwMh7e3y2vD9mY0F1W77uitd38QdEdasZoM+xvfe7f5cFO5ZrFkVJfr31x74+vvvrPfvv3vvvs7p08v/uJLP3ty4YynmeWT8+cuLWIUJjPGDnf9eNBR3IoTqlxelWtqFKjjK6pSUXlN9Xuquau+8bZ69oLM3u9+Xw2GzHuCpubf7JRIiyIkhqXlIw1Nx25qPKzIDR7B5CpiMdhZqQLiPaGmeD2bQCy5hvJUJcMK0bi8KLVF/JWNw+yx9ogcQuUiwJGskZHI25Eo8R1Su6KJPZNxuKHrJfENBoE6e0zlqmqp1H3+svnEJXV0djyzoJKR0oYqHImpwpJGGDUULR4IHlGsvvg5MVAYlnGgOkO5zPnH1BCpdf39TZXPGqeXDoX0P/vy3xx0r7eDr41ee4DvY5paHCadQWzl9D7qywgP+lpoGk9Mhf0wKI4a4d7A3+mUn7rsdnfHva142NeGQ9SE78XhiOXgPvgPs5SkYnK42ww0SBCG6CL2bWyy2xLdjCI8GPR4HAfKtuXlViavUgeMGfSZQtE5hiX6Pxx6YejnQnw6XTMNKzECJNSxM5pYp8NNYGM3RBxkCTUtdAycwiS0VCYRSUVgeGYEhtmIUx8AyeOGmDJxBfEZMqLGkBYEglVhs7Ny4m7wV7wtX2SNgXdlYSczZuIZ3V5fZ6+YupXHkVR+M/FDkdUgDHRTy+aN0DZnT5vuddcbdQw74wbR2I2xe7liVjP8ft8fjKN4E7+m0fVHGd2eO1eeXKWQ13aHa3Y5mffM5qYZn21uf5SYK7V2dunF6tK/Wvu+daz02z94/eXLT8xMFZxqbe3+HzrO2gM/Myz7v/HBW+3hoOs2/94v//O1jVZ4wawHxocP79WWwnf1u81Vo16sTK4yP6Pu3EncYdTuq7kppYYqn1eXLqloJI/Po+eKCpVYL6izJ9XWnjrYU57H3pWp1HAM2KzpTKIsZD/hliFDKDUUk89CHO4xD1OTmm7e5/EWXC98AUM5hvhplZyD+Xa9xMwqR6kxSxCLJWG6+XCxPOl3zBTyg39jo4xs1RmpONDDEDdm8iiPrM3AVeyDSyvIsCqW1VRNffpy+DMvRheOiWBlc0rhGvINpWyoXEV+tlj4QATmqQsqGKhhX21sqp6uFpZUwVAu/1wzopb60RfN+WJvcrVh84GJhjp32ZjO4EEG44SYpTPSmoN4t2scKK0ZJjut8PevcVuuPm4Od/ZxQexqFedIU74R9yM/xJtSXmDizSaJFQW2JaY6Yo8fqk72sYGS0FWAmcCS4wET1KT7N7R8MfF8gpVhJ2o4dvjLAQEV0iISkEQ62gClGCRap1rJIDOWbpt6xjCtvGXnnKzBNKUDvYWbSkiD2NgWophgNzAgNt8z8kM2nXF5DcY5FTDxBFhCfmPJ7WSRFlRa6t2hhlBvIs28hk/GY5hcxeQpDc9zeSjLtLMFPfG1cBSxOWzHKBQyTjGTYTvEyXAUtXfGKizPrJSKNR4SX0PMKjdcKCbDYafXGTh23izFSZZ554HjTu9Qefpe0nd9N0q6A80K/X7beOEzn75lFz5Itksz9WHPG+8ad3Z2vvnm692768oaHjsf1FvD795e/XP/7Nd/+3s3rTh/9b2dt97eaq66v/P9V6/3N+ozCm/cCcJ+MBo
"text/plain": [
"<PIL.Image.Image image mode=RGB size=274x138>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Train :: Epoch: 461/800: 100%|██████████| 135/135 [00:11<00:00, 11.72it/s, Epoch Loss: 0.0422]\n",
"Train :: Epoch: 462/800: 100%|██████████| 135/135 [00:11<00:00, 12.20it/s, Epoch Loss: 0.0410]\n",
"Train :: Epoch: 463/800: 100%|██████████| 135/135 [00:12<00:00, 11.00it/s, Epoch Loss: 0.0417]\n",
"Train :: Epoch: 464/800: 100%|██████████| 135/135 [00:10<00:00, 12.63it/s, Epoch Loss: 0.0423]\n",
"Train :: Epoch: 465/800: 100%|██████████| 135/135 [00:10<00:00, 12.33it/s, Epoch Loss: 0.0443]\n",
"Train :: Epoch: 466/800: 100%|██████████| 135/135 [00:12<00:00, 10.64it/s, Epoch Loss: 0.0433]\n",
"Train :: Epoch: 467/800: 100%|██████████| 135/135 [00:11<00:00, 11.35it/s, Epoch Loss: 0.0448]\n",
"Train :: Epoch: 468/800: 100%|██████████| 135/135 [00:10<00:00, 12.30it/s, Epoch Loss: 0.0419]\n",
"Train :: Epoch: 469/800: 100%|██████████| 135/135 [00:11<00:00, 11.94it/s, Epoch Loss: 0.0439]\n",
"Train :: Epoch: 470/800: 100%|██████████| 135/135 [00:11<00:00, 11.35it/s, Epoch Loss: 0.0415]\n",
"Train :: Epoch: 471/800: 100%|██████████| 135/135 [00:11<00:00, 12.26it/s, Epoch Loss: 0.0429]\n",
"Train :: Epoch: 472/800: 100%|██████████| 135/135 [00:11<00:00, 11.77it/s, Epoch Loss: 0.0416]\n",
"Train :: Epoch: 473/800: 100%|██████████| 135/135 [00:11<00:00, 11.36it/s, Epoch Loss: 0.0429]\n",
"Train :: Epoch: 474/800: 100%|██████████| 135/135 [00:11<00:00, 12.15it/s, Epoch Loss: 0.0417]\n",
"Train :: Epoch: 475/800: 100%|██████████| 135/135 [00:11<00:00, 12.11it/s, Epoch Loss: 0.0405]\n",
"Train :: Epoch: 476/800: 100%|██████████| 135/135 [00:12<00:00, 10.95it/s, Epoch Loss: 0.0431]\n",
"Train :: Epoch: 477/800: 100%|██████████| 135/135 [00:12<00:00, 11.17it/s, Epoch Loss: 0.0443]\n",
"Train :: Epoch: 478/800: 100%|██████████| 135/135 [00:11<00:00, 12.22it/s, Epoch Loss: 0.0437]\n",
"Train :: Epoch: 479/800: 100%|██████████| 135/135 [00:11<00:00, 12.07it/s, Epoch Loss: 0.0425]\n",
"Train :: Epoch: 480/800: 100%|██████████| 135/135 [00:11<00:00, 11.27it/s, Epoch Loss: 0.0433]\n",
"Sampling :: 100%|██████████| 999/999 [00:16<00:00, 58.96it/s]\n"
]
},
{
"data": {
"image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQgJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCACKARIDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwBvxJ+JXi3w/wCP9U0vTNW8i0hMPlxfZom27okY8spJ5J796zLH4j/EnU2YadeXF4VUM4gsYWK/XCVqeItK07V/jzq8OqIrwLFEwjY43t5EeK762FnZpi1ghtkdRuWOMJnHrivmc2zv6lP2UIc0t/L/ADNadB1NbnmTeOfivCyNOb+NHk8tc6bF8zYJwP3fPSs24+K/j+2untptYMcsbYZWtIM/+gV7VLL8u8cMoOwkZxx/hXkPxN0WA6haXlisk2oXBJmihhzuXrvJAyWJOPyHaubLOIJ4qsqVWFr9Vf8AG/Sw6uHcI3TOg1r4h+KrP4eeF9Vg1PbeXpuvtMn2eI79ku1eCuBgegFc1o/xU8dapqUNuusnYzAOfscPAzj+5WnrmjTS/DzwbZTI8Eqre5WRSCuZQeRXH6Gr+HvE0kU+MD91uHTOQQf0r62U06bcexnRipTipOyZ7ZqWv+IdO02SYaqZHFs0pBhiypA4ONvTNYsPjzxJcaGb2K9y0AInJhj6gZ/u/wAqpXPiK1ha6lEzsv8AZ5V1bkM+3Axn0JH5GsPTbx4/Bt5jy084uCCeTkY/E8Vy05Sj7z1R7VbCQ5PZJe9vpv6HaW/jzW774d67q63Sw3lmYBHIsaELukAbggjkcc1m+FfGni7xA9tNJqkkVuSxdfs8PzAf8B/H8areHtNjuvht4m09XZVY2xkZgDyHyRj6AVztjZXGiRRWlpK9wC3G5RkE9x6f/WrPF1Z8tqbszzq0fZ4j2U0k+p1d54/8Rp4jaxTU3SCEF5GNvFhvb7vTp71YPxMv7VovO1ISmYZVBEg2/XA9K4DxRqcUVlHa2cAMy/I0g6kenqaLew0688M211dmU3ALK4DYKsDx9BgdPWlGFRw96TT/AFG6KhrUi0+3+Z6r4a8aapq3izTbZrt5bO780tH5SAKFRiDuAzjK1RfxZ4ghKq+ut/dObaLOf++a5fwFJcr8TtEhbcsSrIu1+CP3Eh6Vyunapdam1zHNJIzoM5B6+1dVJydNX3OdzptJpf8AD6/8A7W6+JPiaO4KxarkZwoMEQz/AOO1PJ448YbIPI1dZyVzIEihDKQSDuynAz09hXCwXK2mth57ZGcqzBR2/Af5zWdBdajfzzXSXYjDMd+9wvBJPT2zRJu2jMJN9DvpvHXjdJvKGvBnxkhbaEgfjsrsfEHijxJZ+NNRsrW+t4rCER+XG0SluURjzjPUmvI7GBIrR57S7kkmAG7zSFGc9l/rXqPiqFbnxtfoQSQ0Z2Fcbh5aZwe9cmYSnGj7js7jvY3bHxtMyBLssHP8SoCK5vxH4r8Y2DSz6feCeIH5YY4I2bH4r/WthrbTry1V1Hllh0DCqVxZeTEyxWZmDepJzXz1LGVIO7lJ26N6feVKLZ4/qHxj+JFpeyRTau1s+c+UbKD5QenVK9b0TxR4n1f4b6BqZ1Ypf3SXbT3AtozuKSlU+XbgYAxwPrXgXj2a7m8WXD3dt9nAVViTbgBAOP1z+Ne0eC7+1sfhV4R+2OFhZb0nP8WJ24H1zX1Tqv2Kntt5hBXdibwv8Qtcu7prfUtTZ1bcySeRGCMfw8JjrVDW/GfjKzvvLHiRrRTGSsL2MTOD23ZTA49KnttHsPEWvW50+2NnpItztETgFZQTkEd88V1i+EbWaweO9t47yV1EbTNw20eh7YxUQqTlK8djaqopK25xifE7xXfqsFizefsAL+ShGcct931P6Vv/APCW+JbTwVr+oz6mk9zai08iRIUBXfLtf5duOR607S4rzQNRgF6lqbOPfFbzR43qfQgdBj19Kk8Q2dlJ4O8SzxL5cM/2RnCdys2Sce/T8KHKSd09Nbrr8iI6u1jl4PiJ4qmgSZNYZ8sAyfZocqD/AMB/nT0+IHiwZL6u+1R83+iw8H0+7gmuJt4DJpTzQMQULIz56DPHI68Y/OprGW7ltoDKS0TK7pGzjc20EEgE578/SsnWXextyyvZRO3Xx94ilCj+3ZU3Aci2gJHvgrx0963PBniDxRfeKbW3v9a+2WT7y6GCGM8IxH3RnrjvXlFkitcGZkl4wT8o2lsYz/Su7+HTyReMtPhmjMcrGUYIBBXymIwfr6VMZVedau2gXVmmkYHhH4l+M9furi0ufELpKU3RMtpb8YIzx5foa1vGfjfxzoVtA9jqcrxAuZZ/ssLcds/Jgda4bwJok1vMmqNM0bbfkULnIPXNd1q2qae2lzQ6rLGlu4wdx+8T2HevExeOrU8avZyco9UddHC89B8ys+5Rk8cfENfC/wDasWtiUoDJKPskIwvsNnbrXMw/F74hSRLKdcYRyP5aObKAAkDJx+754rrbO8sdWsWtLGRZ7U/6wLnnnJB+vFVNY0WHUYw/lBZoAVjAO0BT2A6dqdHN6kJOFZdfuXp/Wg54FNJxfQ+i6KKK+tPKPm74iX6ab8WtXmVPMlL252t0GIY6n0jxmby/t7SaEpJM3lheozjisf4rz+T8WNYz0byB/wCQY65O5kmt42ljALK2VI6+xFeNjcBDFP3lr3LjXVLRHvc0tw1rJDKfbK+npV7TZmEe1CyYHK5rzWz8ay6g6qzsInkjj5BUgBcsSexJBPHrWzpXjvTZbKd5JmhmjYKFlXJIIPJx1GfTmvha+V4mEXFw+471XhJbnW+L7R59L0W5xuWMzqSD3ZlwP/HTXlfi+O1bR7e6tYSt487JKQTzjkH9K7HxLqs+p+DfC9yqSL9pW53xg8hg6gc/UEfQ1h6hod/fW9pCyBbaMkiR1OWc/TsBn86+8w8lQo0o1NLRV/khR9lLDzVryvoecfaryS2bMjEBtuPX1rt9PsZk0iynKBvvZB6cc4+uKvaL4BiuLdvOnOEfcTtwMZ6fWtbxCbjS9L2WkLTMy7cIuccdacswpuoqSW/XY6sH7WnN1are1u7JfDEznwv4xiKrGEktjx03Mxz/AErnrXUVi1LBPzMjbWwfl4xmtfw1usvhn4lv75Wj85rYsCCG/wBbjp9TXDFks7pr4yyB5CUhBbO0E1pXS5k1t/wTxMS5zxXtn6lDU2mTXmt5AULBTz0bvn2710trcWx0kmFYljYNtBPo3Ud+w61DdWEN1aOWYyXLcecxJI9QPbtWdqMsGk2llbksIkY5ccZGc4J7df51oqvPa25tXxXtJavW50XgC4nufjFo7vuMf+kEOQfmPkMD/OsZ7FLRMWVysUpA3oMncw6e1a3wru3PxI0eATrKrCcttfcBiKTH9Ofeuf
"image/png": "iVBORw0KGgoAAAANSUhEUgAAARIAAACKCAIAAADpF1LuAAEAAElEQVR4Aez9Z5Rl2XUeCJ7r/X3ehHeZkd5Ulq8CigUCBUsSAEHQSZQoiqKkaRlKark1Wr3GdI+kXq2WRq4lUS1KlEhI9CBBEL4Mypv0LiLDv4jn7fX+znfjRXHNzK/u/zirkJWojHzn3XPPOXvvb3/721SapuQH4wcr8IMV+D+zAvT/mR/+wc/+YAV+sALZCrDTZSjUK6zEsDyhkyhwCS9xnKQwPBPHdsxxIp/6SUjRLMUzhOHdSTc1aZJwdJokFCMXVFni+0cmzTIqr1I0CQLX8Y0kYRRFDeiIYpLWB3uY6LmP/ZRtG75rpSwfB2HKxASfkAaRa6gKp4jU7Bw/P5OXlBzPUyGVPFYQF/KVjQm/+3pvbBqzT6x9ebG2E5i/7UZ+KjIsNxNqH0/qS0pNjuQWaT75tz+PWZ5ae0IvaDO1spo3hHF7vmp88F59P+LXL69+4sWVsOTeuPuBFDY8vWPuaxvfq1afyp99ocILhQNjwCZpQqVLxcq1cs1K6ZycS1Lh7u3NnYYZx6HcqVWVyj/4lb+JWT7xqZeWVpYlkXjxJIpDnlVYRkiSUFI0EsfWeGw6VkJHeEKZyyVU0mwd5fLV+txMp9Ms1cR7bz6S9VyhrFimZxruaGwKrJTGsRP7iqgmVHTrjfcxy//zH81NzJgI6YVzQhoyqsAUZ5mZqiKyc5J2nuZoLmGohHaJddjyX3/3ztZwr9FzHCKFPCWPqGvMmXaY/NEfvtXvRilJSUwoikrDiDAMoVISkjQNMcvf/3t/33N927ZfeeWNldl6q3FYLBW+/PnHz1xYanQOWe2CEzHffPk7PM+Grvfw1v1hK5J1edg/0nPSJz/z+Kd/5As0FzR2/p0ozN1pB2W99s4f3hXCaOZ03jGlWm7lH//bf4lZfvaFK3xJxfzGOOCwLDQrSxxLcUVNH026LdvUZDVhnCi141CQtIJLRWKs00rEpZTRt/N6MfXxTvh+rzMYWOPIx/dnY4L1LixwROJ++/e2McvMGjV2iWcTlSPPXiG1Gnn3JrEscn6JpBT5m58ieOJ//jb53n0iK1wSh5rMTAxaYpIvnI87MXlzn7qopIce2WsRBgvmEVogvMzwHJOExA8jrxljlpNjEwYhIyUxTcVJQiLsZYahU47lo8DBpvfcOE5jIceFjhf7FhXhC2TOHc8JQRTRaRSGqaxSEYn8aMCGIpXgo5OUZUImSuOU4CRNR0Lhc/BXUmynOMKbo3BOwxA7Ff+Pi5kcJVyoa+uLz6iFfO9gQ2k8KiTR03J98f5en1bDp5nEDIoyQ7Nc6ohpLHW2u68O36vloieqHy2Vzk8nqZYEokYuZycMV6NtKhnoC9UqW/6hH03OydvvGuLq6flRaFjbI9aIisvC4rlZkaNix8jhJNJcFI94psc5R3QqOs6cnhYulmOdiLf32Vmmf0auT2d5+vkf4rBcge+GapSGKi3lNH3o9FJOSPyIZm2G5yMvZgSep2XDG/l++Pi1a4eHbSswlYiUqtry8orLBO32BsurlVpV5CQ/cmQ/FVJsBn86y+/8ZkuvcEYsjA0S0sHisnpZp6h4kNMDjqMZIhGi4CiEAcXzu4Rp0gwT0tjdqmf5ccDuHA0/6DbHHYdENOGxC3BWGJLSJI0J3glNTWchUcxJvEZZ58+WS1K1qMjj0cjrjamd4NzaIlM94zOJpn385o2t/cZBGCcx7lCWXzu/jpMTesHA3Nlr3PYNrV4u9B91Da5JcFnGHBHlaELM3cZ0lnFAVXHViWk+JRIr5xXBNCculTyyuhfOXuCbzVE4wKVVUgp+TPOEmc2rnud7vrV0aj1eZHg7mIwHbOQUzqhPsfLG7qQ7ZinCiqI1m6cooTKdxXLxNIRjqIVS+tLj5PHTZIkliUh+9qPk9vskpxNrTMq4iLAeTOoG1MhMuSD83Ap5rkBeHxHfSUcMwcVDcQTnhJFIilWmWZZjvTDQcDqOx8mxESXsMRoDGx/XUpzQQeyJjMpyckJCx8KdlETEj0M/xqZPcGVQbMokUQiDw9BRGCWEjmMPd3UUeBbH8SzL4LDgxFAUTeMlHY+EjukEhwXrnvixR7mwZHwah7HrYqUYhf/UE9VTs3FhLs9Skr5yarA/kHxZ1fUD05NYwnX2O6PZeEVLiRoTyTNSeTTo2n3XGKfj6FNnRUJexDwMTcsu88Dc9ffNz32UOohU7Rwl55TaSnCOuaOypdsJ6Yzc9huh5kfrp5WZJdEZPhRpLlV1IcrleZo37WicWp17nDSgozEdz0jVwmcv5ud+1bh3/X8n5K9jlsVSFbsuYRPWSSVeGo+G+WK+mi8ejvqGOfCCJAgTgcaVw1r0sDdq64qWU4sb7k7sp/YodAL/4eFtKlRUTacZsVgo2bYr+EmCAxzHfsAcLxhRFBlmbGlG1OZlgRJcP9pu+IesMFd1E+pesVCWhArNU6KWi8yOVpG8VsL4WmqKoRcNfG9nMNnd6EoJwYKnIU1wTLIbDb/i0MTUh8dG06RcWT69Vt++w3zw7T1JVZJYPTw8ircnj5f02RWRxC3G2U3HzcUFfdyfM2rxZz/3oiQw3/r977aOencfPty/MywXNPvInewOU9PC9Tz3WG2mMu9bgTNsTp+lPx7rFSmKKUkRS6Wirimanbt+656sS2kUTGIz1pMCVy6k1IFpUHy8KAY5JaaYohPvWq5fFkh5iVFqRYUWlHT0uXPj651lx6/t9EaRE0tqfjoLLGoUEZVK3Qlptwl3jjxxmihFoivkmctkt00Ou2TjKDsYshrBKMkS/bk18vnHSOKTZZssy6QxJkGI65xQbHa34NjwXGibfuKRhcLJJCfHBv4XjaWlmAiGBkchiuIUpyNiOSqMKJzpwIt8J4JfxWL74iqJUy8KBZ7wFAWHKYmjAIYrCXEgMk+ATXBYjm0M8Ab4KSe3GkPjtsPbomFiEj8MEs/zTJwtmUpVkZqb0apULudXGQZnmGXkojiLjSCkGx2Ki3q5mL7enruoDunZSnExPHQTDte6RTsBzctHdBAk5vSZ1BznG8Fw0Bt3JzeX82uX5jxKK8+ERX8o03pdC/7L15lepzboBFbkVh4TgskOiQxnKFfNtdP1ujEcb738+rBg8HyQU/fHAukcWkZt6ROHUm+n/4DlprOwvlMUZDYKTTbFZe+HTnsymtVm6kTtGS0KNtsNy1rxyGt7lJnL55eWlh8e3P/RH/9Tdsf7F//q785dlg/2Bstz4kxhgeYU3DFx9rJ4SoCdpxlam85y/nGRkejabHB6WSOcNHHDIKK4RDga0r2xIYtDWmyW85oqBzKbrs0qxeLMwKj1+8r7r31w/dZWa8sSQtXFC8fH47xg+TMAKLPxNDfdFdk8vBgWc1yOpctizFBpv9fP6SWiMKlqN1ub808O+ocbL79zY3X1Um2mvLhc2dq83z28LavczGlt99aovdkyD01mFJvmjpCPuaK0uKw8dy5RcvOFSmN4aXf6LGES7ey1FV2q1StelPj9iSLIa5WqReKHh1sT13y6dlqIw7aJe1nzRfL+OByMTEY4Ws8rkt8eR7q2wL/5WicnaJfqybanCnZ/RR0KcrSrLImcMJ3FcXFxEgrOm0xub5DPPE1mykQrEpgJLGrBJ0Ob+AlJPWJ4JGZJWWOvLceKSCiBPDdL8vPkH/xmdrfgqg9hkuEEKURT4ToRopK5E5P2oZMGwx9lN1xCY4szKZxmeL9hDLcSpoKuz6QLS2LgeNibqpxsb/BpIpxdDymZeu07VGIKS/PhT3zK/g+/7WAp0iT1woQVcJXRsDcpnbAfgnWSrjmmgf/oxTHigcgLBBnmNFFY+nRFU9IgGHlSTaZonVNKFCIfTeNmij6bFIfuw4oce9HhZle+dHm+XDhHwsPQf/OtEUvhKAsDiu4mWLBspAmZEMP3nNKCVF7P5ctlRZo9VQueUffJkIucwceXV//l7QlH8aHI8ypt+xEsabgpUMukrxnMe91mJ7Cb1spqbE0IkYRe1FssXd55t0vNycy4NJ1FkngzDM2Rpwmp7xsFezh
"text/plain": [
"<PIL.Image.Image image mode=RGB size=274x138>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Train :: Epoch: 481/800: 100%|██████████| 135/135 [00:10<00:00, 12.44it/s, Epoch Loss: 0.0430]\n",
"Train :: Epoch: 482/800: 100%|██████████| 135/135 [00:12<00:00, 11.18it/s, Epoch Loss: 0.0412]\n",
"Train :: Epoch: 483/800: 100%|██████████| 135/135 [00:11<00:00, 12.24it/s, Epoch Loss: 0.0418]\n",
"Train :: Epoch: 484/800: 100%|██████████| 135/135 [00:11<00:00, 12.11it/s, Epoch Loss: 0.0431]\n",
"Train :: Epoch: 485/800: 100%|██████████| 135/135 [00:11<00:00, 11.40it/s, Epoch Loss: 0.0442]\n",
"Train :: Epoch: 486/800: 100%|██████████| 135/135 [00:11<00:00, 11.47it/s, Epoch Loss: 0.0408]\n",
"Train :: Epoch: 487/800: 100%|██████████| 135/135 [00:11<00:00, 11.88it/s, Epoch Loss: 0.0407]\n",
"Train :: Epoch: 488/800: 100%|██████████| 135/135 [00:11<00:00, 12.07it/s, Epoch Loss: 0.0423]\n",
"Train :: Epoch: 489/800: 100%|██████████| 135/135 [00:11<00:00, 11.72it/s, Epoch Loss: 0.0414]\n",
"Train :: Epoch: 490/800: 100%|██████████| 135/135 [00:10<00:00, 12.31it/s, Epoch Loss: 0.0420]\n",
"Train :: Epoch: 491/800: 100%|██████████| 135/135 [00:11<00:00, 12.19it/s, Epoch Loss: 0.0421]\n",
"Train :: Epoch: 492/800: 100%|██████████| 135/135 [00:11<00:00, 11.31it/s, Epoch Loss: 0.0410]\n",
"Train :: Epoch: 493/800: 100%|██████████| 135/135 [00:10<00:00, 12.28it/s, Epoch Loss: 0.0416]\n",
"Train :: Epoch: 494/800: 100%|██████████| 135/135 [00:11<00:00, 12.21it/s, Epoch Loss: 0.0423]\n",
"Train :: Epoch: 495/800: 100%|██████████| 135/135 [00:12<00:00, 10.88it/s, Epoch Loss: 0.0403]\n",
"Train :: Epoch: 496/800: 100%|██████████| 135/135 [00:11<00:00, 11.51it/s, Epoch Loss: 0.0426]\n",
"Train :: Epoch: 497/800: 100%|██████████| 135/135 [00:10<00:00, 12.55it/s, Epoch Loss: 0.0426]\n",
"Train :: Epoch: 498/800: 100%|██████████| 135/135 [00:10<00:00, 12.85it/s, Epoch Loss: 0.0427]\n",
"Train :: Epoch: 499/800: 100%|██████████| 135/135 [00:11<00:00, 11.76it/s, Epoch Loss: 0.0417]\n",
"Train :: Epoch: 500/800: 100%|██████████| 135/135 [00:11<00:00, 12.08it/s, Epoch Loss: 0.0408]\n",
"Sampling :: 100%|██████████| 999/999 [00:16<00:00, 58.96it/s]\n"
]
},
{
"data": {
"image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQgJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCACKARIDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDv/E/jC+0nW7q0gm2pHt2jYp6qD3HvXNS/EPX3OI7tY/pEh/mKg8fn/is9QHP/ACz/APRa1zaIZJQgIBPqcYHr9K9GFOmoc0jz51J87ijpT4+8S441L/yBH/8AE0+Px74lYEnUAcf9MI//AImucFqzTFImSUc4eNsqwHUg08W0nTadp7gdKbdFxTjbUSdS9nc7PVvHOsWGmeFboXYH297hLkmJPm2uqr24xk9K57xt8R/FGlxWo03UhFJJOUYeRE3AHTlT3rR1vwnNr3gXw/JHMFlsftLqh6OTIO//AAH9a4HX7O4zcrPGCYRHJB8/ViPmBHfgEADuRXmVW/aJLbU7oS5bPc9i0bxTqt9dafHNcfNPZC4dPLUckkdceorl/G3xPvbDRs6Pq0i34uzExFvGU2gHcAWU5GcY71mab4sll1Gzt7Kxje4FqbczSPhAASccdOM49zWF4s8KTtG0OlKZIHl81i7AmP5fuf7XJPPFdfJzw5ooIThGqlPY6vwr8RfEOpeGfEepXGpNM9m9gIc28amPzJdso+VecgHr+ldnoni271jwrJqMEjPcPG5RSijaVwOMDnr+leVaDol/4e+Ffi+7uwIXkaxkiLc/cnyPzJqHw144fRvDVvFaR7riV5Eixj5WOOefasqbS0l8zPGTUaz9m9D1PUfG8lxqw0PS70jUFu1WVhGp8uIDLHkY7Y+prhvEfxC8XaZqd7awawQY7iUIDbRcJgbBynPXrUngbQJtMvLfWtRLv/aErQW4Vud3zB2Y/gSPXFU/iBoYm8e3ltEB5k9qrxlEJ2kK34k8DmujlU46KzZyXqSV0ze8E+OvEeveN7K1n1Mzac000ckXkRDcFiYg5Cg/eAPBq7qXjbV4rieO31C5QJtLBoISyFsELjb6Z59q5P4cxWdp4z8Kx2y/O4n3ncSTmCQ5IrB1GaOw8XyXHn3KKVZUlLMTJnp15OBx9eampCMWl5HXTvy2bPRjrfjWTTJrz+2zEkYBGLaBmfPYDbx+VcNN8WvGdrOwl1XgH7ptYf8A4iu002S2DRXbwrGLjlVB3bcDnPv1HX1rxr4hXEZ8S3DQzJJuwcxrtA9se1YT0VzROx1k/wAWvG2N8et4B6L9lh/+Ir1LxP4o1vTvE15aWt55dvHs2J5SHGUUnkjPUmvlg38u3BbivpXxmB/wl19/2z/9FrXTgVGVR8yvoc2KlJQTi7ajf+Ez8RnJGoE47eRH/wDE1DN448RJGT/aW09v3EfP/jtWRdWekeHoHe2ilmupCGdsEoOn4Vy14weRjwOegrvp+znJrkVl6HFKU4JXk9TQb4g+KR01Tn/r3i/+Jq54m8eeI9N8LeGb231Py7i9+1faG8iM+ZscBeCuBgHtiuTkTJJzUvj4bfBHgzHb7b/6MWscfCEaScVbUvDVJyk030K8nxY8Zpa7v7Z/eHp/osPT/viptJ+J3jXUdWtbRtbIWV8Ni1h6dT/BXCGTf8p6CtHwuyHxBBIvOzc3P0NeRDWSR18z7nqV1498RRSmNdTxzhT5EeP/AEGnS+OPE0fw+8T6mdR/02y+y/Z5RBH8m+Xa3G3ByPUGuUvZFluAYVGEPzZbvV+7+X4U+MQy4I+xAj/tuK7ZRjbYcJS5lcxdJ+LXjSfVLdLrXSbYuN4S0hyR6fcrsNa+KGt+Gri0ku5vtMcq7vJ2Iu9SDyDtyMHFeJ2Optpd1Z3KJkxOJRnrmuyvL+Hx/ruhwQBw1uha4LDIAyCR+nX3rnrRjFqb0S3/AOCdtN6ONr3+814fjbr0PiG5kvLicacctDbGCIOoP3edoJ/PvW74A+J2v+I/iHa6dc3u/T7kylYTDGpQBGYDIUHsO9effFDEus293Ip82RCGPsMYq38Gyn/CztG/vET4/wC/L0Upwq0/aJblVqbpy5DVvPir4zjeVU1pUKoGUfZoTn81qfR/iF8QtXMcVrqrTXEhAEf2WBepwTnZ0HWvNGlFzZiRGVpSmzZ0JOa9A8B+LdI8LfaZtRtHaARbDOqgsjgfdx3zxWZkXJPiD8Q9MvntNR1B3lWUxlIbWFmU9s4TpTrL4q+KRqLi81lPs6qSFMEK89v4a25PiBpsMkfmaGkEl9bGe7SQmJnjYAoQw9Rk8V5Br8sNxLK9owcRKcZAyAWPH4A1N+w5JdD7NoooqhHifj5WPjXUDg4/d/8Aota85vZha+IzNM0q2l1A1s7qOnGMj1wRXrni6wEviy+mZsDMZPsBGted+I9LS6VYfOMaw4kZVTJCuSFwfY9frSrYiEqTpyZxuLjU5kM8PQRW0EUFtcGVQuWn5HJ9F7D3712EbJ5HowHynrkVyHhnSLi3nkaVwq4AUDkOvb6V1iSb3WBU5PU9lGOvvWDxUFFJdBxT3Z19ldPB4Z0edyDB5Vxvjxyx81QDntjn868Y1bVrXVtW1O5Wcq6AiKHHBUN6/wB7kD6V6vq8jQeBdN2nbujuI8+mX615RpXhSG81BlactG8qYIXHJP8AhWFXExcvedrfqddOrSgnGe+lih4Mv5m0e8IcLM0jOvqeOn5123hrWZJbJmlLLMWKFnIO09a4SzNppsN7CYpt6O+11HGc460k13NZbL+KX5HXceM4b3FexSxKpxXY4Kkbts9U1mabUvhd4k02eWOS8jNmruG67pxhiO3Q/lXk2oadDpOm6U6XXmieWRo4gfmRBxk/7xz+Vd58K57PUdI8aXOpu5tmNjJLvOdoV5Dj6ZFcf4umttX8bTXFkWFlIA0TOu35AMDAPQDBx7UppVIuSW7sOcdFc3B4/vtP/su1mhtJbbT4g0YeMn52GTuGeTyap6neaz4hSfxBaMbQNG43wSY2RAYbqc856da5+SzbU7i0gUg5xukPQ4wCfpz+laEmuLHYXOlWBEdlCgQju57sT9c10YdfZewU5WidF8Iry2/4TbTbV4j9oN7M0Mp6tGLaXI/M5rR16LT723+3GaSMxxqscTRZ2ehH48VhfC7/AJKx4fU9RFMRg5BBhk5/lTPDniuyf9zfq8hPyhpMdPXnvWE5JzZrS+G6NfS9Vaxvrc3E5+zRjaeSgUk8A5+p9q8o8Wy28viW7ktphKjOSSoAAPpx1+teieKPFFhalksVRiY2RlblXB9R6givHySTk9aym1sbIdivpvxzcGPxffKqkt+7xj/rmtfMeelfQPxE8QWVl8Q9StZ3kQr5RJC5H+qQj+db4SpGnNuTsrHNi4ylBJdyhqUrAwOXZULYcr+n64
"image/png": "iVBORw0KGgoAAAANSUhEUgAAARIAAACKCAIAAADpF1LuAAEAAElEQVR4Aez9Z7Rl6XkeBu6c98np5rqhcuiq6pyABtANEAABEIEABMqgRUmmJCt4RrKloSVbXlrWyJ5RlklaQ0ukGEWCAEHERuzcXV1dXTncHE/OO+c9z3fPbdhalmaW/2OjUV1dde/9zt77+97wvM/7vHSaptRPr58+gZ8+gf8rT4D5v/LFP/3anz6Bnz4B8gS4yWP4nW+9FtNpFFNRSsVJylBJmtBcGlIMF7jOVnc0shI/ioOYppOEpiia5qI4CWmKSeIwJX/AsoxIpxxHSwyDr2DJeeRZLqHoRJWkf/LXP4P/fuZTf74wNXPpgx+rqEyO6ktx2mvviqJw763X7/za9zzKnK8snf+7/yM/M1ecnm7dfTtyqanF2eOLUyqbCIr46vd/nOjazOKJRmvv//UP/puhs3Opm12eOraes+7cuytyub36FlZ5+JN/8RN/5j/nS0pK8bzPa7nyzz5RYGKq23W+8dLNzz//5MEwjNK4WJN0iXrj9Xf++1/7Z5983xcvLZ/9O7/2N9yw/YEzf6PRvbHZeUmo5Qf7q+cvfny6Un31xr+8OP7Q1t2GJ4mDze9jlT958bUfvfyj0DIyui4rZS/yNzbXY4pyXVcSFZbnfN+XBdHoddqjZui7lfJU4juW6yZxosqyKIp5LUtzfOgFlmd1eg18fRqGYUpxLJMy6cbdB1jlI3/3hymeIi+xPM+zLMeR9xKGURLGCUMjTmDThBNYjkqThEmplE4TkaKtIKDcyKFCz4/DOI6ZBD8qiSK8WLzkFN9JxXg/LJVc+V++gL9aeWKFEmlFLXByZjxqYRdIIi+KFZbVbLvvukM6dhCUsBzNMEIS+XEcYQNQVGmmdu7i2ScZnrG8EUsrDM0Zrp0mrufbKRVEHs/yoiAkX/3nfx+r5Ion8KueE3AztsemlCgwceIG2az+S1/84Jn4QPX2EzEOPOVg19s88fkv/7U/3+3ZfPetb/727/3Wi9cFuVTLcJ9+/4WHz+Yy2ZkDN//bX//BtQevZ7PVarl6Yrn6z//ZP8TP/9yXv5zGsWeb3U6/kM23ug3XDmieDnyXZ/g4DHO5LPZsTNHlcmFoee6gF1qWKPO5ypQgSCHlSFo2ZVlJ0qxuj4npkT9OEn526eTJyw8HlPkv/+u/h1WOjs3YNGkmjRMWT9kLoijwQw+HJKQD1/ZTP2Vihg8TJolCJmETjmLoIKIEOomjmMUro2i8lcRjEz45PGppLPAMywZhgr+kkzDCSrjwst1Bt31vfe7iApv2Bs0eF+2lXMkPjBH2G+XnzUHn6jsnTp1VNC0KwiAIOIaWVSkOo607dxaOHwtYfq6o5YW5J4+fuvVWXR67Bdl96OGH72xssZI4WWW7s5m6XrdtruSXp8uVlWPZXp/KZykvSA567ZSjcKphF6iILNlpD4q8/MiJ+ZWlisxmeQqHpbTTtEMq0Vg2DaLFhcv93v0wpmv588HUzIHhTVZZWTiR+bC819jB1hgO+oYdT03PKnpu0B0Eia/LmThOms3dkKFLuVq5XGu3tseuib0UxZ4ZhWkkDcOEF9g4ToMQb5RmeA5miEuSiErT5Chy9jlaYPG6OYaiYdfiAPaJbH5aFukgSKmIxVMOkphjBRqPOiW3xcQpnXASjXeGU+bTCflOfAfLeVQaRXiiUYIXGAfpoW3D7fCCDkvJsnJEDoQP68dQEkPzPM2mDJv6LvYDK7ExLeBF40+oGK87VXj9ycc/ioVDP6CdMc3gLDEyLydpGnm2DZsX01ghDtnJE2NSmRZZl3Jc26ZjlUnpiGMpml88dXa6doxavUVxIUeJgW/mdHnzzruv33h/ZWq+PPP4FveSEd1UA5eiprl8TczNDl3T88PuuEcnGXPgM0E3qx7t5NB1bMf1fbc/6OHjFguZg/FB5MDgM5msEkZh6JjZUlXRMn7glHPZzeHIh6lieNNySqVMIZvTNJnmubHtWKMh7JykqKnoaZokq7loPJzcy9Fi/ZFLThDNwSbBVlheYAZxErNRSvshLcQUK6Z0GMNSsTzOCYtnQewefAxLhUmCnQiPkzAMDCFDJ/hiNok8Ck8SDyeGP5osFgeBbQW9/n5syYkwkMTIZWD7zJgKxnjGtNQVE3nrxpnhJ7OLC9gWSeCnOI4xjfPXNaML85ooCTIfSwWN2xhUNw2FYlqtjQ+EH71RPrPu9ierjEJ/2DfXR6vKSlwuB/PV7NvrIRxPY2AbtkPzFHbmYBTqGSp0qJdfvzK3uKjPLrpxenxppVHf4ER6GLRDkQl5bGDs0HCjVVe8JSYqZ4pKaq1PVhmMxqqeKWVrb9+42mvtPfnoo7yYDRMado7GhoFJptNnn3q2VCx3+sPG3najvs3GacphF6asFOOOXL8HEy4pYhjgEXMCw+KEwGvhzeKvJ6tgLzMcHHyC044zIsHN48jjNMRpyNEig53NhBR+LvkS/As7mku4jCi4oSfTaYhjFUUhnfJUHHMIEMiZChmKpyIEE2zy3obm8YMTmFgqdqMQ1sJj+CIOLPybmCRjD98Xi8TXUAz8Az4Z/JQfzy4uTVemembPZ6KEEXDYwwg37eNnMwwthELEcDHFxSQ6IRcbJqkiRSxPiZyIIwCPRwuyoig1DRslEGhVkiPHCfEAuexgd+83/qd/IMmZC88++85bN2naZyOp29586XUp4jXfsLfrm4P+iJGU2HGGvcEOLxwugl2IPRMIxKPSeECSoMq6Ouq7jutlS8WFE6dFTcOpikNv88E9MaOwNGuZbhCmhSKzs74xtTQvcIxvW3GUlPK5vu8HsUsFXLfdrY67julMVjk6NkPH5eC5E8aJw8CFRcSOZSIOFlPEc4L5pHyYBjxoDjYMOzniACXg/MC8RTCRVBLHMJj4K0R2NKwY3ggLX4QNgftIfrIHEEMYxqi7STmZOK2PHEOQ1SAa264fUvCQaZiX8Txjp8/SqdnqJiLDMkJAs7TvPnR2+d3rb+5vDJ969sLgoH5w506RkjnKtbzhu7/9v80szO8IR/eCQ923Rtt33ho5q4XKx+ud0+2+OVMu9MemlNHgJQM/uHPvwbhTxKG4t/7gQ5/8UragK7FfLpS2tu+Mo4GZtKWMAj/OSvIw6LT3twpxgS5XOKGlqurkwX3vT7967MTxte09muN6I3ujaQwHY8+x9ayW1bXRoF+rFc6cXOF5OQj9q81dhCwsy+O5wgsncUBeB45WCJuTFRD7ILbiKGw7hHkUlQawRIeXwDAU7l+B1U5jOvIZGi8BB0UkjoITcFxgw3h4IRJ7kUOQMCEXiwyjCqxhhD7COSqF46cohoXtIy+NluADEiZmcdCOzBl+aBz7se8izGNInM4IDAc/6HmGZY6x/5hUSHHs4sOTSQKKNEqS2vwJ3IDAC4YxhJ+L4JRgthOP9lhF0zlewUYKEO0j9J9ciJFMV+bLmio7/oiJETvxkiIPu+brB50P5WblijTY3TK7XYP1zDDeXrsfx/TG2m3DHnARm7KeG9trd+7sH7SbYzOlGbxNhuEYlgvTwHOPooA0ZguK1nC6xNQglUAmwfH4sigNjU5vrOad5s78seOUWhLU/JNPPCHQwsuv/PhYafHYQ7nVd+9trm8Menn4FlVRYKTxLoejkajpMwvHnVF91CRZAK6jreYFiPYohGCIf+FeEHXFsCzY8Hi0eGMJtmQaIIymWT9FKkNMHIXnjpOCQBzOhKXwnfg1TWMYLvw3ojb8F8MjKuHwAyeLseQRxvag5bvd0qxd795m5cc8mu2EQ0aLE11hdV0r5vjUxVYaNbakco3iuSBiitXKzv1bf/QH32V4NQ2c3R//0IUTw/6iYtjRUXqg7UeVqfxkFYpnuvWW2du19bonPNWzRxEVwckcX1y5u7dmuuFOY/ziN/+AS53KwkK2zD/52OOWHbphKmkFh3V3+ldpKlD0SjC2xFxxaDTSfttVK6HC8R4/NTU7WYXX+HIx/+NXX8lmsp/6xGev37qxv7+PPA3m89knzyPmOn5iJa/lWmNzcP1GQvO5TM6lEsfCs0jhP9M
"text/plain": [
"<PIL.Image.Image image mode=RGB size=274x138>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Train :: Epoch: 501/800: 100%|██████████| 135/135 [00:10<00:00, 12.33it/s, Epoch Loss: 0.0420]\n",
"Train :: Epoch: 502/800: 100%|██████████| 135/135 [00:11<00:00, 11.81it/s, Epoch Loss: 0.0405]\n",
"Train :: Epoch: 503/800: 100%|██████████| 135/135 [00:11<00:00, 12.27it/s, Epoch Loss: 0.0435]\n",
"Train :: Epoch: 504/800: 100%|██████████| 135/135 [00:12<00:00, 10.82it/s, Epoch Loss: 0.0404]\n",
"Train :: Epoch: 505/800: 100%|██████████| 135/135 [00:11<00:00, 11.54it/s, Epoch Loss: 0.0410]\n",
"Train :: Epoch: 506/800: 100%|██████████| 135/135 [00:11<00:00, 11.79it/s, Epoch Loss: 0.0409]\n",
"Train :: Epoch: 507/800: 100%|██████████| 135/135 [00:11<00:00, 11.78it/s, Epoch Loss: 0.0432]\n",
"Train :: Epoch: 508/800: 100%|██████████| 135/135 [00:11<00:00, 11.43it/s, Epoch Loss: 0.0426]\n",
"Train :: Epoch: 509/800: 100%|██████████| 135/135 [00:11<00:00, 12.18it/s, Epoch Loss: 0.0406]\n",
"Train :: Epoch: 510/800: 100%|██████████| 135/135 [00:11<00:00, 11.41it/s, Epoch Loss: 0.0411]\n",
"Train :: Epoch: 511/800: 100%|██████████| 135/135 [00:11<00:00, 12.03it/s, Epoch Loss: 0.0437]\n",
"Train :: Epoch: 512/800: 100%|██████████| 135/135 [00:12<00:00, 11.25it/s, Epoch Loss: 0.0419]\n",
"Train :: Epoch: 513/800: 100%|██████████| 135/135 [00:11<00:00, 11.44it/s, Epoch Loss: 0.0412]\n",
"Train :: Epoch: 514/800: 100%|██████████| 135/135 [00:11<00:00, 11.62it/s, Epoch Loss: 0.0428]\n",
"Train :: Epoch: 515/800: 100%|██████████| 135/135 [00:11<00:00, 11.65it/s, Epoch Loss: 0.0418]\n",
"Train :: Epoch: 516/800: 100%|██████████| 135/135 [00:11<00:00, 11.96it/s, Epoch Loss: 0.0423]\n",
"Train :: Epoch: 517/800: 100%|██████████| 135/135 [00:11<00:00, 11.66it/s, Epoch Loss: 0.0428]\n",
"Train :: Epoch: 518/800: 100%|██████████| 135/135 [00:12<00:00, 11.03it/s, Epoch Loss: 0.0411]\n",
"Train :: Epoch: 519/800: 100%|██████████| 135/135 [00:11<00:00, 12.20it/s, Epoch Loss: 0.0395]\n",
"Train :: Epoch: 520/800: 100%|██████████| 135/135 [00:11<00:00, 11.62it/s, Epoch Loss: 0.0409]\n",
"Sampling :: 100%|██████████| 999/999 [00:16<00:00, 58.92it/s]\n"
]
},
{
"data": {
"image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQgJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCACKARIDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD0jxBrerWerXy2975VtboDt8tDjKA5yR6muc1fxlr4uJ10/VF2i2ieNRDGx3tJg/w/3f51n/E3xJb2Or6vY4kEmIS5H8XyqcD8xXP6b4x0yKFnlj/0hiGUlR82Omcd+lOklzWmaeyfs1KPc7Sx8XeI5jdCS+BMc7IAIU4A7fdqnceNPEqWJlXVDvXIx5EXOc7f4fUiqGna9ps1mJgs0G6Yr5hQFZZMDKjnOe9aw0UyJMt45jfyd8KhV2kDHzccg9uayald2ZnOlJvR2Oi03XNXl8IaVd3F3/ps/nCVzGgziQgcAY4GOlRDXtaEZ3XpDZwD5Sc/+O1TVZIfCmgwOwklPnsSO/z5/rSQLKxEczoytjLDmvYw0I+xTkkzKSalYW417xIAWhvzwcYMMfP/AI7WbP4r8USZSHUzFIGxg28ZB9vu1mal420Sz1BrI6gVkDGPcq5QMD0J+tb8kAZI3KrtkUEsO4reHspbRX4CaZTk8T+LLXwX4lvJ9SY3tqbX7LILeL5N8m1uNuDkccg4rjovH/j5rmFJPEW2JidzizgyCBkr9zHY16DrdsE+H+tDe6bvs3zdScSjAH8q8Zl1HUrIXdtbrbhFDu+8BtrHrjPfB/WvLxNlUdlZGnMlBLqbuofFHxnBZXjw+Ix5qMpjBtIOncfc5PIq7/wnXxAluSlvrxaPZuDNaQDoBk/c75rzqG6heB3kxsQbWVh2x1+ucfpUia0dkqRhhGpJ355C4OP161zqab1Wh0U6adNyb1PZvCHjrxHqnjbStNvr8PbTNKssYij52xOy5IUEcrnjFcifix4uPK6zx7WsP/xNUvg/efaviNpRO4ZaYjvnEL/4mix8OxTWUlxNJHEyANHubIPPQ46ZrnxHNzJQv1CNNydjQT4oeM3XI1kdcYNrD/8AEVBJ8R/iHvikGssschIC/Y4c56f3K2tAjhs9MmltLi3nWSVCHC9HUnABPTv+VbN7rMtnp8kzmCNGbDM6/NuOM7e2MfzFOlTrON27ep6Mcrm43bs+zOKm+KPjhG8k626SL95ms4M4+myuo8eePfFOjeO9S0/T9UENlD5XlxeRE2C0SMeSpPUk9aoeLLayvJIStsoEsAdbiMfw5OFPqf6YrL+KxKfEHWHOVVTCcjqf3KcCt8Pzt++jzJR5XYhufi34zyIYdXCyswXLW0PX2+TFMX4qePEb95rRKA/Mxs4Rj/xyuWhV7xVlnhOAML1ypxx9TmhiyovmkoxGI14+c++a6nFN6DcGkm0dsnxR8XSSE/26Y8AsI2s4Tn06JWxrvxN8R6R4T8H6mL0tLf8A2wXf7mP955ciqn8OBgE9MZ75rznT7d5tx2bxEu6RgT19M10XjtYJvhh4Mdg5u916IUVeCPNG7+S/maxrNJGctFoav/C1/Et/NtsNSKnbwpt4jnA5IytVx8TvGm4BtYwT0/0WH/4ivM/D989jqUU7EZi5Azwcjj+ddHawtdNKZla2QAkMwzuIOMKPx/CuCTkm9SUrrTc2NU+LPjm2t2kh1zbjofskJ/8AZK1PDvxO8ZX/AMOvGOqXGr777TvsX2WX7NCPL8yYq/ATByBjkHHauc1TQYJ9IlFs0krcASsuAWB5wO496u6Bod5o3ws8cm8iAim/s8xODw4E5/xFb0Jczs2XytWbNfRfip4rngZLzVWaXym2SLbwjL9sjZxW9pHxF8QXupm1l1BFRYwxZooxzjkdK8c064Zd6kHB9Dwa3PD9+48RWcwJ3K2GAP3uDwf0r6NxpKmrJX9Dl5Z+1k3skej6l8RPEFzpv2rTb4QPbjdMnlxsGXPLZZe3tUPgj4jeI9T+JdvoOoaiLm1lmmAAgjX5UjkI5VQeqivMpdRKwXO3CxSsw69jV/4TT+f8Z9EcHIIm/S3kH9K5K3Io6JHQ6TXX+tDrfBvxD8aeM765RdX+xWlsuZJUtYnbJzgDKY7HrWxr3jLxPpaWslrrzzx3Ee8brSHK44IPy+vNeW/DOeTTrm7ujab0lVY0kLkbSDngd/8A61dhqbS3kLZVDtYBTtA2jJ4HtzXnUFWliNV7nov63Ma8qcabSfvepHN8TvHG5kTWMEdxawn/ANkrnp/i98SEl2rrY2bsK32ODn/xykvbN4yEUuHK7iF6jB9axtVWZkWXyVVF6gtzmu2vTT0ijClVt8T3PsuiiiuA7T5p+Lcs7eP9Zg3AxMIflKgkfuozwfrXDxRpuZQTluAc844OP8+ldh8X5CvxC1vBGV8kgH/rjHXn9vfRF1Hz7iST6LWDm9SoTezPSIX0+1GjrHcsYlcSXMRGAshP3s+9XZ/GHmatfvCx2TQrGmCPujP/AMVXCw3Qe327x5hdWwR/CO9U9QnjDxiOQrtyOmPwx+FZe1k3odilCEV1PoH7XHdeE/D9xCCF2zgH/aVwp/UGqtxqAsLN9pElyw/dx7gC7HgAenP9ag0JpH+Gvhll+9i5GeuD5prntO8KzTeNr7WL2Zi3nEW6Z+VRjG76en417tCUvYRUVuefVac3IfZfDbw5DdQNse7lx8ySSHbvHLMQOoOehr0M2cbIkXlbEHABAwPyrhYUOk64uo/aJZoZJRCERcHkcE465xXplqiSxiVchWAPNOjJK/u2s/v8yLvqYvi6LHw81lIyUw0HI5OBKteBLDt1SSVYi8CMSEJ3BmPUnPWvoLx1mD4c6vKCQcwdO375K8Mhm2oVj+bzDuZv7uO9cdZ3mx8ra0KWqQwESyi2HmeT5ilRgHIx09s/niuesP3e7PmpzsbAyBn29Oa7aUpK1tGECq2I2I/unnFZGtX9rp13dYjjZ8AIgOSeABn06Z/AVzKHRG1NK/LLRHR/BoW8PxEtQUkVpJphCoHyqBC+76fSsqG/kntsiYpEYfKJHTI7EVp/Cy8a++Kmh3Bb/WGckdiTBIa5V1cxPJC546j1/CoqVeSSkepha9PD4lOrrFr8zS0nVLmyuVhUn7LHIrsB0zkDd+tdl4rtJ9R0Wb7OxlwsRiVegO75sHvzmuQ0OZri6i0zyFklnjdFmizkgjIz7ZGKzbXVLi2eUW908boSojJJDg9c9uK2hNLU9yrKNdLkntax11jLex6ZaxX0jnEeVUnOzrTPitZPdfE/V2MjkL5ISMklSfJTt+dZtvqM0v2f7SwKnk7RjPauq+JTFfHuqqGKljF82e3lJXRdNpnzuOjFVrr+meYPcztKbaSIi0k3IWwQ3HPB7nGKkSyvNQ1HybO1zAkRCu5yNv
"image/png": "iVBORw0KGgoAAAANSUhEUgAAARIAAACKCAIAAADpF1LuAAEAAElEQVR4Aez9Z5RlaXYdiF3v733exIsXPiIj0mdWVpbr8l3dXe3YBo0hARBuSIIkOCSGI86SFiWOREkUIVGUhmtGazT0BAcAQXiggfbdZbtMmspKn+EjXjxvr/f3ar+MKGpJf2bN/77A6uquqowvrvm+c84+e+9DpmlK/OT6yRP4yRP4X/IEqP8l//JP/t2fPIGfPIHpE2COH8Ov/+Z/43YcOuQ5lS2qhdbDzuUXz6USNTiYvPWDbZahrz599nvffTuJnC+//umPHx1YjftXP3fRkckgDDiPytDEd4/u24RUrS0Qg24cseOjw9kzp69df4dOwziO3//tD7HQ//RHrkDFYZCYjtvrG4IgqQpDk/gnFE0TtulZ+Gk0a1mB53hhEnphxNIkTSQkxWoZxTcdxwt4Wep0GgdHhzTNMRzn+0bomsNhO5evv/Od/wo/63x2zYgmsqjFNOnHTm19xjx0+6M+Tab5eYYrr5Gx19scs6J66dNXNq/fbdzbDSJfztDzpxaNntdtdufPUGkqWxNfJssXLmUWT12wraw77va67dbu/vWDu1jlGz+z6EQT26MpZpZOY8KzkogIaImgmDjwaWFEpUGS5ll2NkyKqeUHoZ7GpqsP9NHITUKGIorV5dgP3d6wUFuVs2U+6sdEMO7ZnqePbber+1jl6tkXJZaahD6ZqsVCmSQpmueSNGAJkgoijqRJnjzc3x+MmgxDMbQUUwmnZEkijXxSFEVF0tRsLvRtyxvo9ljkNaM/mJ9fmS1UG+0mfug7H/4xVqnW5Eq99rXPfD4WWTJxC7mZWzu3dPNeQoZJIHhu4odJ4jMJkSQxGacBT1MkmdIkQ3NU5BApRQV+4PpBFHiW4Q6HeugSRELQJBWSJC9I5sjAKgqp0PgPUs6X15648pKsVm6ytUq5dKlE/+G3P8idebr6xHzu7t15IhicXozdcCGlhaJYrmaVmCoV2R++sfX22z92uwcMT5OVc3RG7f7wt5P+vrR2LvnK3za23tn5938Vq3z9b/2zIEqTNPQ8cmQNolFz/2A7pqPFjRdzmZnO0BFmqxlZHm3fTZVcQgiROxJoIiXJxDHjmDBdw3fHtt7DDWvmOOEoNgnovhEmDkclCU0MAtzbJ9uGECkpoxE2LaVsTlGTnM/Ssp8GmUzeHA4yWTFXqTiBx0SxYbh6u8MSRBxRiR8TMUURJEElWUELAkJhCLZeDPq+K0g0y2mqHIUTH2/58ZXRsGuiILCwSUpFeWJ4PIeLtu2YYyiXSSReSKOkUNHiUHIs23G9IAhN3VIVyfP9ME04kadpJl+o4h86ThjGCUlKai6LRFNWcserlOfmWJeP01imND1Ije7IcVypnufJeP7cGYrlBnsNhmcZlc9mMywXRwn+HHn1wjPlpcUdrhHiEdK+bbrZzCrnkOuZlf7u0YAezVbkVj+qZrPHq3i2x9FxStETT2dSSuSJkIxYYkgldMzKCT4agQ8MK7aPYl6hKIZhY/xKIcVFjEA7kaJKSUQSbLWwcY6iE4HVC5I3MZKYZVJhWVCmewZXEFNpgm+PlSU5iUIGF35dii1XSoP2wUQfRiN35Hd4NWZJzTTdKCVEBb9UEhJ4OBzPMbIopVTMkzn8Yq7jVSq1Yi77aOtBypOzlcrxKlFC2Z6zO+rmVZEj0ziTCKIwsaZ/Dj8lJsM0oNMEvwp+mZjCv0GJceLh24l8OmWwOYKUxHt10pTkphsK/0Ia45WkCU62lDjJaBIixZlIStU4TgJjooUJX62urmdZz8/NzgS0P+wYlK1v7j5QI69M80opYxNu67C1fmm92Ymzs4XKxkZLb1OOThttcYnph07KMmzq9ba3Og+nZxmuxu49Igji0DHNycRyFur8f/Mrl3fG2tJ8eaNG/Ns3mKbP47kTHEXgIeFXDC3LCcg4wK9N8FxKJrwiB3EhtvRE36YjnAARS6Ye4QcJHeG9Pr5Ooo0fu4qq5RFrKFlIGJnl+UQUGEan4tiwsmurlKA5pjtXVnk8F9/jZT6KU54QEtJnOS723YQRBNKjUlfkVVqhBFV1PJtI8fdTWZWPFyPS1LFDkkCQIKPATeNYt92KlOEFCn8nS6lRGIV07BNx6LuSxMiS1B2aONIQkAI8iygRBOyxsaooZ0+f7vXG2DwJmQZhyJBVRS4er1LgA9sIuEKmPH9qMJSHvTaZSXJlaeXi6UxWdUZBWJynFJckSYYSa/X5gzs7YUptPHG12z1yzfZ8iR14/WpmtVxY1UfdW03fct2FOjvsmY5h52I86+mV4rePKGwGJR1HNL4dkRERxnDKWgieaUzxYgZP0bfHFNsz40LiGYirkoLzgU2FHMPQ2OmcSsoKdnVouKxPVjmij6+AzJRl9uS9kPjqUjxxSlIUx9ETP4koIasVD7f3bbdHUdTE1gPDYTROEOXcfMYLSWtiIUr4biiXBZqxKcLtOzaReGvLG5ZhEaTPZwq5ou26g9FgeHwvPpmMDOetD9/dKK0sVheSqDU22q7rcrHs+S5SAYIko5TieSr0A5JiSCYUUjYlgiThaJ6KyJgOCIJm6DDE66ZD7LxpwRxRBBMRMeLO44sh5CTmJVpQpeL23qHLKzl1UcApNrINJ6WyCW2MI9/1xi12i0lOnSrVNZUmr33vzuFRq1qfd9VM/cklq3m//eG2RnLV4oUGGUY82+/r/s41njaPV9EfXDf6Pc/3Ij7J5+iXN9a+9lwhX57b2dwrLEr/eDn6tz8wv3c/EbNlnOBu6MYCTVMc9g52EBk5Mo14kJLZIkVELoHdYiQ4HtKUJhBsqfSTMHPyevBgWI7MKTmJFGM7SBxjOLSr2WI2w+B0zM6u86xazGeKuYycETQR7ythWJweZIBfj2JFgmYTVlCJCeHhn+S0bJQvDa1xOOxRskwS0xiNS2AokqdT/PGU5zmKk1jfcX3XL+Zy2CltU8c/FwTOtX1BZJgEqQ+xsVDaPWIjL6CJKCSSIPA1TUHSiG92tpJJYtVCghXGw07o4wU/vpKeVSbkgMkoeS1lrWwl6g0nLr5ctWAahmmkNCcoZOJ5rmeHpdJ8qZhp953Y7p6yTYlhvErRPtRninO5epngBZaXFItD6jM9Utlxv9M6XiXw0ihNuZgJEsYxfI4nGCYNEzwZiUl9JGpMzEgqGYtUGvU4RNhwQhH+0jwVuvSkkzIx56SmlMFRbFOMZ5oEQnUYBZripWQ3TvLHq7C8nMaOpuZxNqqqHFuJE0Rt3XL0QamcH+h9gk7lQo4jOVoRe0YDZ4ek0m6kK0rCFfsOH40OXNO0a9XqZDxW1Hy+PBt4tizTPXyiOKAeX16URGnod3VPf5iynH0wcckWrREKEYqciGSC5KOI4JLQ55B4EQiyaRCnIhszWcfzkukeiXHcUlFChxSTMAQZEQgyFMJOgj99ctDEeEL4wzRFZQthqrSNCX/3wweBufrEBZzmE90g09RvN/EvuL4tyCzecuCbfOLFI6cv8E4UMMJSdq5u3aR5ns2y+Fa4KAlivx803vbM7vG9HB3cx+IpYr9D/tp/+fRnX32CV7Pt/WZz60AunqnNZtZq7p9e83g6DHwnjB2ByyWUGztsEBJMyhCUQyoi46UKzwkVadwPw8CcxnfcIT7ygnS8ysm2YRMP6RUSpgyrRONOc+Ac0RNHK1VZOru60ZwYcwNXlgqqrCVsRpFUIxxTqCwEhqTFmGEpfC4phb+4SWDHSYbiNYkf7PYWq/PZ0kw/ONk2MZHSDGNaFi3guYcpHefKOWSxnmsa+ojnRRyZiPG8G6QEO1MRPZwGgV/JqfgifS8wDLs3Nm07lUTesL1KLlPKZ7UQ6UHCU4mJT+/xFfhWfnaBrM941gghJZur9vqOmrIZrTjS9cD10pDtNw7y5Znth9cqlWqmnDM7erB1u5Y91a9sqPOcOmltPPmCrGmCmkTeMFEVPRwkaSSr4naIgDK9goSwApIIfKTaNE9zIcGlSGdCfFSEEDICgqCN9IVwqYiKVObQQ4niphsF/Gu8Z1upH4qo2SIHSXUaEookRDF
"text/plain": [
"<PIL.Image.Image image mode=RGB size=274x138>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Train :: Epoch: 521/800: 100%|██████████| 135/135 [00:11<00:00, 11.68it/s, Epoch Loss: 0.0401]\n",
"Train :: Epoch: 522/800: 100%|██████████| 135/135 [00:11<00:00, 12.05it/s, Epoch Loss: 0.0428]\n",
"Train :: Epoch: 523/800: 100%|██████████| 135/135 [00:11<00:00, 11.70it/s, Epoch Loss: 0.0424]\n",
"Train :: Epoch: 524/800: 100%|██████████| 135/135 [00:11<00:00, 11.79it/s, Epoch Loss: 0.0416]\n",
"Train :: Epoch: 525/800: 100%|██████████| 135/135 [00:11<00:00, 11.85it/s, Epoch Loss: 0.0422]\n",
"Train :: Epoch: 526/800: 100%|██████████| 135/135 [00:12<00:00, 10.93it/s, Epoch Loss: 0.0423]\n",
"Train :: Epoch: 527/800: 100%|██████████| 135/135 [00:12<00:00, 10.49it/s, Epoch Loss: 0.0398]\n",
"Train :: Epoch: 528/800: 100%|██████████| 135/135 [00:11<00:00, 12.25it/s, Epoch Loss: 0.0436]\n",
"Train :: Epoch: 529/800: 100%|██████████| 135/135 [00:11<00:00, 12.07it/s, Epoch Loss: 0.0416]\n",
"Train :: Epoch: 530/800: 100%|██████████| 135/135 [00:11<00:00, 11.46it/s, Epoch Loss: 0.0425]\n",
"Train :: Epoch: 531/800: 100%|██████████| 135/135 [00:10<00:00, 12.57it/s, Epoch Loss: 0.0419]\n",
"Train :: Epoch: 532/800: 100%|██████████| 135/135 [00:11<00:00, 11.55it/s, Epoch Loss: 0.0422]\n",
"Train :: Epoch: 533/800: 100%|██████████| 135/135 [00:10<00:00, 12.58it/s, Epoch Loss: 0.0418]\n",
"Train :: Epoch: 534/800: 100%|██████████| 135/135 [00:12<00:00, 10.67it/s, Epoch Loss: 0.0414]\n",
"Train :: Epoch: 535/800: 100%|██████████| 135/135 [00:11<00:00, 11.87it/s, Epoch Loss: 0.0422]\n",
"Train :: Epoch: 536/800: 100%|██████████| 135/135 [00:11<00:00, 12.14it/s, Epoch Loss: 0.0422]\n",
"Train :: Epoch: 537/800: 100%|██████████| 135/135 [00:11<00:00, 11.63it/s, Epoch Loss: 0.0406]\n",
"Train :: Epoch: 538/800: 100%|██████████| 135/135 [00:11<00:00, 12.21it/s, Epoch Loss: 0.0400]\n",
"Train :: Epoch: 539/800: 100%|██████████| 135/135 [00:11<00:00, 11.75it/s, Epoch Loss: 0.0424]\n",
"Train :: Epoch: 540/800: 100%|██████████| 135/135 [00:11<00:00, 12.12it/s, Epoch Loss: 0.0396]\n",
"Sampling :: 100%|██████████| 999/999 [00:16<00:00, 58.92it/s]\n"
]
},
{
"data": {
"image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQgJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCACKARIDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD0rWvFF1p2v3VksxCDYsaiMHDFcntWHpnxE1GBbj+2YpBFAxX7QiqyyDPDAKOPSuR+JWv3dh4+1G3topQ6mIiXZwv7pDwe/WqE+ovd30ElvIWthGHYSKF3PxuBGMEVg61r36ArN7npEvjXUr94H0ohoskudikSL0yCRwc/54qpqHjfWtPnEsc8c6OxBhaEcdBhSoyTk965jUtJ1y8lbyChhfAEMY2KhHTOOgrMsYbu2vJrOU3AczM7IzsR0HKnrVLELsNx7M9hsdavtV8L2Wq28hj3iTzflU/dcr6exqhJrurKeLv/AMhp/hWr4JjB8GWUbktnzQSe/wC8asi7tvKuJI+u1iK78PKM1Zo5qt1rchl8Ra0q5F5/5CT/AAqm/inXlz/pv/kJP8KdLFyQapyQ8E4rq5IdjHml3NbTPEusTaPrNxPc7pLfyPJby0G3cxDdBzwB1qn/AMJhrJP/AB9j/v0n+FNsF2+G9e+lv/6Ga5/nNcVVJTaRvFuyOhPjDWsjF3/5CT/ClPi7WcZF5j/tkn+Fc+KDnHWsmylc7Dw74k1S/wBftbW5ut8Mm/K+WozhSewz1xXIaP4+8Rz3I+16pJJGOSI7eIZ6Y/h+tbXg/P8AwlFtuKEbm8sAcqvlEEE9+QT+Neb6bKLC5a3nb95t5GfSvMWIqSTlKNrNr8jSb5FZa3PWv+E0uCobzmUMdoyqcH8qgPiPxA14yx3qGEHr5ceMY9cDNcPbajAbsqSZo0Xe20lcEfzFQS6y2sXTWlha+ZvyUjRMngZyOa7FXUoXMOZ2udRq3jjXoLvbBftGuMFDDGcH/vmuV+J3xJ8Z6B8QdU0vR9YMFpCYvKhFrC+0NCjHlkJ5YnvTI9N1L7dHZTWcscrDOJBjj1Jqr43torr44a61z8ttapDPI4BJXFvGB056kflUUnOcm2rDhJu5Wh8c/GGaze8W7unt0XcZBp8G3HtmPn8Kxl+NXj+ORWk14sndfscAP/ouuz1BtZuLFbuPUnvYoYQ4VHCI2OSVHU4zyT615DrzLJq1xI1s0DSEMyYwA2eoHoa6px5WW9Gd3YfEj4qanYz3ttrY8mDly9pbr2J4ynPTt611eo/EHxbH8MPCmsRa55OoXzXS3EgtYXMu2banylcDA44HfmvPYvEYPgxdKQmGBQPNnwNxP90AHOT0z6V3cI0ef4VeFJL5UtyY9RWzLMwijkMx27iM9wDznoaUrW0HrY6XTdb8eW+nw3Ooa1ZXiMSZHjjRTGjYwdoTnB568965zV/iN4s0+wlca4VllOLbdaw8AMRk/J/Oj4evcab4VuFt9Rs7m4e8Ky3LZdY0AGOT1BHTNch4y0wav41jg8PLKTOFVRuIQu33iM/dGax5r6De2h6Ba/FbU7DRbNdYv4/tk1sZGm2JkHJwdqrjHtgVP4a+I2s6v4K8Rak2qCW6sktjGfJjXyjJIwPG3nIHfNef3nw9fQpEurq6GpWoiKyEAqUbgAdTxn9K1tF0mDTPhr44+ylsTfYfkY5Kfvjxn6GiUt9TOpJ2foX4/iR4yMbt/a2/K5T/AEaH/wCIpkfxP8Ywxt9p1LJJG3FvFk+33azvD3h+G80+3uL3UFt7STIB3AHcM5+nSsGCxku9Rt4Fl3xT3QjLg9g2Mj2NcqqSdjjcK0Ypyej8zt7n4neKrxoEsNR8kyN5ZZreMqre5K11ngTxN4l1TxBFbapqQuIMMrqIY1yQpOcqoPUVqix0tbf+xlt41j8vPl7QBj/H3rzzwNFcad8YLXTvMYxxSTg88MvlOV/pXS0004yvrZ/5F8s6c48zdmUNP+KHja/uY7eHV2lmbjyxaw5P/jldHP4i+IdvZm4k1Q4QFiFtoSSOMfwe9cv8NbaPy73UTFGZY3CRsRlhkcmvR1uiYkdyBEzbc46YrSFPmim3udKu1ucR/wALK8WpnfrZb5c8WsPHt9yseX4t+NfNzHrhCKfmBtIfy+5S+LtLTRNbKRcQ3Z8xBnO3nkfnWO9vbWrpIbZnzk7z0PpkVzNyUnG5Dv0Z9aUUUV1nSfP3xPuZE8dajGR8gCFWKnj90n+FctbXoiRWRuM7uT2Hr7V1Pxa1DyPG08fmEjYgKk4A+QH8jn9K4S2sbq7IedHht2G8SFCfM9APXmvHqayd+5ztXkz0+XVtOm0y3nkf97NH5hSOXJYd8Y/PrXP2/ieG3vS0kzSRP8m+QZYgD7vGenFcwLaJ2+yq7rAQXLGMbQenzYPAz70trGlvFLKIWkeKQNDxlCmOWJ9OmPrS1V9SnN3PoLQdf0nSfBWmTT3rLHKsnled99yGYsAO+OfwFc5Y+I7nXrmeex0mYWBf93eXR8tXXuwXliOuMD8qxLmMT+E/A0U6B991cqQI+v7w8n0GM5HfPtW3qfjDS/DrRHUHeON8qrJGWUEDODjp7V62Hb5L3tsXuldFFfFllO6LK0ce52XccrjGfX6etEOv2N1cSwRSrtRA+8n7wOfyHFcTqMNleXk2s6U8qpeZlihcDfGxILOq54HPXrzXM6hqqSX1w8ZkjmbajtJJkSFc4IIHGMD8+axjicRFKLabv+Bq6dJ6nt9itydG8RoyR+VttTFsYlj87bsjGB2xjPeubmkMTYMUze6Rlh+lJ4N13UNU8I+J57wl0iSzWN9m3cS7bue/aomvGVC7ArEByzPivMzLMq1GslTSs117ihTVtSVZcKWMcwGMjchGfwNPjkjeIOrAtnBRgcis6TVhBtjkbBAyB7dqh0u+v7szNJYzRxs/7pyOGXpXlVMyxc6bvZL+vM0UY3O38In/AIqmxxtK7XHv9xq8TlSVF85HbzUXaBnAIr17wfcMvjfT4Hb5mEmFXJ6Rt19K4C6njS4aGSC0L8ZVckL7dea6sucvq+r6v8kc2Kk000cYl/NAy+fI7b2zhZOorS0O5udOu0uLSe4ib7wliOCParuoxC+ge3hW3iBYbmICDA684pYHsbSNI3eAj7qtGrMo+p6/jivVbvG6REn+75ktzSuPEmoXYCXV/eyoucbs5wffNWvGN1JB+0Bq8SSeWJ0hQnv/AMe8Z/HkCoY7G2ZN+1QpGcisf4vzPa/GTWLmGRo5Y2t2VgOhEEdbYW8d12MqUm73Ozlu7bRNLub+QtIjD9yqdCoGAOO455xjn6Y8d13VW1O+87yhEI12+pPPT/PvV268XXd3Zx290zPGpJ2rhFJyTyAPc9KyWSO8d5VHlRk52DoPpXbUnzbbG8mVhKceo6HNer
"image/png": "iVBORw0KGgoAAAANSUhEUgAAARIAAACKCAIAAADpF1LuAAEAAElEQVR4Aez9Z7Rl13kdiO6cT843p7oVblWhqlDIgQQIgpkURVm55WypW3Jb7vDstv08ut1+r90elvu5bdl+smxLsixZpGhJDGAQCCIDVShUTjfHc09OO+f95rrnQj36/enR/7kZUKi6ddbZe6/1hfnNb350kiTUj64fPYEfPYH/O0+A+b/zwz/62R89gR89AfIEuPFj+J2vfTcJvUqxMF2ZdALzwfr2+sYHoih+/qUfrx82C+XC9ESVpriYYjw31NICG9ONdvv96x+GgTc9MUNzUq1Wave873zvd1Nq8fypc/l8/uKpk/1Rb6/VkXjh6WfOY6Hf/cE+68cRTXlUEoYRnfhRQtNREjAhFYQxzbNMEkVMEvgxxwQJzYRRnFBREJDfCyg6CWL8LY6mIoqKyedwVOAHtO+7gevTgf3P/sefxyr/6rf/gJc4jhYZOnLxCVGEz6YEhqUSJqESCv/E36XpMAzhauOEYRJFVCgqws8yDH43jhKKDqiYDZKEpmIqpumEDvELKg6TmPpvf+kXscp//ZXHmJgOI0pVxX4UizVVzOZOr3yhMnFZlWXdGPKiSnFSjEX8OKQt33e6zZveMKCEDqsN2l17tvaMIhUUuRJG0cMHr+82PqRZJ5Rw76Fn21/9h1ewCr4mp/L4RhQeB8fhEVB4bFFE0TxFhRTLkv8XWDwImjxTPBeaYjjcuCzwcqqUrlb2t9aCocWyNP40ZmMqYWkKD52heIrjWW/kYpXqI9NcwLf3e4FtL186sb6x+cjJx/78T37+O699/eVP/LWVlctX3/zava33hqN4aI94Lpk9cZGhkg+vvd86PHAc9snHnvylv/BLswunfceVJKHeb965dW1j98Nep+uHEcfzr3ztVazyC//r/7Rx8Erd6fsh5w2jdF5VFYUrZFhj6BlOODC8MOQYrTi7lJo60e3ddVwjVZpYmH9ksrywv71Z3741cg5t37RN21gbCClKOzmvMLw/7E/lLz5x6rlf+6v/FVapnM1OVgs+G0aWJ/OiIEm5Urbt9b2BK2ZFTkjkSHSpwHQcb5hoeY2leduxOZqVeF7h+ERMPCqKY4b2GcewLM/H5br+wBhlM1q5XLj/nS2scnxsJJ5qNjrlYr6l9ziWkTXNo/j93Xvb9UeqpYV2uylLsiKpiiR5jm66URLzLJc0660Hm7cvnr147tS5nZ2DVr+TT5Uyxdyrb/+Qofk33hCXT57K5Su8JGMlXPiOocJyeLGh57LYoqIf+RxLMSEfCByDXRwHNM0e7Q+WTUKWp7yIYmja9xIee53DzqApP2FZJmaoIEhimmOweRP8CGW72DTkwknCH7FiQOM3EuwxfAQTuxHD01HMJUxAjgLOAU5AFPpJwse0x9gc/pkEEYU3x+M0JTiy5FAFxB0fHWB8O+zaGIfn6AodAzciiTlakelEPnvu2ZjTJsuns5mc7fsMJwRUyIYewzPY54mF7d6VBaVr3+TcjJxokRfbptFp9U+eKNK0UJ481R3s2sFBQvE4GpxAHy/DUZIcCDIzbFKxGxz/JkNTfECxHCOxeMEMLVK4LdoLA4qP2MDHMY0tJ6nO5ijWD3ybkqkIz5HG/VIUQ54Sjj8VwxQdf14+k20fthiREShp5+EBHsPO3sMg+sKFs8+trT6QRA3b4dTio/fW7mgpNmTpQrkY0kGYBLYTCCJbq0zBVj64+QNGlk6deYpL6F5za33tnqyo+en52CYnE9eavhXyKcb2aTFgUgyevEIzIkwn5Tv6EM+aESPfG3TrW5Gc0IKW+GZgdwf7D4QwwLvDSbC8juc6vhV6+Ld0Cb8b0LyaS+MbZpJwvIqscIEE65sUtdrIs13fYS1WU9NCSqLpgBZgUrjEDUUpXV3K4/1js7BsFqYThlgUFU7iMzxjOXbDHOG1UyKNZ4VjxFI4X/j18Xs5PjaJ59mBGTqJHxg8A1cQ0qx4c/P2/m/sr5z8+OMXL5sjPbBCtsj1bbO+vRcmIazIhZXT63vr7a61ur2XK2QmqqVqPhvQ3N7u4c7uThxlNt/4JjzYxMTSc0+u4K5UjYfR9h06kATagy2nJEYOmACbm4XVF6IgkUSYTI6Jo5DBXo9wNiOfinmG2Hri7CQOLxW3SIecwMVxEIbkFOAuAj8ajR+ck7hcyEbY7Akb4mNhkSMcQuwlFg+OwnHhOfwrHkZAx4wbx1Li+6HHethRDJskfkIJ5M/ww1FIrDfOSgSfiG3nweTDzJMrlrOR5weUrqpFluWM2J/IzVjBYLjfi3hVYvMJZVq+g02czpZDn/gwWFNRLXuOHcbTMrPL0qmluWXD2gm9FKxAqpCHP+LjAAchhm05ulhByBZDD+mnmMCeJAGOH0XhUEkM8bpMzMmwGD5uKsS/0jAJcEE0hY0aRJ3mQcT4lBdSGk8xPOXHvJgN9FZCDBExABF++OhaWF7OV4tu5Dj9wOzqU6enZV9eXdver6/V9w5aw/pP/fiXwt1ed3Dl1NlZShBh6UIqlDSRYVjHtW9cf/+zn/qJxqi3+eEfrd7604Uzn69UZntvv15NscVCoaNvj1exghaTuLyM839kmsjLwAEOXTyRwEnCRKA4lwoD02R79VRBjXVn4BtsIOjtw8xkQRDd2PdwdCJKyk/NxKosURLHuikpO6GofHL89llOgvdQBaUo1WznAJbFDTxOpyayMx2rIVP8VOmRemstYRlOZKzA4BghrcFp8bHpwQIx+G044VCQRPwJJ4VSQgVYU87yeLwj1xrfy/HraXRaHEvr5gHuANtUlZXpWlWh0h9cu+V7mqrm6o0+x8UpjS1Vp7qjFuy0aXtB6CzMzcui1Orul8tFY+ib1kCWhVq1ltKU/mgQ82rb6HXXBxT1S1ivmhdGFmvTnu8mEs35VALjiJeO10AcQkyLLN4pIgkYAIaJuBjBG6yDx4RMSDMstnUcEd+SwAUIOGmI6ZIwDkQ29hONCtrjW+Jhl3g4WpqHa4AVwTlhcdJwNkPGp0M+4XxsP5zZOMHfY3n4BcRsLM4sy0YhPh7mj8a5pCJEIrAvPsPAKWOTwUC2uaQ8XkXOTnmy122PKNPB893bu9Vo7itCSkmVBDnF0lFarYUM3W9uu+ZiJiumMgs8WwldFyFqEB0miYyo1LS6Pd0f9e9q2TTlMpGHeNVJcFilY6fGyvAniWfFscfIRcrpJ0JRoDUBZzCwI5z6EC6IRG7wnjyFJ4eXK7MMz+FI6/0epQqI7qggxpkpV5afvvzxD66/trLw2Ac3vzsY9Bgez51c6ZTcObC3d7eL5dLP/8W/eGZu7vTJ8/C76+sb3cb+dr1brSzWdwf59Ezs84LAB3b/3sP7URgunpo0hubly5dH+9esvbt2fGKg+4e7N0JasRBMuZph6QNHH6/iyR0fnp9lBVlECI7bd+MkFYsRozGSFSFGxiagBDmjcUxiDXVX9422zWR4OS+E3V28dEt3wxEzdWLp5OWn2v2WOWwzgTOtBLU0ttKxT4MBSWwaIUafHVi+AT+DpyTwWjpdq9TOBLG3svSEJGi5rHbj4EPXcnOaUJAzkRAbvjeyTRGflEjDQV8fGWEUiomij0yaiRVVwh/Ynj2+l+Nj0x8d5hXaMQYPHzxI5afTyxcr6cyLjz9/caGsaVOarJiefv/tP00ob2p2uViaymSzMsd1W71PvPh5w3HxiXAGkR9wLDdyRns79zlB3m5uJ54rpwQ8nfFiy1XBCOh7O8hVaLhd/C14Zo78Am+WHIIYxh2uMcFvIcRBgIUUJSFWKGIiHAEclIDD9kWECv+A+AkbR+RpD/GXwCrZyfEqEY+dT0xqFPuIUXHO4JdJBIjDw7ACzhk+k7igGKvA7SDeRAQIl8fECYeTQoKxGO81YrFUxHgsAjY46KJ6azhcT7RPj1e5H+xnMg5TUkeOIKZUTcqILMdpLM6a7fZkIYu/DB+fzc/vdm7WgukFeUpg5JhVRTYoFyZmaysJJ1vmAFuakwR9uGN6A5/x8eVxePFtxleqQCOjsPuJVOAEiXNTfmExLwmM1+Vyk7V
"text/plain": [
"<PIL.Image.Image image mode=RGB size=274x138>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Train :: Epoch: 541/800: 100%|██████████| 135/135 [00:11<00:00, 11.72it/s, Epoch Loss: 0.0411]\n",
"Train :: Epoch: 542/800: 100%|██████████| 135/135 [00:11<00:00, 12.26it/s, Epoch Loss: 0.0437]\n",
"Train :: Epoch: 543/800: 100%|██████████| 135/135 [00:11<00:00, 11.49it/s, Epoch Loss: 0.0412]\n",
"Train :: Epoch: 544/800: 100%|██████████| 135/135 [00:11<00:00, 12.14it/s, Epoch Loss: 0.0446]\n",
"Train :: Epoch: 545/800: 100%|██████████| 135/135 [00:10<00:00, 12.34it/s, Epoch Loss: 0.0418]\n",
"Train :: Epoch: 546/800: 100%|██████████| 135/135 [00:12<00:00, 11.12it/s, Epoch Loss: 0.0409]\n",
"Train :: Epoch: 547/800: 100%|██████████| 135/135 [00:10<00:00, 12.47it/s, Epoch Loss: 0.0436]\n",
"Train :: Epoch: 548/800: 100%|██████████| 135/135 [00:10<00:00, 12.51it/s, Epoch Loss: 0.0417]\n",
"Train :: Epoch: 549/800: 100%|██████████| 135/135 [00:11<00:00, 11.98it/s, Epoch Loss: 0.0422]\n",
"Train :: Epoch: 550/800: 100%|██████████| 135/135 [00:10<00:00, 12.67it/s, Epoch Loss: 0.0409]\n",
"Train :: Epoch: 551/800: 100%|██████████| 135/135 [00:11<00:00, 12.21it/s, Epoch Loss: 0.0430]\n",
"Train :: Epoch: 552/800: 100%|██████████| 135/135 [00:10<00:00, 12.29it/s, Epoch Loss: 0.0427]\n",
"Train :: Epoch: 553/800: 100%|██████████| 135/135 [00:12<00:00, 11.21it/s, Epoch Loss: 0.0410]\n",
"Train :: Epoch: 554/800: 100%|██████████| 135/135 [00:11<00:00, 11.79it/s, Epoch Loss: 0.0416]\n",
"Train :: Epoch: 555/800: 100%|██████████| 135/135 [00:11<00:00, 11.46it/s, Epoch Loss: 0.0391]\n",
"Train :: Epoch: 556/800: 100%|██████████| 135/135 [00:11<00:00, 11.85it/s, Epoch Loss: 0.0437]\n",
"Train :: Epoch: 557/800: 100%|██████████| 135/135 [00:11<00:00, 12.00it/s, Epoch Loss: 0.0406]\n",
"Train :: Epoch: 558/800: 100%|██████████| 135/135 [00:10<00:00, 12.41it/s, Epoch Loss: 0.0402]\n",
"Train :: Epoch: 559/800: 100%|██████████| 135/135 [00:10<00:00, 12.57it/s, Epoch Loss: 0.0404]\n",
"Train :: Epoch: 560/800: 100%|██████████| 135/135 [00:11<00:00, 11.53it/s, Epoch Loss: 0.0421]\n",
"Sampling :: 100%|██████████| 999/999 [00:16<00:00, 58.86it/s]\n"
]
},
{
"data": {
"image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQgJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCACKARIDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3gyMkkm5/lyNox04rkPDN7ruo6lffbdTkEdncshhNvGqyKchcHbnqM11N1JgyZH3RxjvxVZIHUsc7lO1gPcc/zrjqyfMtdjpjBON2SXV5KixNE+EYkMxA44Jz+lQWepS3MdzM0m2HdsgO0ZbjrXIeLvEESRLpaPIs8DAzFT8pOD8ua5LTfHsNlqkn9oSsYUVYeH4T8PrgVyvGWqOB7FPLJSw/tGrf5f8AB/I9S1zUNQsl0/yZ9hdW847VOSNo7jjqelVYNS1OdPtS3x8o5KRGNMk9ME46Z/8A11zHjTXt/gzRby23mS6LBACcsNwz09cfrVXwnqk91p2qXL2jxNaYEaOxZgMZKn/PQ11upezR5/1VezlNvVNq3zOqbxNcR22TdEyqhzhF5OOO3r/Kp7PUr+5hnkGoTlcKEJjjG09yPl659c1yV9oQ1WCTyrO40tdjSyXHnExkHBA2nPuQOMVY0qG/j0Jo5riZHMgCANwpJ6n8DnFClK3Nc5IwvOz2NaXxPex6brzveNG9ktu6SlE+UOxB7Y/hPXpmvLvCHxS8Y6n4nlt7zVhLZpFJIUa2iXGCNvIUH2/Guq8dtDH8MfFLRABzHZB3HUr9oAGfwz+dea6NpFvZ2yas17j7SfLEY4yNwGAe/qR9K23W5tT5faaxuk7v0Owbx94xuPEd3PDrqw6Kk6rGht4SSpUkgfLuJBGPqRWf4k+KXiWzu2s9J8TSzzRSZLGzgIeMgsDnZ94ZwR7VNb6d4ftQLm5tHkeCVJP9Y23JJIOOmR/Si+0bQdXsZtUtrCB9U2+YE84xRHg8YX+PtjjmsXUcZavQUoxbbiupd+GfxH8XeJPGlhYajfrcWMjSiUeTEnAiZlPCg/eA6V6TFqmrSQgte7T3Yxp/hXhHwi86y+Lek2skLQM4mDI4wcCCQjj9a9i8XXFsml3kDzeT+7JBUkMMEc8e+K48c6nNBQk1e+3y/I1g4NN22X+Zp3fiS9trS3leUh2kw+xFIx756ZyOlXLLxA+o2waG4CygkMuAT/KvLtGvWuLYx3Mss0MrbovMk3bW6EfjU2oyhLqHyW2qvyqqMVy2RxnNTUUvgUnfvf8A4Jy+0V9j0e51bUIgSLojHT5U5/SuG8d+Pta0Hxdf2FrqkkMCeWEVYImEeY1JOWUk8kmuumtilspmB8wAfLnpntTNf8FW+p+I5dWkmEj7RtgljDIG2BQfU9M4Oa87KKtep7RTk3Zrr6noTdKDUmls+noeWD4m+OfKYrfmZS2FkW3hB/IrzXQ+CfiLrmqajLbapqyttU43QxpkkjjhR0/rWF8SfAg0y1j1qymVreGTF1FGPLJZmwrBBx3AOPrjmsDTL+0t7iCO2klaRjlpYidzDOGOTjPQjn09q9qcpwVwpqjWi1FWZ6vquteNtb3DwncRxQwthrmZIwszdCqhlPA9fasD4g+MvGvg/wAOeG0fUgmq3P2v7XIkETB9jpsOChAwrdgOvNbOmeMrX7EiqrRBBtVWwvA/SuO+Nl2t9onhK5Dttdbwgqf9qIV0qacLp3Zw06U1U5ZI5cfGP4gF8/258mdo/wBDg6/98VteH/iJ8Rtd1HyItdQqFLN/osG1cdATs715TvYh8LtRjjknrXofwqe3trm+lkiLb4vklDHr027cc/ez+FY1OdwajKztp62O6Maf8tzutS8S+PLXUIvJ1kix+znzpZLeA7JMHoNgJ7Y7etSeBfHniTWNI8Vy3mpPdzac1qtu32aJCu53DcKACSFHXOO1c/rt48ElzBdSCRLhEKMhYFWZuRj0Ax1p/wAJIo4dK8aRxytcMr2QaQcKzeZJ93Hb+dcmBnWbaqyu0umxFeNOy5V1Oml8c+Ikchr7y0DY3mOM9R67ccHFIfiDrMFyI7m9ZE6rIEiIcYHPC+ue9ZOoDbbNOkTPvdtpiUyE4PJ9vrUY02Gy0vkPcsGG9y3JzkkgH6dM9q6lKdzDkTextN4518ShU1NpABniCMbxnjB21seGfFOu33imxsLydmtZUdj5ixhmIViAQqjBGB0NcBaafKl3LDDcESIFBjU7c+pJwdv9cV03gm1v7bxvZ+YspgbeWaSYSHPlv7A+laQlLm3M5JW2PY6inuYrZVaZwoZgoJ9TVOXXdLhlkikvYlaP7+TwOnf8RXO/Ee8iXw4II5wLt5UaJFPJAOCfpzXVtuXh8LKpWjTkmlLy/E09U8XWOmQWNwVeWG6laMMmPl29f17VuQTJcQRzRnKSKGU+xGa8S1XUt+gwaZIqNJbvvjl3dJMZYcdeODXrtpqemwPDpi3cZnjVYxHnJzjp9eKd09Ed+OwMKMIqmm5Xd+unRmpRRRSPFM66hmaaVonUlgF2twB0/XrVeG9SXYPmRhKI1VhgnBAPH51YlkS5N9bs4BDCH5TyMoD+fNYdl566/tuFw6t8zNwXz93A9P8ACuKbtI9GlFSg+bov0Oe8d2caabauBGjS3byErjLhixGf514Fd+HdVdrmfYgjUvLs8zPyr3z0zz06819JeLvDGpavci6WaBreBf3cOzDAdznueBXmWkeBdR1B7eP7I8iSXJuA5BCxAueG5weB37VyKU6VVyS3t0PXhGlXwsYuequ3ra3lrubWmwx33g3wMLySTaj3Tbg3RllwoI7gHHHsKsXVzeadFqEEO3YS00khGWmDcbRjvuP6e9b/AI7s1tYtGt4BtK+e4/3iyEn8Sf1rlb7WrGG3tb1ZpAYL4xSuq5wu3IH8jXbOzdjwVO6fmbFpr02qafqEDriNWUKxHRD90+/OK2yp1C0m0+xj2oEjYyscZJOQo98Dn6iuMm1C2uPDk2p2iGETWzccY3JkD+Qqt4X1/UXtUuZLh/8AT5EbaQAseCA7D/vkDFTHTc6KNB1FJp2aLOv3l1aeAPGL3tsEkghsU8tgDkmdgDj8RXKIYpPDdpaaZcxSRRRJMYY5MtFN/EB364/Cu1+INxDceAvGeHG8Q2Bb6efx/I14ZZanNZBZbTalwgKMSowf8n+VbKF4qxjGqoTem532o2jz29raoXjt4QstwCxzLKSOh9AABV1reaTSm9d/ztFwSu4bMH19T6A9653Qtb/tZUWQt9pgG6Rf74zknAGAM8YrQsfEu1ZktxELiSVordXQyE5yTJjIwBu685xWcqUm0iqVSMHd7XNHwhcM/wAdNCgMWwRxSEZHJ/0eTmvULzw0moaxPe3DlISgVVB5Jwc5J7V5f4RulvPjT4TnikeWM2s8Zl
"image/png": "iVBORw0KGgoAAAANSUhEUgAAARIAAACKCAIAAADpF1LuAAEAAElEQVR4Aez9Z5hk2XUdiJ7rTdzwNjPS+yxvulx7DzQ8YUiAFhQpDUVyJEozcnx8Q44kynFEaUSOKA1FiSRoABBAwzYa7bu6u7q8r0rvM7yPuN7OispsvnnzJFHzzfe9XzwEq9GozDx5bxyz99prrU0FQUD+cvzlG/jLN/B/5w3Q/3e++C+/9i/fwF++gf4bYPdeg//Km/ToABkZJAxFGJp45PJX/5evvPNbNdYeiU37QXdxQ/sPv/b1RG7MZinG8wlLMy5NynXP2/TDMrehkukZ4nuk2NBandDkKBkYJCzlvPIW1Sbsj/3Q3ixf/q1/7BE9MzAph2PRTHZ7587Odu3EzHypfvX9O+3PffZnGMotbLyXTs0z8RBlGwItrm3fO3bqhQtXf9DYXj0+N/vN18+vN/2f/Zm/lxSl1trtu3dvzY3OZ8by77z89UNHzzz7+Z/ARK+88Mx6Jv3a9vqNt654oYjPcbrj/uYvfvZYOjY4f5xlxN/92nd+/c++HTg2oSlFCF748GN+EL5157bv9T7zwpN//JX35Bi3sllRGCrpB9l4NsaQrOPY4UiSiDkh8ks3XsMsd/8gL1KRSCppeYznKBLrd1o1jxvIzp1i6NFw9F2HVevbmdfXtnOjieMDdIhlJTFJMWFC5IBYzXLDtnmOr8rOLmVrnmH5tBM4mkU2ex7ry+npJ1Yxy6cfmUg6ZFbkLY42XHO54VEsz8ossfzxQWo0wegNZ23XUl2i8myr5xyN2399wrqsjof/u78XSg0wxGJ4PqBFz8EDmDevv/H7/+a3BSnk+zTHi46r37hTwiyPKNQhhay2WZXyQgHJ2TRNexcCui0GgzyrBDRj0AdiQsEyGdvcCWjL9EejfDTNxTOeHyTbvHZGIq/fMHa7zuNz/jMPk9/8LtHaRJGIwZJaG4/Uj2j+4Nd/RZJc13K2q2uCIuczY5Xqer1knph44sLC1zJDY4lozvdJw27rXSsciiaiGcblCtXljrYxOnRsY6Mcj7YUbqChB7F4dmntrivyJ4492utptkUMU/v1f/EbmOX/P2N/29DRKImFCRUQxyO2TyjP03uE2Cleeeah50vNcm5cS+SzxHMYmmN4jvi+b3pBQ/W8LisIfkSgJYYs1p21ojgSIT5FJI44dpBQfFNjSYuQOJ7Hc4NEatD3Hcr3WeJNTIx6mlmsXu71tj7z8S9mo/Ht9ds9Nz6Tiju+yvGMT9GxRBgblKGC48ceHojnP/5CnuGjEwNZw+oNzk6Mjwx5as8OzIGRA7a3f3NGZ6ZGD04rtaJFaPyfQ4huuEv3yk9NRzhnI3zyEE0YxzA5kRtMJ6vN8srm8k9/+lNf/Own/9E//2eD8chf+6nPvvfexYWlbYsTRcara62Wz5ctdcTxeCW21ajtfTAsG6a5BBWelvyQ1ywHHAmFua6fWN7sMuHwDB+E5KFsPhhpTjCd4XrgMdmqwPgkcBk5UPWm66fCkklRNC8KlOb0jxiKY0SZsVqkq/Fhe2+W04mBYcqOkCATZW2T5j3rToc4LdOi3MWSgM9qwLFGOcqkmPtuILNcjNILXTodDjgZn5NPszwhdBDYHE2KpeX11R3b8QWe2I7LMjTDMHuzZAU2G+fv1w2RC5iA0jiyaFMN4sdoTjPJJG0HJFiuGk1CKI60fH+MI4ej/iXDjFPB0w87w8MTvqr9YHk74tNLbT9X5rLxQJTc1QLZckkkxu3NUqqVhgYG0slRzXVpyrd0PSKldt1dgzHnxx/3ZD0ky6ZlHDvwuFrfcRxOYPHRab6dplwuLaRH54fOr16iIu5UbkJKhAYHn2wZdiKeFbhOobATiaX2Zvl/+mfBIfn9X/i/8qP2tw2JxomAzUD3/wwcYgWjA9MZL6RJYjybOn70o0GKIiJPWjYjCSTw8WHQvO+yvF2leBxQERl/69V75v1NPjnP5JKEYIn4/Nig19ghnkaY/rbxXTccTTZruwkc0r2uw/ayA4MSOxPOZQht23rdatU5N1DVe3I0JUojlcYqL9C6WrOtaiw6ZQcuS1iR0Vyrw9PE9VSOFlxHoygqCJx7dy59hPwYZlHmZ5Y73W65io3hCpxrOBTtGbqfOXigc+mGlEznmIBmRSfQThy1dG0gPJDl47WZA8F/9xMfe/PNtz7x2S86eu/qwv1Wx5REVpDJes/gfP9IYN1uVDZ67b23KQphluGsnioqHJfmKEr0YkraD7fWu2bQbEcOhSNV36ciIdGz0p7JLV7zR/Ot/KFuQPkcTcmZJNddJ4GJI8bxfZwLHl6otxRQjBiRbbW7N0tcoFibNiy30dDogD0a4hXOuVTphj1Sb6kLqruB4MAgUYGXAzkp841u7Ds6OXNiINFoRZID/aOExnZkG9XNb3/nS7s71dn5mc2lddtzs7msKCX2ZulZ7HequoXYwyTz4aCjeZrChLyAC5wEQ9222UdYJyoTTacSEpeybSwQkwuePUzvdljHYQfSgUtHXN8udL2xMImlvM8N52hP+v7Lm5LDdq395HlqZKzWKJZLK4mQUmpUtlu9U3NHFYXeaV4PxUICLZd7jZdf+/apk3WaxkHRPnVwinU9OxlEebmidli+h3Oz4zl1rIfOrenJQ1GWfv3F/7hc6OaGUplYf4H9Px1LHfIvv0c+cpZ8auK//qM+2DYxltAMoXAy68QzCCtkYlPhTryR7i5vrh87/mNExN3jE4Uh7SahGBIJET5gIjS5bQcjAZVWSLHt1dsGcUIjSRLCMeaSrkm6BjOZJrSw90uwHMMENi8zHEtrjTrDGAMTRwNCSZzkYMf6ajKVjxqO2qh6Qaet3jUtE2/w/upN3e7sVlciVNZo234sEkQsgWMR9Vh617csz7WtXvnu8vLeLDvNJsVQ2MI+iysNHzL+SU1GFUd1aJ9pv/zWcJJPhpPFjnP60IG3rtU+/eRDWzuF7dXdwdHI3eWt8r//T/F42Pb9wVio5dq8bom+06YYxwssn6K4/Tcm4Vl4LghxFMMyCJvCikcErF6hwtJ0OxTJYdF9/ds7xZIYTezEFQW3+ftrzuMpM5MWA0MW+BoVchibJ44lCj0SWI5v4BakgxDjtHodHLT9oXpd26bu1eydjjYocA+lRYll8hxVtKwTIWG553d0o9bz8oo/l+VTFtUNEH/xQTgIKzpNaxwTZRjR6NW/9if/pNNuPf70cydPfqiyvVUub88cfvT6pXf2ZtkwLOKwIh+ICPZcr+iTjurJEuFYsanaEZEsWXQMhyAdTIq+LdHXK74RYT73Gapc80W2J3iiQ2eOz6TqxcoTx+TTs97yav3aZd/seWWTbHa9vVku3bwTE+XMwIBqFXteZ3ZyvGP0bEaNSIiU7ZbOCQwTV8TdjZvxeGosP1/b2qFZO5k82hXLuunV6yuJWDZDsZV6u2117r/23aHc9JlHn2q/8e5oJDqfG9yb5b/1zx5WqEPiuFibxHDI8Wz/G//gvHppgd/p8O9NkB8+RU7tHyv/vz/zg21DIzCjCOUjkOqnKKbByhlKyDZ0tVUzCM0hbCMBFgZNdhqBIFL4PlmmMnIQlqlULKjuBO+2LM2QZ8bo/GB/XzVVsrZOkkkylO5fYthHhESiOK34biDipjC7db5lMhOCEFUQtvmWG7hBRJGqWs/z+Uqlir3VNW0lRrH4NF223iu6tp2RBj2KkXiGp1nd9xgemQtDUwxPMaaJULA/FrfWaDGpI57kKSfwBTZgfGkgEnENLE3S3t51rMRUfv4jH/nQs08dEyvfXHllseQ6pn53fn7W8rkX37o0mAwrIhuPx3YLTWKrEZoRGT8Wlj49OL6hKHuzcAiDKPwWfMBxdD8Z7FkuDlaKy8SjSqhJ83RXmx2jbZXUa51ExK4LVKUWffMSeeJsOCTgyrmBy5sg3MXvxHRJz+aIjiXPcoGtE84a2JtlQ3d4izKIp0SEhu3fKqvDPCXQ/ogkj8aEoXSCtw3fpba6VkXzApYuGEa7q8d3agP1u3rQimXzW4X6d777dU6w/ubf+EfTc4+KUox5WCKBHWKEh0+
"text/plain": [
"<PIL.Image.Image image mode=RGB size=274x138>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Train :: Epoch: 561/800: 100%|██████████| 135/135 [00:10<00:00, 12.72it/s, Epoch Loss: 0.0399]\n",
"Train :: Epoch: 562/800: 100%|██████████| 135/135 [00:11<00:00, 11.72it/s, Epoch Loss: 0.0414]\n",
"Train :: Epoch: 563/800: 100%|██████████| 135/135 [00:11<00:00, 12.10it/s, Epoch Loss: 0.0407]\n",
"Train :: Epoch: 564/800: 100%|██████████| 135/135 [00:11<00:00, 11.86it/s, Epoch Loss: 0.0400]\n",
"Train :: Epoch: 565/800: 100%|██████████| 135/135 [00:11<00:00, 11.44it/s, Epoch Loss: 0.0440]\n",
"Train :: Epoch: 566/800: 100%|██████████| 135/135 [00:11<00:00, 11.93it/s, Epoch Loss: 0.0412]\n",
"Train :: Epoch: 567/800: 100%|██████████| 135/135 [00:12<00:00, 11.02it/s, Epoch Loss: 0.0419]\n",
"Train :: Epoch: 568/800: 100%|██████████| 135/135 [00:12<00:00, 10.75it/s, Epoch Loss: 0.0422]\n",
"Train :: Epoch: 569/800: 100%|██████████| 135/135 [00:12<00:00, 10.95it/s, Epoch Loss: 0.0398]\n",
"Train :: Epoch: 570/800: 100%|██████████| 135/135 [00:12<00:00, 10.49it/s, Epoch Loss: 0.0399]\n",
"Train :: Epoch: 571/800: 100%|██████████| 135/135 [00:12<00:00, 10.91it/s, Epoch Loss: 0.0420]\n",
"Train :: Epoch: 572/800: 100%|██████████| 135/135 [00:12<00:00, 10.99it/s, Epoch Loss: 0.0426]\n",
"Train :: Epoch: 573/800: 100%|██████████| 135/135 [00:11<00:00, 11.86it/s, Epoch Loss: 0.0426]\n",
"Train :: Epoch: 574/800: 100%|██████████| 135/135 [00:11<00:00, 11.80it/s, Epoch Loss: 0.0408]\n",
"Train :: Epoch: 575/800: 100%|██████████| 135/135 [00:11<00:00, 11.83it/s, Epoch Loss: 0.0413]\n",
"Train :: Epoch: 576/800: 100%|██████████| 135/135 [00:12<00:00, 11.18it/s, Epoch Loss: 0.0411]\n",
"Train :: Epoch: 577/800: 100%|██████████| 135/135 [00:11<00:00, 11.86it/s, Epoch Loss: 0.0407]\n",
"Train :: Epoch: 578/800: 100%|██████████| 135/135 [00:11<00:00, 12.16it/s, Epoch Loss: 0.0422]\n",
"Train :: Epoch: 579/800: 100%|██████████| 135/135 [00:12<00:00, 11.05it/s, Epoch Loss: 0.0402]\n",
"Train :: Epoch: 580/800: 100%|██████████| 135/135 [00:11<00:00, 11.26it/s, Epoch Loss: 0.0429]\n",
"Sampling :: 100%|██████████| 999/999 [00:17<00:00, 57.79it/s]\n"
]
},
{
"data": {
"image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQgJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCACKARIDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAq3ckqGMRMBuzk1Wa8liTfI+VJ9BTtX8zyU8okNk8isTX9TWz0Az5j81SFCMe54yB3xWqaUbsVOEqtVUo7vYxPHvjTUNFj0tNNmaN7qf55BGjARjqMEHk5H5V1dpqzylo3lJkVVJ+UAHOfb2rxTU9QivxIs0ry7Cvls/OPXHoK73QDHdWsEIaaKUANlXDKwPTB6jHoaypz5p2Z6eY5fUwdKDbvdvX8f69Do/E2tXemeFdRvraQieDy9pCgkbnAPBGOhNecQeN/FSIj3WuKN6eZxaxkAdui5yf0rutZmt4fCOriGfHliMtPIMofnHfv0rw0a3NZ2Cahe2ckk2oI+Y3lA+ZRkEDBwvXHfGKmpLXQ8mmpTajHVs9Ii8Z6/Jphf+2EE4OxS0Mf71ueQNvAPFRt438RLjOqoDIo2KIUdgx4OfkAwCK4J7S7McDy3cUUnmrKYdpCgqACN3OP/wBdbVlbyXhWUwbI2iLQfvdxDZLFsds9OeoGKz59dCqiUWrST72v/kdn4V8WeI73xnY6dqtwBbTxSsgWOPEu1Tg5AyMYJxn0riV8dfESX7X5WrMRCxXP2SHj/wAcrqfBEcJ8T6XJGIgAZgqBtxjGx8jP1H9K0ra3spC7QFSJGLEMMc+9KTlZN6F0nqr6nK+FPG/jfWYpIp9UY3CKTn7NCM+h4SrP/CU+PYrtVfVC0ZDZzbQjGB/uVo+FLEaT4luFkhCllK7c9s5zmunubWHDiCNSSSR6fjWPM0t9zujVpK65bnO2PiTxZdW7MdUQOo5Bgj5/8dr1cg+pH0rzWSzt9JtXaaQEMQSqjkGvRmlCOQa2hpuzlqOLtZWIZZJJ1mgid4Jl6MQp49R1/WuI8XS+MtH33el6pLc2x5EP2aJnU4JI4TkDHWuo17WU0ew+3lYwin948hPyr9Byea5ux+I2l3ulSz30scRDlAijhvT8P8aVScX7jdmYtHReF9Sn1DT3+0ySPMjnmVAjlT90kKAMdcEenrmuE+MvjHXvCl34cTRL/wCyreNOJx5Mb79vl7fvqcY3Hp61u+G/Ftt4gv0NjdwB1iYTWjIfMiOc8N0K8dPyrk/jpaR3kvhqWSVY/L+0kbvU+VR7RRi2+hvh6M601CCu3/XU5dfil4vich9b8zccD/RoQF/JOayh8VvHsWptBL4gwFbG1rOAA+5OzpXJ3GpwQXTBSJhvUnauOh5x71n3t5NJqMt5c2xVXbHBx07A/SuWHtbtt6Nf1Y9XE1MMqcYxilKL7bqyvd631/U9NvfiZ45Ni0lrrhEiKWwLWA5A69Urovhp488V+JfD/iSfUNT8+4s/sn2ZhBEuze7h+AoByAOua830+aCSFbczzQysjOjmMPlewPY8fnXe/B7TmSw8X2vC5a0w/TPzSGrwNWUqjpzf/DHVneGpxpwr0Ycqas7bX3+87NfGF/b7kutQ+cAdYk/oK619bhit4z9sidzsLcj7rd+K868SqumaBc31zArNC6bDnBPOCDXNaaAYf7SeYxbZkSSOQ5IUkcexyG/Kvamo3PGw+EhVpe0lPl6LS+v+R6Zr/jVNMKFL3KtMIGMSK4Rz0DelSaJr+o3+t2cMlzvgkDF18tR/ASO2R2rx/VtNlTTLa2S8PnXii6kiZsBn3YUgnHGP5GvSfB6TRajoiTLiUQkScd/Kb/61KNpRenQ0xmDp0KMZxk3d217d7eq+4d/wkevIxX+0WdQB8zQRgk/981PH4i1rK778YbpmNB/7LVWXy4junI6bfm6CnHVdOijYsylQMhQclqSq01HY8FxqX3Jj4k1p4nCXrA4OGEKZH6V5fdfEzx9DPJGmss21to/0SE59P4K9IhudPmtJJhOsQIIOW5WuJtJ0kimnaPzo0cjeoAJx9a5MVUgrcrsXByW59B0UUVR1hRRRQAUUUUAZesvKqRJFt3Nuxu6dq8S8carMdYWKeeGSK3yn7vqpONw9j/8AWr0X4ka//YAsJzIVDRzEIFzuYGPH5ZP514VJdXutavOxsfP+0sJiANhwe4Y8D606sb043OnB4h4Ouq8o3T/q6Hx6gGdow4YIc+5rpLPxBLE1v9kJ+SPlQx+ZgeOPTvXO6TpNjF4sMd9bXMcIGUtd4kb8W4z+FdXBrtnb65cTTaYZZEUlg6gCNPlwB6muXm5Zpx6HXmubwxihCC0i7v8AyNex1CTV/AfilNQYOgFsBsT5VVpDgj6dTXlWoW88GoNG0cj2VuUEBTkDAGAP0zXrdlbWVr4Q8U3NlNNIk8ltmJSC0R83gfT5u/YVxFxYyz206tmJYjkonfI7AetaSmnZpHmwxPJP2qgrNWt0MPUG1SMW91Kr/ZAiSHnIwSDjrnA6fhXY6RFBazy6k1xGfOU7YRIcjC5J5+uKx7K3jXTUmlzPHuMUUUxO1QBjoMdye+KqapNBYRW6WlqZnZdqpvyU49e//wBala+vYujjL03QkklLy+Z6D8Pdei1HxbY7I1hhmEnlI7ZfeEYkKOwxnmrtiPssYZSpC54PesP4Y2ir4h0SeeBjcHzTv38ITE4Ix7j+dd7qWjWtppbyLI3BG0YHOTilNOSuVUVOFW0Hdf1+plQahI2pA9ISm3OOVPXrXQJLbiZLd7gFpOYxuAZu5464HSsXw7obFJknd3d5SVz0Ve2KzfHUZs7rRxarJ9qtyxjMaZOcZGfbIGfbNZWaV2S3FrTc6LX4Lezj8113KwxnOV+n14NdVeY80kLuOOmfavONGuLy/Xy9Q2FQfO2oPlLHj9Oa7rUby3tr5muLhIEXHzO4XPy9BnqabmnHQiLUtjlPiXPLH4OnuLfIeHa4ZhuUYORkf48V8/Sa3cPBFbxsscanftUYGSx/+tXvMfivSdQ1h7WF7iR7slEMluzROgBwCpHcn3GBXNeKfhlpF/Jd32lTxWF00IKaeMLF5mBnntnnA6ZqKck37wpKzuin8LdPuZdeTUh5HlykoZcsBvxyBgYP596n/aBk/ceGFZpBEwu9wA648rBIq18FdQlttO1Cxmif7LHMXaXIxG+ANu3uTg9Kzv2i3SSDwo0I+VhdFeMf88a1hHVoqLtseP8AkRm3ado2VCQAM9un511OtaayaZpbiNTZmMiCRV3bgT8x+vA61y8txNFaRW8NrHHEqEMeWaRj1JOeO2AKvW+opbxRQTTvPHHxGmcBSTyQPWsJ05SkpdjojOEacoWu35bNefZ9TbFsyyRyMwEQX92QuCykcg+n/wBavQ
"image/png": "iVBORw0KGgoAAAANSUhEUgAAARIAAACKCAIAAADpF1LuAAEAAElEQVR4Aez9Z5hk2XUdiF7vb3if3pb3rr0D0N1oGIIASBgaUKRoRIqUqJE0JKUn8zjUCJRGjhI51KMM6ECAcIRpNEx7W93VZbOq0vvIyPBx43r/VmRm49PTzA/ND/X7g0OpugpVGSfuueecvffaa69NxnFM/HD8cAV+uAL/T1aA+n/yj3/4b3+4Aj9cgcEKMO/mMtypWRTLR74fW4HICUHkeRElqLQY0RQVBgTL7X0dP4hIKux2W5wd/pff+J011zxy9tyPfuCBQrJMJxXNcbhsgmCFKCT8KIxDkqDJkIxJijicGdwC/9vv/staq7q2s856vGU3fE6dyA8zUYfI97yKtf18XMyM3n/fkxtbK8m0YHpdvdG2aF2lEnSYa7sL5cp97X41W06TJl+vLSX4ZLGQs8m4vtldWd4Ym57+o3/5O5jll89Pfq9rBTyXFZkiT0pO5GtOr6YbTiBn5YkHfSmrEo2hw5mSRHCNnUa70/ccSvAIMnLNOMgUc/mhvBFYERuyIssmqDhDmj7H8mmek9ua+Tv/+3/GLB5hBw5JkwRJBJ4bRJSTUPKh5xBsSJM8Xl+j5b9y+ep2fSelCC+9+I3F2gvqmE9RARXEoR+nZSHNZ7vt+Pc++4VUYpwgQoKgCXwYEeHD98ZgxRIMS4ZxJiWVpobohGo0GkHTqHj+Twv+I4LtpIh6k/jfDPZGQJghEUYE6UccHf2CGB9PCS8IRVWkPqa1r4bkd51gwY0c27cjmsXn8iwjCJHtb9s9/Olv/tr/yovjjJROJhKymkxIosqTssTpoRcRfDqhjkyk01mBjiKC4UgnrFt2WlbI2HO9uGf6O02NDEjHc4yOh9ctEKRLeGxEtWzL1HpE5P7Wr34Is3z61/+eXEpLQoUSQ4VNxlTKCxkXC8sSAbZYTMqiQrAOT0VszMcKFYZxr1rjk6rA8kmFtW2TcM03Xvni0tWXwygkQ5sOSZ/0bM/lWDoK7NVbHmZ5V49NFPl4ViKIWYamqRjLQ3MkQ5AsQzFURIYERxE+vhRFkhSpCCxH8eTurtltCQ+cJ8LAj9yA5hiRlwXBjYiYJciA9igiigmGJF0sCjHYBNs7W6XR1N27rmf5cioRcryaFrtNw+uYZHc4SXWOjR1JJ2SN5TjOdSKGoChzm555aCYh5OwVq9FeJ5nY1GzXaLSaTU+Iu90+zcuFRLZb2/2RJx7FFBiszDD4YSYKIzd2ORxbjqAVgTFt1zH6RCBwLJGSuVQywcSMbPl0zIZ6FFmh70dW5OPpBSJyCDKMaCbGh3Fk4IdEpNuNvskRPjb3YHC4SoR9j0DgeGx6Bc9Ic/LeX8K7JlNpemZqbGK0NDGefez+mT/+Cvny8ld93xKZlMqIUZv75C98rFpb+dZzX/yJj/yve6/bxnbGj0eDZcMZGnw4Li2GxHpSrMjRDCtJqXsp40d4Y5qJApfgN4gLFpFUiGFVajh+u2PxHHGkQu722Gkj/vvuDlH3eZKY5ohHAuLbBvMdgZoPyCAmfCcUGRx2vPLBUPl8tjTGiJIVUTFNO2Qs0wLHUUE3IoWgVFRTPC2EMclTuAE3eh3DJ9KC6OMlExFLUqok9Qw7DCkVm9sJHTegcNuKNGMRLMW5IRZnMMaO3C+poqZpHOPGtO/GJs1mZJaj+TAI6BhbKww5OsQO5AR8C8ryzGxWcggKd3bgBWEYyYpw6OjF/u52rbZKR0QYejGFf8/EURT7++/i3T02tkMypKtSHM/SZBRTNB0TEQVzQUSWHRJUHFM47mEUh5LEkj61+M1va6u1XFGUaH/wdzFh0WbDJNkwidcexFGAwCwm8UuA/RfjGhjcAu22podNSnDEUJgYGpsYn7i9vjxWmjhVPNO0jDV+d7fX4bdvu3H7xORDd1du5kaPt3Zff/PW81NjR7rN3u72zunzx4oZScmN5NispnW7mvHCi989eng2kZCU5OAaxWBTnGjwBMMwdMSFA4PJCQSbTGiGrTu+0QoTapSUBBybmBCDIDJpUmWpiMerIfp9GFRPJCmL5HTcBgIjUIzMsBVVZlmh50SW/4OAE2YBv99/W/gVv48dSxckjiAEfA2OJsrFlGE6HMkND0194qN/m/m+utNqNZqvEzax1OwR9NBQKtOPonrvbjF1BFcV7hmct71PxFYbrNje50YkdhRFsBIz3Sb/GtMue8Rdh/BNQh4sOzGTJlZIh/YDNUcnShSphrfIeHrHbWBz+4TEELRLpBTicSV+2sf+whuJcRI9lzy4ADAllwhYQRRlOY5IGueU9WG5CE7kWJwNXB40y0RkxOCrUYQbkZred1IZ3I2hH2CPMPiRAH9HxzjlNBVSmCOwvTDCNBQZ760GnmViKJvMphY2uXqjQ3NEIZvrGyQr4UdpnmcNO6BpAs6Mie/nkhwXKyJD8EygxxwRY9VxnUkslU3m5FSWb27GIa67gKZIP8S32H8XmOTdPTaSJISOoUo8zzG2F8HcSDAzOEm+bweeZQdcJHq+J1I8EZIta/NLf/6vpYj2Q8pe7UoPcVZs6LtbhBLpcYoNFJyYAZwBBy2i3RjLcbChuTjcbtcrlWI2TI8enlhZ2QliLpfKBHAe7HDq3MRrL76yyTrlciWdHhrJBZZrpUv5buSUCvnJiRnf4HzX31nfMKI+l1ITkbpZq168MHbjzvzZyUMrG+uDZcPbHuWFNoOvwPJsSk7lCJnWTbFrdWw77ppWgw+yIpmJ+YRAJYqxJJP0hspg24RBRHd4AldlqpjGw0ahH6rwFuiEIk1khmVZtd1oud/en2XvBWFz4zmxXHGI7RRE21t3bt2+9cCDT+TzJXyRdJrNSHzLtiWCymUKj937c7oXfe/Z37x+5zpF8a/fuHb5yvLf+LFfYOikHTv8wTbGZoZdP/A1sAdJGtsC3nN4L6fdV79V68F1Iy57RE9i7oFN55jjtP/n7sAKChSvRGRj0z9WZH8iDJo7BAfrhY2PnRsSPBeeiNk7weDlYncP7mmc7L2RyxYcS7M5Kp1ULK9Hx4rjsG14P5aL+wSGhSSJ0Ikolg6DkBscush1ApLFJqfxcvEb//kX01/4ZufSyaGpoxEn1qZU2LSYowOfst2Bm4JBMkwDPltMJ+W0T0cCL2A9KdzJsKMMkWN4kaUJTghtNwUHkAha3V5ft1g2i7WCbZJ4xQ9sJ4gEnGYaNyJLUAEWzcClzMFVwosYjHfVSeMYMhQEkqcHrnpoRySHC4AiCTeAE0+YdNR1u6EfpdlI8BlYEmvCttd4D/bR8nHBRIyg94hvr/zRR++9V8IfI4cmaDwXwUSxG5kDZ2BwcuxIcyzHrPfve+hBOZ1peHdkJlNr9652b9kxlfaUILQquXMzk2Nbywsrm2sMwY5VZtN2squ1gti9cvvO8cP3617TutEdffAEO8mfqhy+99j5v/r602+9dlnIDzwcDDap8oLheGG+WB4dH00xCWq3rq1sG1GYVmRRILlIZWiRU1Upn1ASSYGmk0Kf8f0AW78n2lQg5zNSgJcd4zE4nmT5jErkxIiTGVpm4IztD5wZGAMY5IHjGvkxxwlDY9PFTLrj062OnstINCHiTkRsE4SE6AvnR8c7pPvqzeLJIx9+u3O5HynTFy48f+Wvxk5MZtRKRFg4aXtBDhUQIYzEYBqYfhJ7CL6uGGsGRXGh6vajeDVDhaPinau6rQajPPFeXXiacV3S6+iDn9nRyKWYLojY6oSSJSiPaPcJOUn849F4fi16zaYTIgVrzMP53htKoZKl2JAIfDvMrPeGeivbyezKaLS7dXdUHm4enhxLFCw/jFctOi137F59t56TkkJaoTfNptHpeWKqkA83l+8sXz3+/s9sBq3s8EfXXI3kZJ5hEjRc9MFoWr5rm3HE8BwWdLC7BJ4nYxouFo5UJsUqRLzdaksijD+rOXD2ESYLST5i8QkwgwSiHZLGKqsJKamGdujoAa/wnqHjZKqIV/fGu3psKHovpqFJ04bbgohk8BUAA1gDswGvMrY8q2s6scog2rF9PSrZ4ypf8iX4sqbtcZI
"text/plain": [
"<PIL.Image.Image image mode=RGB size=274x138>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Train :: Epoch: 581/800: 100%|██████████| 135/135 [00:11<00:00, 11.62it/s, Epoch Loss: 0.0433]\n",
"Train :: Epoch: 582/800: 100%|██████████| 135/135 [00:11<00:00, 11.44it/s, Epoch Loss: 0.0397]\n",
"Train :: Epoch: 583/800: 100%|██████████| 135/135 [00:10<00:00, 12.50it/s, Epoch Loss: 0.0397]\n",
"Train :: Epoch: 584/800: 100%|██████████| 135/135 [00:11<00:00, 11.43it/s, Epoch Loss: 0.0431]\n",
"Train :: Epoch: 585/800: 100%|██████████| 135/135 [00:11<00:00, 11.82it/s, Epoch Loss: 0.0408]\n",
"Train :: Epoch: 586/800: 100%|██████████| 135/135 [00:11<00:00, 11.72it/s, Epoch Loss: 0.0426]\n",
"Train :: Epoch: 587/800: 100%|██████████| 135/135 [00:12<00:00, 10.92it/s, Epoch Loss: 0.0411]\n",
"Train :: Epoch: 588/800: 100%|██████████| 135/135 [00:13<00:00, 10.35it/s, Epoch Loss: 0.0433]\n",
"Train :: Epoch: 589/800: 100%|██████████| 135/135 [00:11<00:00, 11.46it/s, Epoch Loss: 0.0424]\n",
"Train :: Epoch: 590/800: 100%|██████████| 135/135 [00:11<00:00, 11.99it/s, Epoch Loss: 0.0408]\n",
"Train :: Epoch: 591/800: 100%|██████████| 135/135 [00:12<00:00, 11.23it/s, Epoch Loss: 0.0411]\n",
"Train :: Epoch: 592/800: 100%|██████████| 135/135 [00:11<00:00, 11.97it/s, Epoch Loss: 0.0416]\n",
"Train :: Epoch: 593/800: 100%|██████████| 135/135 [00:11<00:00, 11.51it/s, Epoch Loss: 0.0426]\n",
"Train :: Epoch: 594/800: 100%|██████████| 135/135 [00:11<00:00, 11.33it/s, Epoch Loss: 0.0423]\n",
"Train :: Epoch: 595/800: 100%|██████████| 135/135 [00:11<00:00, 11.67it/s, Epoch Loss: 0.0424]\n",
"Train :: Epoch: 596/800: 100%|██████████| 135/135 [00:11<00:00, 11.89it/s, Epoch Loss: 0.0411]\n",
"Train :: Epoch: 597/800: 100%|██████████| 135/135 [00:11<00:00, 11.39it/s, Epoch Loss: 0.0436]\n",
"Train :: Epoch: 598/800: 100%|██████████| 135/135 [00:11<00:00, 11.41it/s, Epoch Loss: 0.0402]\n",
"Train :: Epoch: 599/800: 100%|██████████| 135/135 [00:11<00:00, 12.02it/s, Epoch Loss: 0.0422]\n",
"Train :: Epoch: 600/800: 100%|██████████| 135/135 [00:10<00:00, 12.50it/s, Epoch Loss: 0.0423]\n",
"Sampling :: 100%|██████████| 999/999 [00:17<00:00, 57.81it/s]\n"
]
},
{
"data": {
"image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQgJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCACKARIDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDr/FvizXtM8UXlnZXvl28ezYnko2MopPJGepNY3/CdeJ/+gj/5Aj/+Jq341g3+Lr5sf88//Ra1irbFsYX9K+0w2HoOjBygr2XRdj5qvXqqrJKT3fU0x438ThQTqHXp+4j/APiaik8d+JwcLqXP/XCP/wCJqeOyWWOJksSGRfnGciQDqfarMmg6dPZzagszQRsxEaMR8p4wCT7nFcmJxWAwtP2teCUbpbJ6t2W199/QuksTVlyQk2/XyuVfEvjLxbaeH/DF3YXsgkuvtZvZEto3yEdQpOVIXAJ6YzTLr4ga5pdrEbzVkLmMSOTDGOMD/Zqr4x1678O+D/DCWsYYzfalcFc9JF45+tcPqOoTaxqxsX0tvt6qhiUsPmQqDwOjHOTj2r57EqKrTUe7/M9zDtuEW+yPQk+JeqSXipFqSONoYqY0Gfbp1qvqfjXxXO0k+jeIYlhPO2eCEKmOuCU6fXNcVoa2SLqcF00LNEv7t3G0kE/dx254qxHqkEl0/nIrWflMJcrlRwDk9qinFOPvGk3d2SOu8IfEfxDd+EvE+ra1qcOdPa18qQwqFQPIyt9xTnIAHf8ADrXJal8WPHV5FE+i6pKHaZo1jWyhYyLkkMAUJ44Fdz8Hreymt/ECwmKe3cWxEe3KrgyEDB96wdWv9Pn8YXM9pPttrISEtGSVYtwcDsBtP50owsmaUacqlSNPqzH07xn8XLm5b7TrHkQwkGbfa2wIXqcfJXV/8Jx4nj19bL+2m+yPb5NxdwQQhJGyV52gHoBtGSRzXMWHjfRrLUnS8haaKSdShjTAVQeSBn/9ddhbaboHjewlisLS2uG3PIHaZlI7KwJGcnnisozi1oetisDTpxbg3dW6o7/w3aa5A6y6x4ga/aRMiGOCJIlPsVQMfxNXPt9xnHmf+OiuT8HWfiC01O3W5uZls1Zo5LeZwcKqEKV45GdvIx05rfmkWFWdjgKMk11UEpXuj5zG80JJRf3F77fP/wA9P/HRSm+uMZ8z9BWBNq9vmMRTK7NIFAU5DDvz07/pT7S/aW+uIpDGqIQEXPJ65J/KtnGF7HF++te7Nv7dc4z5n/jorzPxr8VdS8M+MtU05F3W1o0O1cplg8ascZXJxn17135kBz+tfPnxmnnj+Kd/JIq+RC0BjIXHIiQkE9+p9e3pXHjKfupLT8DtwNRtyu7ncXXxP1hUM0OpBxfq32GKGBHZNq9W+Uk5PbtWSPiF8QNL0lZ9YubgPyWkFvAMKeBwE4OTnnjivOdF1e5tdQuZLS3Yx4ZvLA3YdiAOev1x1xXS33jnVL+1kimsZ5rbYYpGjbCK3QhuMY5H+ea8KUcRCXLF3XW71/r8z1Vyy16+h31t488RxtqEN5q3zq+23Kwwl8PjaSu3sGBNXtV8V+KtH8DaA1xfZ1W8uJkmvBDHggSEJ8u3aMqV6D+E+9eSeKLyWa5aFPKiubdS0ixsCAFVRwe56YxXRapeXJ+GXgWaRnkA+3F1Z+uJgBweuBmuvDKbu29/60KcYykorQ6uL4g+IJdPCDVFW7Af948UYDsBwANvXv8AhVKw+I/imSJFn1AEhnQzeRGAxyNpwF9Mj8q5VZmuYROD+5eMNlQcKc8/j061PosEjIbWRleNsnzOflYEYPpxXXRpOF/ebv3Po6GTUKclKbcl8rHpmk+L76Vv+Jjq88YaXcHEMWxUI+6flzwe/vWtDqmsxR6+0mprcQxeQ1nOqRHZuZgy4A6jA6+orzK3v5JZDZw2U8zE4yiZVm9P/wBddhoMUunaLr8+oxxwxu9qoLMH58wjkDpyRVwcpX5kc+Z5bh6UJVqbs+3z+9HQxa1qEdo11caiPJjGXZoVGB6nArLPxNtfPdUeSSNOA6qvzn2Hp71wutx67BJfJIHaHkgx58t07Y7/AFFcJLcamLgFWbdngLyPYVzVMQ1Llirepnhsrw7pc9STnf8Al6H0XP4606SzLWV49xMBl0gh8x4gBkllxwMVf0fVp9QuLdhdpLBKpYbQORgkdBXk3h6ObTtG1W9gtppru8jVGEfUcEEk+3tXUeAPEEa3ml6K1lNExR1R3kBztVicj8KcMSpOzPDxND2FaVNO9mdBHrmpSQNJ9rI5PAjQ4A/Chdc1Enb9tBbPH7tcMPyrn4Z7qV5Y4HVXC/dbgv7fWomS58vzHR1OQCO4+or6hUqfVI8D2s+jZ1SazqDZP2rA/wCua5/lU/8AaWpHGLj6/Iv+FcvaXD7uV710dkzOQ5UkVnUpwjrZFxqSfU6yiiivEPVOJ1+1tBql5cXDIrOyIu7udg4rkb7y4Lae5B2KiEgjJ2+/riui8SXGm3nieWCTa13Zcrlz8paNedvfgiuW8QX0Wn6LexrPGt1Jbny4vMCswyMkDOTxn8q9bD1sTDCVJVbdeWz3VtPmeJiIUniYRhffW68/yOb8N+MIfDtqmkapdNIs1sJVmRWKM5YjYCuScH0HJ61qX/iWOd76w0ixuNXtIbdZJJI1winhmwD1OMADrk8V5TrXn6RH5N0jC+U7kCKFEalgwB+h5x6k9qwW1K7W1MEV3IsUgXzYozsViPu5A6kfSvBl7acXCW11o11i7p/oe1KnSlP2kd/LzPc/EkEet+BfCd7O7Wn2eW86jOCJtvOe/GfwNYk/h+G7vLLUUuj5tpgJLHJydvIB9avwakln8KfBLXEReSVbyNIRnDfvup79Mc+9YFxqcc0cjQQyW00cmZFcn5ceme1dq195mTfLojnL63trWW3y7XFsZT95uArHjnvzWnotyL65u9NENxLYBQ0hU7mPYD2GRz9Kk0Kwtb3VVlmgYBmMmGQlCR3UdOp610VpJJa6/dmyiTa6pGx29Tljz6DnrWafvWHz9DbjvotF8DeN9X02AW80sNqhhU7RHudk6jBz8xJrzvw+4a3udMjYyS3URCEdS3YY9Otei+JkMXwf8W8YkItNxHf9+P8A69cR8ILd77xjpvkRx7bZHlmYjnAGBj8TXR8MmmXCbhJVF0Mz/hFNXcLC9kY5Ym2lmUgK2QTliODgdD+FemeBtDvtCt7eK48uP7UoeHoS2M52nPB5B5FepXlvb3Vu++NXUtkhvXpmsCVdKmu4LMBYrnGYjE2ChHp6dK5Xh05LyO+pjYODUI6vc2rC5abXLdCSBGhUgjk5XOevH5GvLtT1W8u7eczvdmUMGWNkIB57DHau20671CLx1YWVztAIcngHevlthgR79Rj0rnWuztfALfMM7VyDkdf5Cv
"image/png": "iVBORw0KGgoAAAANSUhEUgAAARIAAACKCAIAAADpF1LuAAEAAElEQVR4Aez9Z5hl13UeCJ+c7rk5160cO0c0Go1EZIJgDgoUKVGm0kiWPZbHSbYfjz1je2Yse8aSRrZsmcoSFZgziUCEBrrROVZXzrduDueenOc9VQV93zPfn8//udkEGt1Vte/ZZ++91nrXu95FhmFI/Gj8aAV+tAL/PStA/fd88Y++9kcr8KMViFaA2V+Gk7++ERA8S9M+ybgwP77NkVzAkFRAhAQZhhSJgf/wFIKK03QY0ixLhSRBkiETkgHpkx4VhL5HExT+6dIEadtG6JM+EQQh5foPfmsCE40fm/RcR0wlUxk5JiamKofK6UI+kwnVLSMQaLlCW3pMlmkq9PSBpSq60cvJhez0cTZZtCTh0tuXvvVXf8GG7TMnR3qh0dlps5ZIH9p1zOSgZ+NTL7y+iVn+yT//uw9f+Pj6rYvXX/vy0Q//3T//468t37vouj2CIAkixD0R7D/z3/yT4vPTE6Mjkxtr9z/24Z9984238oXSxz/yXGdzzWzbQWv71s7iVrvv29a58xd+5td+/WPPPoRv/Y5B0CHhB4QT4pkJrAWBH+0TJEvQAcGEREARMOTRlHu/SKxJSHj4Pf7PELRPePgCfCaPoEUicKMvxi/Hj36IQBEfSUef70/+1bOxJFVveRPTiXKOjidiBr1OeJm//K27MdmcPJnJVXKWq/zW73ffulaTZOpQSTo9lTR9jwm1R48Vf+fr648fr1Q39NFxKZlnj1YEKUaJifDf/lflnXtVzw50Ax+BWFp78F//+R/p6vdXnL6Z48dKxPMXxEQ63KxOLq5uT84k3/iu1Nx0xnXhH7/vM92Y+v3mt4tTkzGtTC51zo0c/drdby7q3Wc+/UvuNrGl63Kh8/wjZcVP/eff/Vqyu/Mikf7pt/4Ys/zX3/m/LNVk07F4MsEwvMBLMUFkaJbkBEGMc4JEkTQjcp7rhY5HsBzD0Swn8qJIcSwZUgFJuFhN162trgeWwvBYT6yiS9h+tNg0/cSFC5jlC9eJft/zdJMWmRRD+xSp244beGxABX7AC3GB9XXXM0KWoymJpWiWcAKCYwguIHxsfQ5zEK5DhCwRl6L3G+LPsWNIwnOIBO/91NnoyBwcm4CUgoC0PcyP94v3Kfokvj7ES2R8vN2ApKloG1ASfozv82wQWiTJ0TRNBo5LUKQf+hQd0i5+g5/qkabPEAHt+wE+bfQj94bSUyVZSsdTssDTpCfHvBjDe0YQ0GnKGljdrXQs5lk+JUo+Xjyb4Giv3esbD+7lpnwiV5o7Pismf2np6rXNtZddwtptqXJSal7pmZ1uPMkVisX9WRw3d/vBdlcnFrqd1Oby0XPHt6oLbrO3t3v/f84Mvifwzxw6ceHpZ3rdx4fKkzfevXrr4muf/ODzpx597Pv//j8QTn/u0OHTpZnDR2df/OiHYrH4/iyuR9g4Hrg5sKQ4Px7BY2VxdsLo7eLM4JUGWAscBoagvOhIYDGjdxIQtEv4VHRg8EcevswnWHwlE30N3hr+GL/2R6/Vk3miUErqTnDjRvPkiQojBW1FvbrZSEjhycfjJKtzDB+SJtaNEIK8lHz/uVIrVG/dMJwgfP6xifdfGPmlf/GOynufPFQxXW9sbIy0tNPj/bsPOBWfY290uq2u2RdZmmNEP/Aon1IDTuKJSla4fzc+6Dpu1wxdo+2S1/w7DEUpG8ajsWzLYl7oiKMxOpTP/ZBofOAjH28Edn7j3lghzXl+IfAefebD1Ss/0Cx1fxZZjFO2wzIxgUw4vqNbA45nQo/isE1w15IEz8e80A0oXLPYtAEpiB52lmdxLOez0UpSvk1Svm/3LNOjPVpgwoAMvDBgaIamDvbYwCBMz4+LdFGm9ZD0HIZhfcfx4xyFhyBJR2IYP+Q4knSxYBzBYbt7hKbhQrVxbJMMjddh89GNhl94YXjFeC+eFx2VGHtwXg7+hddNR3ufYGE0AptiOfyY0CVp0g9w+ePfeJ34LcG5+C+KYhkXnxv2xcdxZmFtCJIhsXXwaJQXOPhIFIPvoUmLDJgQJ29vkC5pW75rqJnxabybwsgsretcGDN0wnEd23Ts0InJMdphHWPgqy7mxaIYaqfVbsT4uJjgswl2+uiExD9Vbd4WSUIZGIKdc/w+QyVc62Dhrl69fewk39e9dPGRK1euJEpTTzz9we/+5X/cW4S9tdj/NO/9c3xyanRi7ujM8eli4jvffTVGk+dOHPuz3/9vf+fX/+fS44/3Fuf/1i98evrwQwHN8LigonMXTYRHjpYVO56KbiPs++h4+IRP7hkfbHySwFfji4IARjn6GvyT3jtRISwPvn3P+FC4NfEjsXDRbRP9Zm+HHHy4P/rumstbj58Y3amqmmXcvF976ROZu1fruRz9qQ8VG4albetMjI9JdDZJ6Xa40Wl87Ybm+tzyor20VTt+eMT2kjPTxZWt5vV71lOPMo5lcEzy+LHyT3Njf/yt+/vTfPkrr7XcRjrk07kwmzKxcVTVVbZYZUeZqISaasiJdDGfrd1tXl6Ynzwth7v6XIydqe5kHSqwFo+ns8f4qeqXX819aJwczXF0NsWxDEk++1T5T1fvvnL73i/vTcOJCS5V5nlOTiWj+8MnWYEPXI+WBATYISu7us3UN537ix2RjT/8SFxhiMX7zOPHw9CgQhFHgMRxNO1cpaC3FN+DmcepgZnBMmP1sX7R4Ah3Q+0XCzk5RvCMi/0d98kdQ7Y8Ii1S6kDhkkxRok3XNx1KtXBxMxJL8DGsPA9nCa9pMkNs9qOfx1OEFRASRzgkYVHRe4lci72r771jg5dN4ojAPMCG4PZkSBrfSJIMhUvQdvwAm4LBn8Mu0h5MjcswOOs0DgcOBWmT8NRgkWiGCkyYLJLDXqKYMHTwR2x0nvZGTJLTyTzhx62uNzJczqZHScEwm7AoPZ7DN9Bbm/XiUKVSwYZydrq7MTknSxIv0Y3t5eFsYWBwmmlxsUR+ZCxdGT3GsqbefPlbX6RxTmGzYWj3xt/++/9wu7r1g+99f3HxDmHbyeKM41hE9NSR+4kh4XcEmZOYTx473PJi7tRhq1W/8Z2vTRRnp2qDWm0rmcq2DXt7d+PCi8+e+of/KMWSDE3AvQxsS4hjgaNB04TjRI5WZED2/tOPrO7ef+wdJKww7HVkiOADwMbsHSE4b7Da/t6Rw99GR9COjhkjRIcHfgi+AIYIf74/6qrV3LI/PR3UVPv+9qA5sBMjTpYRPvmh3PBk8sqXdm+suC88Q/X69sAOhkZZKU3f36UpNTwyEb96f9DXa5Oj5UdPVkKcTpHMySzM27/4d5c//4mRdGnk9El9f5ZmrdvT2oTlPXY+vdJzDY0Y9FlvUF29tftzvzRhtEfVZV+gSjvmTme1+mjuUS6hKRffmTp7Mkllg06PZC3WN6b+8gvu3XSmnFE/9RHp6FnDozMkPXfu9LtvfXV/Fj9w2cClSTn0cNsnpbwcOTC4KrxA4BO87oi//Xvk+qZtVRMjRadaD1eWaTYe8C7/+GM0H1Is1eluf+MvftPT04fnzqYy2Vg8zbEC7lZcXjSsxt4wTY31vbREW6Gz3WKsgEmQJnZpOUW3rcCnpbrDpDhClGhsOc8M8Xa8MPIUaNxfBAFff8ciaCG6B3HfifSeP8YQkZmJbsb9F/yek8aweJckh+uSw2bnfDyNT+PzwPezXR9bP9oYNPYBxZKEJPgJyU/I+lo9hanwZXDPousywOdyqYCJdgiFQfoCjQAHluzgkQw/kfAz6XhgGMlkkhOYwGFa7Z1Ov51OCJ3GTrujO4OaSB7fWtve6NZLOVtOz5kuLWaHllaWN7cW84Wj+aGcmEonsyWedwIzv7Y482C1KwsSx0XXAcZv/Po/2O13Qopp1nZymYJvaj5JIggw9O6hUvnvzlwY3iWbel2Rw5+a+SgdptbPx/6y8WZ5054cyLfrW63B1ujY9P/8G/9nMinJnMVzocszDqYKgsAN7PagUExgFjwkDgl2PFw10iFY+MH7SwyjEUR+Ght5vNGbQEgY/Qt/u+elIQpC8IN
"text/plain": [
"<PIL.Image.Image image mode=RGB size=274x138>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Train :: Epoch: 601/800: 100%|██████████| 135/135 [00:11<00:00, 11.77it/s, Epoch Loss: 0.0410]\n",
"Train :: Epoch: 602/800: 100%|██████████| 135/135 [00:11<00:00, 11.74it/s, Epoch Loss: 0.0421]\n",
"Train :: Epoch: 603/800: 100%|██████████| 135/135 [00:11<00:00, 11.35it/s, Epoch Loss: 0.0413]\n",
"Train :: Epoch: 604/800: 100%|██████████| 135/135 [00:12<00:00, 10.97it/s, Epoch Loss: 0.0409]\n",
"Train :: Epoch: 605/800: 100%|██████████| 135/135 [00:11<00:00, 11.42it/s, Epoch Loss: 0.0426]\n",
"Train :: Epoch: 606/800: 100%|██████████| 135/135 [00:11<00:00, 11.76it/s, Epoch Loss: 0.0397]\n",
"Train :: Epoch: 607/800: 100%|██████████| 135/135 [00:11<00:00, 12.20it/s, Epoch Loss: 0.0405]\n",
"Train :: Epoch: 608/800: 100%|██████████| 135/135 [00:12<00:00, 11.15it/s, Epoch Loss: 0.0417]\n",
"Train :: Epoch: 609/800: 100%|██████████| 135/135 [00:11<00:00, 11.87it/s, Epoch Loss: 0.0429]\n",
"Train :: Epoch: 610/800: 100%|██████████| 135/135 [00:11<00:00, 12.06it/s, Epoch Loss: 0.0424]\n",
"Train :: Epoch: 611/800: 100%|██████████| 135/135 [00:12<00:00, 11.10it/s, Epoch Loss: 0.0423]\n",
"Train :: Epoch: 612/800: 100%|██████████| 135/135 [00:12<00:00, 11.04it/s, Epoch Loss: 0.0429]\n",
"Train :: Epoch: 613/800: 100%|██████████| 135/135 [00:11<00:00, 12.12it/s, Epoch Loss: 0.0428]\n",
"Train :: Epoch: 614/800: 100%|██████████| 135/135 [00:11<00:00, 11.86it/s, Epoch Loss: 0.0426]\n",
"Train :: Epoch: 615/800: 100%|██████████| 135/135 [00:12<00:00, 11.16it/s, Epoch Loss: 0.0400]\n",
"Train :: Epoch: 616/800: 100%|██████████| 135/135 [00:11<00:00, 11.77it/s, Epoch Loss: 0.0392]\n",
"Train :: Epoch: 617/800: 100%|██████████| 135/135 [00:10<00:00, 12.31it/s, Epoch Loss: 0.0406]\n",
"Train :: Epoch: 618/800: 100%|██████████| 135/135 [00:11<00:00, 11.53it/s, Epoch Loss: 0.0427]\n",
"Train :: Epoch: 619/800: 100%|██████████| 135/135 [00:11<00:00, 11.94it/s, Epoch Loss: 0.0406]\n",
"Train :: Epoch: 620/800: 100%|██████████| 135/135 [00:10<00:00, 12.49it/s, Epoch Loss: 0.0416]\n",
"Sampling :: 100%|██████████| 999/999 [00:17<00:00, 57.68it/s]\n"
]
},
{
"data": {
"image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQgJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCACKARIDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwCt8TPif4w8O/EXVdK0vVhBZQeT5cX2aJ8bokY8spJ5JPWuW/4XT49YYGuAH1+xwf8AxFN+Mi5+LOuf9sP/AERHWFoGnWd950UxCT7fMibBbcR1QY4Hc5PpXLVq8ibZnq3Y6ux+M3jhXZptVWddjAKbWEc44PCDoarv8YvHgbC69njvZwdf++Kwr/S/7LvGit50uVeMOXjBwAQTgH2FZ7xBCD3Iz0rBVr6pkttaHvVv438Rn4eeHtXk1AG7uhdfaJTBHhtsu1eAOMDjgfWqs/xF1iO3mmbWliwVRUNqpOep/h6Y9axJw8nwg8L28c3ltIl6QNpYMRPnGK58LIssML3yrcx7UaIkPH/wLjk4H4ZqpzlfRmMpNN6nVP8AEjxUt9Ag1UCObOA0EXGMf7II9qhPxR8TYYLq4O0k5+zR8+gHy4Jrm9WRnIijTaJEAjdMHPp9OW7+lDRGwvY5HdTJCVSSUygr7AYzkDA5qbzte4JTaurux6n4P8Ya9q+ga1cXd2Hmt1g8l/LjBXezA5AAGcAdavDxZqeEja7USEY+4uSe/GK53wNNYSaH4ne2yFL26yM2BuYyPyBngcjH1pniexuItIkvbGY28ihVllUBn8ruQD0A6n1/CumnKXJe2p24ePMlzOx1EPijVZ4YZFvI9rqCHCqVP449xU9r4g1a4QFboN8vVUXk+3FeV+BtSuv7QGn30sMttDZxPEwnBVHzuA2nqSD26Yru9IuiWlYmMRJO6xbODtBxyPY5H4VcW2tS2lfQ7LSrzU57yJbmUmNs5UoozwcdBXkuo/FHxPJcEWF0Il2q20xRttBHfK9fx/CvSPDet2upar5ME2+SJ3Vx6YzXgGm3MNtO/wBpnjjjlRSgdsgKOPvfgK4cU5JRlBvr19DHEOpSdkt/I7Ow+IvjSaGSeXUCyK+Aot4s8+mE6VS1L4l+OLdPM/tUw4YjaLaFgR2PK8Vm+Gbe5u9NacyiO2jZkWZs7T9PXp2pmoaRN9gvZRdSS7I2YRLF94A+p556fjXCsXJVuVy6mdKlXk3NK6IW+MHjrCBdcySOT9kg/wDiK6L4nfE7xZ4c8fappumax9ntIDF5UP2aJsZiRjyyEnlieteQFmhZFuIXiU/31I49q7X4wwXurfF7VdNsLOS4uMw7EhQs7fuIz0Fe6npc1mXdD+IPxZ8RvGdO1ctCZlhkmaztxHExxyx2cDkVqa34r+LWiWb3FzrkW6J9jxw2kMhOFDF+I+FA6ntVn4Z6JqmiaFeW+qaHfWDM/mLPLjEhxjbt+8OMeo+lb8c8d5d3FndWYuE2LgPyHThiCO4yoz64r5/E5nWpYhxSXKvxRoqXNG6PJ/8AhdnxCLYHiH8fsVv/APG67bXvib4wsfh14O1eDVtt3qDXv2uT7NCfMEcwVOChC4XjgD3rzLxxp9/aeJZpNSsrW0Wf95D9jQCFk/2SOp9c85rofF5U/CT4fCMYQ/2j3/6brXuwqe0gpLr8/wATPW9idvjN4/axadNVxErmMTG0g+ZjyB9zBwPQfWtSH4h/Ec3SWr67M08sCyxYsLfYM8gOQhxxnH4etedeHL1LDUoZLlVktVYyEFN+COQQM8HIAz+fSuvj1yOzj2WN0kq3M+9ndMM4I6N6YPYnvmuDE1q0Hy01/X/A/G/Q6IqHLdsbN8YviFasVuNcKN/dazgB9Omz1r0/4O+N/Efiu18QSazqBufs32b7Ofs8abdxkDfdUZztHXOK88vp7SK7dLi1iZo22ybYwQ5ycr0wPr/Ou4+F2sW8vhXX2tlMIgNuxh3lhGC7YAzx0B6Y/Sqw+MnNq8DBNO56Hc6xqEU8aicBcEnKLz0x2rJ1LxVq1kYiJ4lDFlYyBepBKnp6jH41k6prkIWG5jJkkUgNGD1HXrXJeLtQh1SOFtQkFhaKVKhjmWQfe/X+lXiMQpScabHBJySZvWHxK1aXUbiO6u3QKivDB9nQNJuGQOn6g1u+B/EfiG+1CC3169geacs3kQqg2AKTjgZ9Oc+leJ2mopqmuWdtFJjCrAm9iMRrzkt+favXfBy6fbeNoYLXLXDI3nDIIT5D9Dzjp/KuqjCctb6L/L8TCpUkpqLVjxf/AIXb8Q/+hh/8krf/AON0D42fEQkAeIMk/wDTlb//ABuuQ0zSJ9V1GCzhKguNzPzhFHUmu3tdI0axvLSWGBvOt1OWck+Y3ZiD0OfSqqVowWp1QpynsXIviX8XLm1kuoby6aCMZZhp0H/xvn8Kz5Pjf4/YLs13aQOT9jgOf/Idd14d8QrcXS283G4gBiehrx3xhaR2fiq+SJAkbuJFUfw7hnH5k1lSrqpKw6lJw3PuOiiiuoyPlz4sWvn/ABa1YBN5Ywcf9sY6i1bxDFqOn2y2+mwWCwsxhWAYKZGDz36CrPxUcxfF3U3yOPJ4P/XBK5+COJ7SVWX54gApJxxmvExSvO76GSb1sUlwzMjs+7G4H1NNa1klTcgLFByB2HrUoQA4yNx5yO3tVxtSmiltUtUjha1BKlVyWz13Z6/0zUczvoTbud61u9x8M/ByoyoU+2SYIzkCbkbe4wea5N/KW+mD29rHLkCN423HrnjPXriu78ST6bp3g3wnGJrhrORLp0aGQByC6nBPTqwBrgrZw966Is0zmInyxMF2jBOPriur4rN7WRlUjafkXLYrI7R+bM7LIsH2dwA7Be6DHAx6n3pIbuFNRUsggjgXDCWLerY9cDPPr71VjsBGXitJLqKTYN+yPKNzzlhwKsLoputIa5gupXVQocTght7H5cY6qcHGO4FXUqxcm46J2QPESjJy7/qdTZ3C3Hwt8VKtqtsALVhtHBUzcYPU4wRXBXWsylY0uJGdlUqqs5AIPGfyrtfDd5LB8N/Fs12FUxvafMMEn98RyPqMVwniO+guUtyojNy6A4UZzk8UWvb+upt7SXslAS1mt/tK+UqqV/iBHNbkep6PYaezPJqUOrxvuUKQEfPuOg/U5rmFf+zrVFYqJFySF9T71BdajBeQ/vyCyY5VcAD0+tRKlz9WbYXG1MPfl1ud58Kb0H4oafDDLmNzNkA9R5Tnn8RWJ4WFjb3s0d1ZPOlyVS2YKf3bc5Az93OR1qX4QyQN8WdCMQZS4nJUnj/USVXtbZV0+G7hurm41VX85ljbZ5a55AOO/wBfwqMVFKjy33/r9DarXVdqc9LI6u60q5tNMNjLdOo8wvFFAhIhTPRugPOfzqKwuEsYpGtZZRISAJZXzsGeo7Ac9K
"image/png": "iVBORw0KGgoAAAANSUhEUgAAARIAAACKCAIAAADpF1LuAAEAAElEQVR4Aez9Z5hd2XkeCu4cT86nckLOoQF0o3OzGZtsBpGySEpUsGxdh4dykG1ZM9fytS3pzki2RvnKVrREUhRz6ibZOQNoZKBQhcrh5Lxz3vfdpwotmrbnGf8erQdP4VTVqb3OXnutL77f+5FhGBJ/O/52Bf52Bf5XVoD6X3nz3773b1fgb1cgWgFmZxnYIokDFJIExRESQ9MUTdIMzVMM6fIBGfCcaWtKM/BpgiIJXsB7CIIlAof4kfc9OXWocP3a6re+9mYyT1Q6BMsTAUEIDBFjCd3GRaM/aS9FOu34//7EkROnua0tJuQmE/lWUrnbuO72jMTkwdOD4xebbyRsXuf0AaXVFjTWi/mkFc+UPzDLLrnbN7t0wNGcY81N7dM21Dq3nWTjlubQWwQTG2SPjLbbve/9+4uY5St/9eXqVk3k2ezUDCeyge9xvOiYA98JncEWwyfZGEvFEl6rHY9ltyobqUye4zjTHBAsI8sZTW2zvEzxEu0NQsegGYYiXJ8KBIbzQpcgvSee+GnMsvD9dLzg3nzLH3w/6JipPene81rycp7R5VDZdIgWP3KcC8YDpW2mcjJF2ZTH4mIO4XVXzepL7nQx11N6ssy32oM0J6XklGO7qu+KNJba8vxgdbuFWcgyQ7gsEQ8J1yWCOBlLhwOTcEzCMwnTI/yhpYAnl2QIhho/mB80B0rfJNo+4Q+fbTJOaCrh4UrRg9h9MfyOSDCE5oXDK6TKtG2FlBUW06wVeppLnDlPPXSa/vPPhSYZOlbg1APbIhia4qiApGmdChydniiHOZlYbQYhEwYBwTAESVPYMSFFuoYXeiQnE1Y9dBjCsaPP+caSStg9R9cLcllzVIfReuZlW/OmM2WabPcs02OLsVhO0b+rrl+emniPKM726290NWd79VYsNl6t1MlA4iQ2P/tQdvrUlaXrr3//P9N0dU+q+MRT/2qzufFzH/8sZiFJcuf+/n/8yklEyBKuQQg8YWnDPxpegE8QyTLLibTRD/pbTjBcQ/wmGFpnu8fGczAfEdIEYRA+64e+T/lOUorWuRMQoW+R9PC3FBFShEkRvkNIAqH7xLcvvPTx2NnX3rjoiwQukogRpkt4Pt5G9qzQtAkRfzh8uPhEDGl311YJRbdVJTXDFrn4BhHaKpHaUJpSo61YKqfxdDg5EzNDn9Jj/Zpn+SvffYOSp6REmuxtVnsesWxdn+HHmndacslxQlvOJA2eFbrdlMPtrJRi6QHpEZRv6wrPZ2xD8bSmE1BsQHKcMGjdyclH/G6PEsQgMGxbpamC0t7s6b3y+IwXaHRgU2Hc02o8Q4ekQ/keSVI0RfAUHYYM6bs7s9i617ljPLskJKdjh1jpDxfMxW0yIWPXuIzNMzHK2AyJgOJJUSjHbcvXtjxlWSdotzwmMpOsbThyUnZNm2NYXmCpEDvPwSyGa2JjUgwkz3CwkpyWSZ7RanU+GTiBSXTaRIwiZBwDKnoAGHgv1kUkOrUeLXGMwHm+yQuM4/hhSyVwqGLYuV50bPB2fMVP8EUkAz16gWFjwQIIDSI3EzgkGdaJm9eD+UuE7oWxLM2GhBHQDJaPCkKOoBx/zwhx/Lh3Z55Y2cIlSYZkPM8jQ4IRKcsJeJbC3mXjFB6PT4ayszMJdgIdEjSJfWoHvO/zseTWSs9nZCoTuhZ2XNy1uy7BctSZduXt5tpfze4/N798mY0d7Gz5l97+/PjxQ+nCbKm0Jx4vDLpb3/2NX27XNsZOJacP3T8w9Fz+4O40P/Qfdvq97bf7G2xyfOjh+uFXoU/gzGPlbQ3HniDxLW5kKHP8wCOxkzxn92Fg8997LLvHBheKzoyPTx09Bg5ahSB0g0hLhEMTNn7LRLoIv8Kl8TbLJugBkZSJdtN9880rA81PxwiPxKpEJworaOFUYg0g9SCE8IfD8dDcubVKNS0kgra0OtgecVIjsTFS3Bibm0wVybrvqVQ+VMylm+tBX/W8qhxmTD308+zkAel2t5djx3JzA5pkri1sT5fkuMvKRa3farT70qBB0NzuPblOKCXikl233dBQuqbe4UOGlViOCT3H9/S+tz3PxMtaaBN8TEoXfM/neI8ZuPjYrtYJbJKS7CzHRcKDxBbGATQoAgqJoynRcaFAo/FsxV9VkhsBvVn1v+32NccOxii/7/I1MfRwyEKKoWwB13Q7d7YDj/F0ymxorkMdE/ypWfbKMsMTqcCVQqofuFQIMY4F811Fx16m4iKORTRYmg8cn3R8WuTtukFQVvScPTwGluDxhHbeRaTniF6DMNoGIdrZGXngeaNJtlG1dduH5QA1S1i774z2Cwb+Fpvp3nOhJQKy0FODpWu+IBE+TfX6YTxDUiHh24TZxwr4Z45TE0Xi9golMn5ykv/0e+3PXqM8maI9L3QIlsJuI0MoHpgWkJP44vm+SYo8ybq721YUoIakJBF6rqF5PVcRTJPN5mQmoDQXcxl9ve0G6cjC8em17bXxw+fVgcbSTurQqeUbNxqL8xOzp9OTx9K50Ze+/ofNGxuZSXZsNq7I/XZ7ebIwd+8O/+f/Rx9tKGWG/0fiBnsZRwhqYCh/olMw/GtoCwgotxLqvONj6XbU9b0zg7fcOzY4JXgWTPT3kAk4X1ARdEBA4QdkdGxgqeBcCRCg+BUeLBudItcn0iyx2DOwT2BEOMP3MCQRMETgR/YeRRM0S7Ds8LMQxIWLr+bGiwQp83toqZBPdNP1K1c/+pFPFdjqS9prIT+SNHym67sZMpORlC5157kql5Knj6U3u12/7SmKklyMr8ldPyDOJkrNgXnlUtCl3dioz5U8t6btTENRNMvSQkCRrOMbkINMLJkkrC42HUzPTALSnudG9im1JdVQ04VDHEvCJsMtCpxkB45ptvlknBREjor+iGIt7BqSlRyC4WhWwG4fjj96g9tztqxu96QUAYPHuK3IGZsPBWPNDSEn6NDZayWm47QbOjdFquD2ZMUc9VMqR9YCUjB0V7KCAeHxYeh5AWOHoeEFum/jMwgBw9PCziyBGzAMjxMly3EFeq6rEyIVPR7FoXOs34dsJHJTxNf/ZOb5C1S33nht3vupn5sUpO4f/0pzddVn44yLh2T/wAOH1MOzhuKwPGj/nVkkDmIugB3iQly6kLsBxxGK5jEOQfvY/XgXeflW4A2Ixx4Ofv2/0uGCfXddevScbbnel79L0yxtKl4ySwSQEkGAPye40DJJ0gmhc6x7x4bCBCwOMUQAA5EUEl6cy6R5zsWGCTiSo32a7RvNNJ/Yc/DpW9cvY7fOHrzvT/+vr01NzLCBlMoWLa2vN25XW4sra7fG9yWOPf2h+NFJWjo2khzr3b1OEGd3bue/+bp7Zoc/izbu7rF55z071tc7377zAg6IAz15TzC98/OdF/eODRmpCAaHAQ+CisQQjgfFD/UM9gBWE0ojICC2MC+sWGye6IxyBHYw/iTBExpOqkV4MMVxlGGHk4SEc8hH6u+dT/7kE+/e7q+uzM/rbUsIsrFYKuhrCxcuv22u3V3bVim/pWqprJSVjIP9rDsxs1R4O+Rt3wiEyVi6xTqevlatGHlCI6lrrXbgs12KtCz2eGnK5lR6LLtzS7zA01ToBklPa7CxAgwIwlP6SpMTU6yccQKyEEsHpiHLuUF9kQkcp12nZZnxiXpnOyMXciN7GJ4PsXFImk+FNGniiXF8iqAoyILwnoimSdKPsyHLavNGZi+bnhSg0Cg7lEfD/qZHS2KqxJcmxX4r3jDqQaDHMuxMLiaoYidwjSYvq2IA9UpjAUk/sOFOQsJAVvEweaJjurtmvmb7IuUYhq+EhD00d6BqhrbWJz8slbPeq29bJx+U7nvw0OwcNRgcZL762vEJqmZSC5XoSLguDhhUxlCx7FwSghOPUCAji0LcnYWRCFqNLBAaR8yGMiPhjUzlib/zMPG9ZeL2MiQgdfI0/QufIm6s8RnR6aj+8oLxC3+H6fboFxOUTlH37ecX1+BFeqERenbk9FJUGNCk5gfWjiAniFZtqZSeHtj9gKECucj
"text/plain": [
"<PIL.Image.Image image mode=RGB size=274x138>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Train :: Epoch: 621/800: 100%|██████████| 135/135 [00:11<00:00, 11.90it/s, Epoch Loss: 0.0424]\n",
"Train :: Epoch: 622/800: 100%|██████████| 135/135 [00:11<00:00, 11.77it/s, Epoch Loss: 0.0416]\n",
"Train :: Epoch: 623/800: 100%|██████████| 135/135 [00:11<00:00, 11.58it/s, Epoch Loss: 0.0403]\n",
"Train :: Epoch: 624/800: 100%|██████████| 135/135 [00:11<00:00, 11.94it/s, Epoch Loss: 0.0413]\n",
"Train :: Epoch: 625/800: 100%|██████████| 135/135 [00:11<00:00, 11.92it/s, Epoch Loss: 0.0395]\n",
"Train :: Epoch: 626/800: 100%|██████████| 135/135 [00:12<00:00, 10.90it/s, Epoch Loss: 0.0433]\n",
"Train :: Epoch: 627/800: 100%|██████████| 135/135 [00:11<00:00, 11.30it/s, Epoch Loss: 0.0403]\n",
"Train :: Epoch: 628/800: 100%|██████████| 135/135 [00:11<00:00, 12.05it/s, Epoch Loss: 0.0430]\n",
"Train :: Epoch: 629/800: 100%|██████████| 135/135 [00:11<00:00, 12.04it/s, Epoch Loss: 0.0409]\n",
"Train :: Epoch: 630/800: 100%|██████████| 135/135 [00:12<00:00, 11.11it/s, Epoch Loss: 0.0422]\n",
"Train :: Epoch: 631/800: 100%|██████████| 135/135 [00:11<00:00, 12.25it/s, Epoch Loss: 0.0431]\n",
"Train :: Epoch: 632/800: 100%|██████████| 135/135 [00:11<00:00, 11.78it/s, Epoch Loss: 0.0430]\n",
"Train :: Epoch: 633/800: 100%|██████████| 135/135 [00:11<00:00, 11.41it/s, Epoch Loss: 0.0404]\n",
"Train :: Epoch: 634/800: 100%|██████████| 135/135 [00:11<00:00, 11.92it/s, Epoch Loss: 0.0412]\n",
"Train :: Epoch: 635/800: 100%|██████████| 135/135 [00:11<00:00, 11.65it/s, Epoch Loss: 0.0378]\n",
"Train :: Epoch: 636/800: 100%|██████████| 135/135 [00:10<00:00, 12.82it/s, Epoch Loss: 0.0410]\n",
"Train :: Epoch: 637/800: 100%|██████████| 135/135 [00:11<00:00, 11.91it/s, Epoch Loss: 0.0432]\n",
"Train :: Epoch: 638/800: 100%|██████████| 135/135 [00:11<00:00, 11.97it/s, Epoch Loss: 0.0409]\n",
"Train :: Epoch: 639/800: 100%|██████████| 135/135 [00:12<00:00, 11.01it/s, Epoch Loss: 0.0423]\n",
"Train :: Epoch: 640/800: 100%|██████████| 135/135 [00:11<00:00, 11.84it/s, Epoch Loss: 0.0417]\n",
"Sampling :: 100%|██████████| 999/999 [00:17<00:00, 57.45it/s]\n"
]
},
{
"data": {
"image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQgJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCACKARIDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDvvFnxN0vw9qV7pYuZDqMAUCIQ5G5kDDn6EVjeFfifcapfSxahe2sNuIy4kk2oQcjj0NVvF+j297441SWSBC2YvnYDn92gwO9Zg0LT4jGNsaksPlOOnt718/XzmFKq4NbaGyoTkro9A1H4g6Rptss0mqRzgnaBb7ZDn8Olcbf/ABivGuJU02GMIflje4HTnliAPTtmqJ0u0fcEVZFXPzAhue4xXP3t1aweU0KHyWJXcU2g4ODUxzj23uwjYUqMoK7N3xV8RPFll4O8J39jqjQXV/8AbPtLm2iJfy5FVeGUgYBPTHvXLf8ACzPiWy701zK4/wCfOD/4itXx7tvPBngx48BcX2OewkT/AAqvp9kE0OSYYOxMH+ddk8TOKjbsjyMRXnCo1FnPTfGP4iwSFH14gj/pyg/+N1Gvxp+IbNga9nuf9Ct//jddJqHh3TtVt5bFI0W8AJ3nqCwG3FcHBo32PTriaX7xBTjv1/riuyNb93GUt2dMpuFOMpby/wA7HrHgX4jeKtb8JeK72+1Tzbmw+yfZpPs8S7N8jB+AoByAOufanf8ACwvFqyRA6mWBPOLaLn/x2uV+GQMXgPx0HBXH2Dr/ANdXrY0+F7m3gEIbJR2c9AVBHeuDGVJqolFvb/Mu76M2G+IHin5samRjsbeL/wCJpifEHxUqZk1XJJ4/0eLj/wAdrblttL1HT7d7/Tzb3SREBEfaVx3IHPfriuD1CAW8gJkU9TtB6duK5JVKvSbt8xyUkeh+CvF+uax4itba8v8AzYHL7k8qNc4RiOQoPUCrFh8VdOuNJtUuJpk1UhVkiSEfOx4468E1yfw6cjxxpi56iXPv+7esnwzqE7andhIUgZU+dSMbyOnP416GFqt0XKT69WdGF5ZVIqo7Lrc7C48UeLJ9ULxai9naqwCwPBE5fHXLBDisK7+I3jCy8Qx2BuZiZCNkcttGA2TjAITn8K0ptZthHGfNzMx3fKu72/D/AOtWFqVnc6jfLc6XIFuox5kDOv8Aq3P8QJ6VrSxDle/Q9iWX0a0JSoS1j53v/kdJrHxN1vwzBZS6lHFP5jESRxYDbSchhx1A4x3rkfij8UfGXhz4jarpWlaz9nsYPJ8uL7LC+3dCjHlkJPJJ5NYvjnS9RsLWwkurg3KbArz84Z+/XoOuKo/GG1n1D406tZ2yGSaVrdUUDv5EdddN3jc87FRUaloq2i/Ig/4Xb8Q/+hh/8krf/wCN0f8AC7fiH/0MP/klb/8Axuszw/4Le/1m5sNUlkslhjJMgXcN38v1rc/4QDQp4dltrErSluGMJ79BjpjH51M69ODtJnOoSexX/wCF2fEPGf8AhIP/ACTt/wD43XqVt408W3nw88K6tHq5W7u/tf2uQW0X73ZNtTjbgYHHAHvXkPiH4c3+l+U2ns9+jBi5CBSmOnfnP9K9Atby50f4X+CbZ4SrSC/EiOvzDE//ANescRVvRcqb1Js09Tbfxx4tMioNUKY6n7NFz/47ULfEnxDFN5T6nIX9raLH/oNW/C+jRavDLf6lLutoyRHDG2C3ruPbt0rpjoXhc6e0kltEsUYJb5uVI985zXlU44iau52+YbnlVz8U/HSmYxauwRHPJtIflHb+Cun8B+PvFWu+HfFVxe6p51xYm0+zOLeJdm93DcBQDkAdc1zWrT6c0lxGkbrbsDt3DDEHoTVz4dwWieEPGYgaVc/Yg5HUYkfGK7cNXlNtMVmmbUfjbxisr+bqny54H2aLp/3zW74b8W6trr3NlJrwgu40MiMbeMggA5B+XA9fXivOw9zb3EKszvF5gOX/AI8ds/SrWqalPBq015YW7Ro0AS43bfMkyNvyhccYOK6YVJ2ae5a5U3c66bx14gtxMhvElVH8vz0jQrn2+XFWPCnjDX9T8X6fZXeoeZbTGTfH5MYyBGxHIXI5ANeahp7i6tlhkVonZQTznngZHYE9z6V3HgZXg8bafbulvI6tIHmiY4z5TZA+h4rTnbaM07nLw/FnxZKpb+2M4IyBbQ8f+OUv/C0vGjq7jWAig5GbeHp/3xzXAWcEm91HCscg10vh3SY9d1SPTJ59qRgupYDtyV/GuSdTl1uzip1HKXInds22+KXjLzNn9sY+Xdxaw/8AxFdZp/irxgunebd6qkskxR4zHFFlU6t0TGSOK5seFbSDxMJLWJprJYXlljlJIGOAPXH41vNc2pm2wxYiiAdio+XOB8q9z161w1MXKycGz28NgZSbVbppo+p7TRRRX0Bxnk/iW0nPjXV5pLhRGyxiBMH5f3a5Jx7iuNvTd2gRpblhGigDOMv1H9a7LxffRR+KtSh2lpEMRJBIxmNeK47xDeWiaU0k+1WVwFUnnnt+VeLiMvoylKaWrLdVqNkJpfiax0rTh9omDqzkhdo3Dv0HOPc1zeoeJILxLpJIits65jVQPlbIOf5/nXP3t1BIjFQQ5PX2qg9yfs+G9MD6Vy0stpxk563ZDxM3FR6Hc+Jbpl+FngSXLFyb/GOp/fCrfhy7tr7S9VsN4G+LzVXOP4Rxn2NZ/iK4SP4W+AWfG0/2j/6PFcZb6gbeY+XKyZyCc4yPSvSrUuZ7HmV4c0nZHoPhm72arcaxqyeXbpbMUR22lnwVAH0zXHXV2Z4SgYgM2dvpzVe5vp7yVZLiZ5SowCxzgVThulaRsjnoKTvLUKtSdZ8zPU/hndQxeGfGEs6r5Mb6eHygbjzX7Hg1qzeMbZ3fGkCWSJ8wzvJjoflJUDH4VzXw/YSeB/HR5x/oH/o16rgEPz0Hr3rkxcnFxXkdNNuMEka95f8A2y9bVlWSNmGycBslie/0/wAKy528y5LFjg9M06C4RJGiuNwhkBzjsex/Wo3XKfMOg5xXDKTe43Jvc6j4dcePdLx0/ff+inrlZfGNpqOpCOwiILIxgLKVcA8mM9jg9OuMcV1fw4H/ABXmmcdPNP8A5CeuEs/hZrr6xNbXUptvJZv3qgkkjpgflXq4KnCdJ83d/ob0aMqqtE1fFl7HZ6HpNzGAGaMI+DyTjk/nWp4Xubm/sIrtImYSkpkHI44A9iP615ZfWN5Z3ktvdM5eJzFlmzyPQGux8D+LNN8O6feW99ceashDrbiMglsYOG6dgOcV1VMI409NWehl01h695dU0zpviDaSt4fAuLkokci7AMDczHp+p/Kua+J9+NM+PGqXTJvVWgBAODzbxjg/jVfx14lhvUjgiEksLoGRZVC+WBwABnr1qv8AGw4+L2uH/r3/AP
"image/png": "iVBORw0KGgoAAAANSUhEUgAAARIAAACKCAIAAADpF1LuAAEAAElEQVR4Aez9d5hl63XeB+4cTo6Vq7qruzrf1Dcn5EAABEFRpERpKNGWLduPbI80ku2RpaFnnvGMbVkcSZasoSRyTJGiKFEECRIAARDh4iIQN6e+nUNVdeU6Oe8c5vedqoZIzTwz9v/Yt2919alTZ+/97W+ld71rLTlNU+lHx49W4Ecr8L9lBZT/LW/+0Xt/tAI/WgGxAtrRMty7e02yi0mUxFEcpHHn8GDz/tUgSbOF6uLcycV6VdbMKE5kXVVjSdYUWUoVVY5SiV9RFUVKEzmVJVlJPG9r88bszMzy/Mn91sGw/d6v/sr/6Iad3/x8kxPJJ1TJTSRrek6MnC5JviS5kpRIUkaSTElyJCma/jOUJFWSEGq+4eANvF+eXq8xfRsv8k9+xX5wE5GU7gnL+em/asSKLMeSYSiyFkmxFnuS7yulilYvxSlnjdNRX0pT07R1L5j4YaQqchCmvs8nplZWrpQVTdLcMI5SQ0/jSA40VTZlM0kyGVP/n//2Xc7y+5//hz/2yU/JWs7SlNG4dfP6jbKdyYb+dm+00zt4fePOd9+8P2mOuJByvfTB5x7b3u/uNzpqGrthoJmGYdkXVxcvn6+VysU3Xr37C3/+zw33du+9cfXRn/xsEqlDZ7T47EfFLcqsETfFQqSSzDexWDWZW1UlOZHURAplSeMhalIaSnEiaTwZ3s7/qZLKCc8k4QXxiJIk4QHJSZoaqcTD4q51K/JYfen85bwhh3lLr5606jNKLqObeTUNom473u9OvElYm7eLtiopiWbKaqq7cWhlA03XAkfZ2vC3N+IgSDN5OVNQeu1kMIyTUNL01BklXihHcRo2uGzpr/zHf4oTJ7LcHAxb3e7szFzGsC1LS1O1kKtLUey4k0qpfnb1fKFS+OZLXylVSoEUmGrOMPVcJp/JZmarJ03V3Nm70WgdjD3fC8ejyUjTosB39/b3Xv7qVc7ywX+vHspmc+w75lire6Yu+Vvauep5M1L3xpODcbuWV+ZdrTuJGlGg5stzmbydBoauNZTDsT+pjbWqae+Mx4Et+bYke/qsWfjP/tJfGSfhP/6VX/mxZx75B3/z65zlWGwUPc9TUTX2jxyF6Tvv/kHHSXqj8bh5UMjOLK+u/Pin/qxm6mqSyJqMdCAkbDE9TRJESDxTnosWh9Fu+/7t3etX7lx55vyLv/HFX33/xpczelKdRwKmB8+wON3uvMCTRSQQIX4d4eHjEBhe5BsWma/B9EdcIG/jdQ6Eh/eIRzB9A7/I9/yIP0cvTn+iqKrMdWkyN6NqWqxKcYgQpWkk9g0CEES6ollcsJRONINbUpRYjdlqaSRLCoKSpEqiRPzAFDtSVSJZbEgzq0m2qR3fyz/7td9aWD759LM/zoXacnzh1IVUj9Ld9oXFqm3p727vl/JlXS4a8SCTNc+tnDq5uLS1t/PezX1HauuGpGrh/ca6Lre0odRtqduvvV3cHr/7xs335eT8+VMXHlmb3gq3ibRwg9y2ikCkrLWQg1RSpjccToUnCiUV7cC1sw7T9/N2hWfDrwtRU9msCr/Fs03T40VLJG5aZonFsbCYU6LI1MNKXTNshV2fBJHfj1mxvC3Xq3YmY/HskUIzo/PJliTruuqpaTaVZypmYyNANBQ5dYds/YSF1KypyMYqGyZCuU4PU2wV1Y0DTUl0IcMBj8MPItss+WFgyKppWbIsO+744szaT/z453Z37m/s3CeISOLY9d0oCCP3tiybk6AXJqjwVNcN08hIiZ9KnsGaTo9tj1XyClohI5X8pBP5g6JZqwaKLisbbj9KonxUzHjBOI3ztjUwJkHGDHxHb4WKHdd9dTk0EykqyEY76+lWOra06vK8VNTcySS3WFl46LGjsxyLTc7O+Els6HqYJG+/9/n7u+8aai43bnvm0qB/sP/6/jOXn1tcPqPrKAUeIE9LPEOUl6WwAkkYJmEavvzy77/yxu9Ig+ZMzv3vvvr/vNfoPnd5tuVORuz7o4MdwLMsTaWVF/mTk6Tx1OCIzTH9KfvhSDa4NN7MLkWo+Moj5is/5c/RVfMNv87BJ/DK8R6QDCXLpueXFY1PZNWlVEt4Yj7bIbawIE6oqFKerRulsaFhPaXIScNUNk3FKCBpehypMbuTX4yMNPExO7amS7aVNbNRMpmeUnLNYms88NyuZWeVWM9E/uj6/sTpvbN7pxPGO3c6hjP+SydP5eYvXRk2rt68aRRKQ89N1WTcG7h6HMdKHAcH28ozyrknJ8Hwt99Tnnkkydf/4Rd+TwuSv/zv/fTf+OsfFifi6jnQUUqcxoqErecr/2T7IwBiQbAl05XC8qR8w6JMdYp4g3hICF4i/sPcxCm2K8FSIVRYKvTw9M2SNFe3M5aSpmPZ0JAKNE6cKqEm61ZYzBmZPKpGZaNyPn6ZXcwZeLcSilNosYycWYZiYHVHkRyxKVBOPFx2dhTEKlpMXBL+BJpfkX03sXWpUJJ0zcsilGrG1jJpqHF12EAM/GQ8ME3jMx//jBNMvv7SS1fv3ZgMRqEbRFHUQ9lgi81YTqPQT9iAiAGnt828lRkfnSX01RwyYuK4BLFXVEJZ83NJP7wV7g8lLx+iOdxQyaXjKFtWh6rU9YeWbSgZWXXTSGc3sASSLgeBZwWmV1HVbtC5evu7bU/N1e2N8b2js/AecXzl5S8IaCCQ95v3ouD69s2rfmgqqVubaw3ibL3ysGbZtiVFYaKpHDhospIqB63W/sG9m/dv7e83UPHrd34QeR07jjo4AlZ0/kzm1LK+8Yba7bLxpwceB+alMJWHjGRYSoSyLwqBEX4HF4DLgJ82kKTedAOw4LyIHkEKjhaff3IgIXxjT82RN30nEni8ByRV9eVY0wy8l1TXMvHYlUOFZxnHmickEEdUSgNXfGQGtc0eCQMpFftGihEc3TCCIBLOaiQbBpIl3LzUNtipqo6TdbwJhuPkH//aF967evWFy0/OaEr++6/bXSOO1Wh7912vezYq/UTpkUczmbGV/bS0/N1S90vrBzf29+qlXK858H33xOk5T8k//thjP9fUV+uVpJJNHSmRw5ylr99a//t//9f+xl//78WdCh+N1dEk7KXwiVk6djw/4GLZZ4iQMvXNkAp+xD3hliEtfGU5cOf4XdwyYWqwmrwu62aa8iNkjnvnd8RRynN/cqLp7H0VYxvEvvg4BCI1DXxZIZd+qgwHwXgYeR47PDYUydIVPKxWm52b4qlEfqImqqXGnoxa5fcRHkU3sNpHJ5GyWYsgIBOqkW0YmbJh8Lkpm5QdFWHPhVinqh/7I2dycCA//ril65/6yAcevrD0W7/z5UHPw/TFBh/mcQJihRRRk7W8ZfAbqRZli+wGcTjjUAh8rOlGYmiWmhQCL77vpaOspE6UPDfuRvZsNptIetYexmNf9VJNMQt6cxKaHg8hl2Ox0/jTmdmHzyzP2MUL9VOGOXild2dH3Qm3O0dnORab//a/+9uaki3mC4N+LxmNV9f08TBMi2XZZy0134/z+cpoOGx2mtl8xdTlyTgws5lX3/z25z//LyZJz7S1xI9ZrbwVuZ4/DJVRZM5nwut3nbtb6Wz2+JbEKXGODJ6ilLWkXCHrq26gJxmdZyW5YeIHSTyIpfbUEKHWeb6IB1/5AOGET4UHmeGhI36lqTjx4g+tmXiHJKuxUKyqhk0xVNMnBEsd1UCMlCCQLPYH/heSp6S2ZquG5aQd1Ba/qNkKukBENYmPLuPGU8QniIXaDuTU5GMTvL7pSSQzk+9Pgq/+4P0vffedlfmFlY3eJ69MZsulp/7cI49OKrPDUZjJDK51jG/2xxdGl5fz6srJYs3+yjdePrjfmJ8vJS6bK56Th2cunVVnCmrLkvuh4aYjx8nkS5z+6CxCAPC+hNqY3rvwxGSxpfmflRGygYSkU7XCv5EiREuYJvFVrMvUiPMlEWZHt3TMSBrwu1itCD/t6CzlmsZvRqmKpdAy0oT3e4qqxfwSqk030Thp7MduEvcHkePEcYgwKrWKMFe+J+xWf8zGT6s1syirvWH
"text/plain": [
"<PIL.Image.Image image mode=RGB size=274x138>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Train :: Epoch: 641/800: 100%|██████████| 135/135 [00:11<00:00, 11.60it/s, Epoch Loss: 0.0413]\n",
"Train :: Epoch: 642/800: 100%|██████████| 135/135 [00:12<00:00, 11.06it/s, Epoch Loss: 0.0411]\n",
"Train :: Epoch: 643/800: 100%|██████████| 135/135 [00:10<00:00, 12.46it/s, Epoch Loss: 0.0415]\n",
"Train :: Epoch: 644/800: 100%|██████████| 135/135 [00:12<00:00, 11.22it/s, Epoch Loss: 0.0427]\n",
"Train :: Epoch: 645/800: 100%|██████████| 135/135 [00:11<00:00, 12.12it/s, Epoch Loss: 0.0415]\n",
"Train :: Epoch: 646/800: 100%|██████████| 135/135 [00:11<00:00, 11.93it/s, Epoch Loss: 0.0421]\n",
"Train :: Epoch: 647/800: 100%|██████████| 135/135 [00:11<00:00, 11.30it/s, Epoch Loss: 0.0431]\n",
"Train :: Epoch: 648/800: 100%|██████████| 135/135 [00:11<00:00, 12.03it/s, Epoch Loss: 0.0414]\n",
"Train :: Epoch: 649/800: 100%|██████████| 135/135 [00:11<00:00, 12.09it/s, Epoch Loss: 0.0427]\n",
"Train :: Epoch: 650/800: 100%|██████████| 135/135 [00:12<00:00, 11.25it/s, Epoch Loss: 0.0393]\n",
"Train :: Epoch: 651/800: 100%|██████████| 135/135 [00:11<00:00, 12.15it/s, Epoch Loss: 0.0413]\n",
"Train :: Epoch: 652/800: 100%|██████████| 135/135 [00:11<00:00, 11.65it/s, Epoch Loss: 0.0423]\n",
"Train :: Epoch: 653/800: 100%|██████████| 135/135 [00:11<00:00, 11.48it/s, Epoch Loss: 0.0423]\n",
"Train :: Epoch: 654/800: 100%|██████████| 135/135 [00:12<00:00, 11.20it/s, Epoch Loss: 0.0412]\n",
"Train :: Epoch: 655/800: 100%|██████████| 135/135 [00:11<00:00, 11.91it/s, Epoch Loss: 0.0419]\n",
"Train :: Epoch: 656/800: 100%|██████████| 135/135 [00:11<00:00, 11.31it/s, Epoch Loss: 0.0413]\n",
"Train :: Epoch: 657/800: 100%|██████████| 135/135 [00:10<00:00, 12.59it/s, Epoch Loss: 0.0399]\n",
"Train :: Epoch: 658/800: 100%|██████████| 135/135 [00:11<00:00, 11.99it/s, Epoch Loss: 0.0420]\n",
"Train :: Epoch: 659/800: 100%|██████████| 135/135 [00:13<00:00, 10.24it/s, Epoch Loss: 0.0410]\n",
"Train :: Epoch: 660/800: 100%|██████████| 135/135 [00:11<00:00, 11.87it/s, Epoch Loss: 0.0432]\n",
"Sampling :: 100%|██████████| 999/999 [00:17<00:00, 57.64it/s]\n"
]
},
{
"data": {
"image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQgJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCACKARIDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDb8Y+OfEWl+Pr/AEyy1PyrSJotkXkRnGY0Y8lSepNVdB8e+KNSv5Vk1I+Sudv+jxDv/u1g/EaEt8V9RIPB8knHY+SlN8LsIbmWIYLR5P1GRmuuXLGndnnznLmaTPQV8V66ZNv2zIBwT5Sf4VbbxPq3lg/awDjP+qX/AArJ0CCHUt8pw0UNw/mKzbSTwevYCtHVIrKWaYWcLwmD5XAPytkAjr9a5eZdh3na9xdd8T61Z6Jo9xb3oSa48/zT5SHdtYBeo449K5+Pxx4mb/mIrwMkGGP/AOJq34kiUeG/DyynkfaD83H8a1zMXlRF5CVwUxnNYzlZnZDWKZut428TErt1Dlifl8iPt/wGrDeM/EYZGN8Aufm/cx8e33a56G8tCyrvG4sdvPrU0lxA9vs3gMGwxJ74rF1ehpynY2uv+IdS8P649pf7b2DyDbSGBDsy53fLjnIBHNYv9pfElIFuodTW5RAFMT20SeYxON2dvAHoOav+D9TtbLS/EF5dsv2eEQFvfJYDr6nFdYphu9HgaTdYpI2YkLAnb2J9zn9aVRyatF62Ik7OyOZ8Oa74ruYpLfUrsG9IeQHyECImQB0HXqaTxZ4z1bSiEtpjGyyRoxURtncRzyDjvXTX9zDp1xZWZV/MfPlgDhh/tfzrlvGGhNqWoQ2Ftbrl9pmk+78uQeMdeh57ZrlkqkYOXM7/ANbGLbs9dSl4M8aa9rfjW0sZ9SMloY2kmhaCNeChK4IUHgj1rzSH4veP5blbcaufOlG2NfssHDZ6/cr0vw34aTQPiNY4855blXnd5uSqhJFCj065ryrwNqFrZa417LbQSyQofLkkQNsk4yR6HFXSqTUHzX3/AERdK70Z6LpGtfEW9sLu9vdfFktqCrxTWcO5mABJ4Tpz/hWZf+NvH2nWT3k+uQCM8Rr5EJL56FcJz3PtU/iLxHbzafHdBtkx4GGwCDwQR3HpXJeK4g89tci4+0p5eF+TCIMfdB9c/wBK5/b1faJX0O5wgoN7tFyH4reNTdxk68JIiCdv2SHnAyMkJxk1a+KPxR8Z+HfiPquk6TrH2eyg8ny4vssL7d0KMeWQk8knrXB3n2ZLKLy4grEEOV+8oweKv/GxCfi1rrD1t/8A0njr0qEnJNtnNzLlQ1vjZ8RAc/2/gHp/oVv/APEUn/C7fiH/ANDD/wCSVv8A/G65PRPD2p+I79bLSrVricgsQDgAD1J4FdfqHwZ8W2OmLdJbx3LmcwtBC2WUYBDc44JyPqPet+ZbANPxs+IQyP8AhIf/ACSt/wD43XpJ+IvidPh34T1T+091/qAvPPf7PH+8KTbU424GB6DnvXzuBtJDA5H86+ifCOjQ6l8KPCM8wLLare/KO+bg9/8AgNTNvldiWWLTxv4uk0xbiTUMuFHCwxZbPGfuYGPpVb/hNvG8sy26arHEwfDPJBF0x6bPpWnLpdpFNbPG80MF4N3kEAmPvx9eOtZF9bC1vGLxxsB/Gvfpg5rwamMq0puDepnafLd7FuDxj41iRkuNVjkmB28QxYHuSFrtPAHibUtebVYL+XzZrMxYYKoB3bum0D+6OtchDpVzqEKlVQxAYw+ADnt79ak0KK78NeHfGBsQftIFusfHTczr39Nx/KurB16spXnsxJtnp9/rltpdg97dy7YEO1nUBtp98VyHiTxvdWcIn0m/tLqCXGDEyF4sjjIPX8q8du/EEMUv2C7ZhA0SneeTvPQ9Pbk+9O8P+H7+6v8A7VBDLd28UYeN0To/UZJIz0x68+9dzrOSd1YqMGludRefEbxiLa3ura9meCR9rypYoY1be3yglOflH6V7jbPKy2x3vIrRguzADJxnOB39hXzp4x8UTw6V4f02MtBdQQeVJ5MpA3cdSD1OMmu0+EjWiyQJd6+8uqM7utmkxKsrR5wwI5K/N+IqoSeho1ZLU88f4xeN8Mo1xQ4OD/osPA9fuVqW/jb4rXVtFcR6ptglmSMO9nDlVfG1/ucqc9a8tWRL3VINzAnzFVoyrEuM/d+UZ56etfRdlaR6XpMNtBby28S8rbysW8kHnaCeduckZ9a8rMsdUwijyrVnRh6PtJanF6v4/wDiFoyXP2rWz5UbeWtwtpB97aCONnvWEfi54/8AsSTf8JCQcHcRYwH2/uV6NqNrb6pb+RcW5kCg7Qgyylht3D3AOa8DvLSzsbu+tVvpJFhlKROVwSPUinluPniYtS+JDxFB0npsfcFFFFe4c588fEncnxK1AxqTueHccdP3UYo8NSw7ZIhxKLnJBxmRQCQM/XFW/iIjxfES/lO3Y/lnB6/LEhz+dc5p8E9rdCcKWIcYAOd2F7fnV1VGrT5WzzKk+SbaR2/h3VmhjvYpDBH5lwW3BcK69CB7ZqlaalJaTarbLnasxDSbugXG3r6/4Vm29wGVYEKDbJzu4I5yc+3T8qj8R2z2Q1KZGyssyMp7FSuM/mDWCcOZRel3oYpyaeuyNH4r3M9v4a8KyQYbctyWGeo3RmvKY9SvVdsys24cZ7CvSviWfK8G+DhFM0gVLpckcuNyCvNZgVnjBRldlGCBxWMpK+h6tJy5I27Dfts9wNnm5AG3OMHr3p6XF60GY5CACeQffv60zydv34wR3LDg56U6FkiBVdoXGTjpUt9Uacy3PQ/A0MWpeBfGVpfQzzQN9i3rA4Dn94xyueOMA474xXq/w8N7c6QbjU4ybhAsEbuckxrwMjoD64rzL4YIp8M+LQD8v+hEfQSPXYaX41g0q++zXM5PlOFu8JtijLdMMepxjPFYupKNWP8ALbX1voYzb5r9Dr/Empyadc2CpbCcSuVUDG4v6L74z+VV5dRs2stl5jTb+WFmQXLBXjUcbienGAeK6M/ZZGikYxMeGiYkHqOCv4elea/EiK68TXCabpUaw3VtA08V8zcMSxQxfQ4Jz7Cu6VNPbd/1oChKcrR3LWkG/n8eadOtyLrTUSSOORuX5RmPznllz0rwXwh4b1LX9QFnZSraRopkmmkztC8Dt1PoPavX/hpdLd63BJLdSJfwyNb3Vk87ssTBH+6DwM7CeCf0ry/wJ4hk0sS2ix4a7ZY+DjcQe57cH8s1z1bRi5R/rQ6XCCkkuv57HZ2XgK2tPEv2HUp5by1gthN5iqVVuQOc5HUnjPpWX4/SCSeOw0+fyLeEhhBEnKA9fofSmeJvEt5aOjzhRIc/ZTn+DJ3k+nOB+Fct/bjH7ZNNN5kkpUqw5z0GB9K4oxk/fTNfcScS5pVpp1
"image/png": "iVBORw0KGgoAAAANSUhEUgAAARIAAACKCAIAAADpF1LuAAEAAElEQVR4Aez9d4Bk6Vkeip8cK+fqnLsn9eTZ2dkwm5PCKgsJhEQyXJJtDDhwbWxjX+51wNgYJ4IECARIQtJGVpvD7Ozs7OTUOVfOp06Ov6e6emXsv+79+8e3sz3dNdXnq/OdL7zheZ6XDIKA+Nv2tyPwtyPw/2UEqP8vb/7b9/7tCPztCPRGgOkPQ/q+z4fkMM/zJMkztDA1nA5kanur4JuqzzNhMT6VlcbG8panMzzhBlZYlHmWdWxCsz1J4CmC5sIhkuU4lhBZttvpUAxt647rup7vqJr5r3/sJ9DRL/yDn2PRBeHTlOf4Pkl4vuuTVBBQAkXLLE2FZIYjyUqrYQdEiBNNx7RdgmEYlgsGYhmCcGt6I8YKfkA3KuvJTCwbibIcU28rqkpovvn//PP/gV7uPzseE7iC0tA96u7TB2o7tcWbS4lU+tHPPCjJbnGzdPn6SiIc/8xnPlMUPzgxdzTsTVy9dfPQbGoo+4je3Sl2KzcWLnR19eLF9cywnUkIjXPq9WqHna2U17xMTHznazp6Gd8fJ2mKkSLF7aLA+I/vj9/Y0TerTlIMcuOJwOc3SoVYhBZjXIqnySBCUIQpsqXNZlz2GYrIh9KcEL5a2LQUOx4SO1W3pVgh3hMT7DRBfvbxI1/6t2+jF5Ik8ZWgCcIjcAVCJEIxwu0SprL7IgwFv/fvew1v+/AViiV8Z/dl/sMX8ajx5v6LH1oYfVvjrkfGxweHkgJdqForhZ39d6XHRxKCT1RUnd1pHpg6/NcrOy3NjEYjAUlFQ2IkFrl08WrAcBxDt0sKx9jpCVkUonKkHclHCIbyFIYmBz2VoxzvxOF7f/KL/wc+ynWPiNGEuftxcCv4OPho9u6PuEnBczr1W+ubH4zkD9u2o1rMnYUry7cuHNx39Kt/8N9Pnj1+6eo6GxCB51gmOyC3z9x99lM//aucOFyuXdFbyzMzj8eIKHrZdygfSUu+q5TKRijC8RGv29HbW4SLwaRImmfTA2Haw7zVWmWX8QkyoAeHMnpg85LARATSDqxKdetOwwnz4QTjEVY8ybQ3fNrzOYdp6r4Z4A4+XDYyJ7GBSOMiHCvJgi95tE/xAS6CO6OIMBkNR33S4TiS8gmKkmnL9YzAxgrwSB9XZFhLN8SY6NiuZ5mO49ME4wWk5+MfKcree7ae5zGESRKs4fmYByRFcxhHx6YYj/JN3aMJ3+JYX+Io0gpojBFBu56JoeIoVjfaHMMIpISZpKo61q2heS3OS5GswLEKY0aY5O40IQr1hiLgN6jD+8cTHH9hq9Q2nUPzoe3iQn2z0Sm5bVKNcIn8jGgapmJs3ilfa6r1+6VfULp1x7YTkYwV6BTPBCQzOTm6un0zOhifn+AqgbLNqFbI6vdCUK5uB76rYkQoim57TpfQWZlgeSEeidoMJXbFrmUOsHJGpOpGoJqWIHnhmKDpXb9rc0Y7lKQcB8sy7AUeQTuxdGDrVLflHR9m33974Uv9brASMKf644evGqHiq7H3Ef6XNYPX+ktr9x97a6a/2PoLCbMGfzBbBYLAHfSXDd6w2zyBVX0jYOiS301PpRiac0lyqdWmGSp9KLGhGTNzMwtbjcBVWU7CQ2+0urUtRYiIYoLDOIQHM67qttVqflj0Cau5Qeg1OhxpJGL5E8f3E3Z/pRJ41lgk+Ai790FEdicfPhR+xFeWZi0vtLT2wc2VVYnsjVWxogqC/Nqbb9lsEE24HGMFJBnnYpfvLEf286ce+diAONwiiKH0uErv6IYXE3s3Y5l+t666gSsmI77pKcWO06Z4kY8NEErBaVX1blOPy5JhOrRM2pY3nonhoRu2Eoiu6JExXornwpWNpq6ZbogPZxmWIX3KdXR8eJfidnexHyybaG9PDziatj2MqGvZBGla2Os1y6M4m8PdRmUxwvtYdYGFJWO5LGa05ds8L5kezfBYjW7gO1jPeHY+Q4oc5+JEcQMjcEkOY9VrArangOr9Z3td22YpXwyLrONJPNYSYWg4myjP9DmWlDCKTIBFu3tFrD7CtALPZaOy1NWMaqGSS4dpHpudjLVJ0ni+hGbuzaZPPPEgwVOOaw9k46bpTE4MPfLEbNVb+u5rS3mWi2elbrmbn8loVLPjl/dJd7dscXBqXnO2FbPQLduryg3D7jaU9npzObzZcZpkSki68qrTIMIJgmLxlHut1VIdl+Il33ewcMi1RqCb2Ll8j3HqalX33QMHh2fyE4/ODs8I5b989tpNjr24uDkgx+7Px99Um0w8U+3WCJ8SRclRu74chKOC2rYEgz5yMP71F6r9XvbmN0YHf/pzvX+X/dnXfxNmPz5U/1/3Pt3u+7Gf0wTFYS/afc74kSSogMBg9huH3X630RzlckGp7Dieu7VqkIRIUrrJ0HNTw1TQ3dradN0OFYiG0g35jY5L+3xYCAm5KcEL6a5rKfXSkWSMOEAprE7oTOBia80QGl/Xim8qm44q//iP/GK/I3x2rBAsHtwNZjw+UZTonT94sYuvbPbImX+8Vli68M4fWFoh8NcpO1WrERxHHZ7Kry+qd+5sqn6V4igpOj4ydnj3mnaIiGnswNrW8sDsXXglEJl2u2PTZDzGkYyqKz4dUFw07HmG6zrxNJuJkZvLukewAek8eEJ45LTzzEWmu4mJ2+02bUokRocjozNpf61BBoEQFv3AlGJSKBrj4qKq9Ef/w9PGsVVMVtLFuUEHHskTbFevtbWOz9A4NShBICQuoBnsFTQT9vWuQ/hCbwrhEDaxkn3Kw9MgKZsMBJ/EyedbnknhDTSNJ+D4/UdKsAzNCzigeicYx7ICDhnPJ3mOCjyGssWY7HqwGhzNcERBJGmHtkyalihsyo7PUzSD5cH4HO2PjwxQrGc7FEWJQWDYMPg81tDxOHptcnzYwknG6lXdjCUGPv6J+NyceOVm7vL57993f1KPdL1bsX1HJhY2bzb0gI/O7Rs8EksThtngef9a6S2TrgthqbC6WSk3VddvlqhUNr2qltplPTNKTEyG+71oKk5dkpcoOcxpNZOo+tit5TirORbdMQSJ/dGPPvHk2Y+5xQVtxfvoR4+Hd+oN1dwfjj49Zp49PlPJ3vs//uztlrWum1pa8O2wIDEk2w5M2n+taETz2Kl2G0buw1m+98oPXt8b1P/l5f/5Q/8XfRjEf+MUwlPCDP2wfXgM4MAnzA6OToEVRDFCwoxhwkZKIqbTQ8srF9tmnUvoESovcp5YcG08Vplm51MnPorbl9ZvdDfPtY8ccp2ss6IQTTcQZHZ8jnSEjfZmsHAtsK1yv0McBlgbrZ6l2TvzsPBVgri98KbjYKrn9s/OTabDBhHWdQWmzaVbN1knkRvkByYwwcXCaqVSrW3v1HmKp1nK84hCcTk1k6UIrku0b2/V07F9/V4Yimr5tBQPO6bL+lYQpmzNozmP9mgc8+kU+flPDG6uac9/t5oZ4T/xKDs5SMi88c8LzHDOLytms1n2N0RYG4xI43wQBJpyKTrh4zwy23qrgo/ca1jwvWbSJIPpbBMMBzeFISmiq2s4VUIhHr8YERmsBJMkJZhQFKvZDkMEZGCHeSlgZI/jPOx1VMf3bXwD28r0HDFgnQAHBN7mUj2zYLcFME1JQeSwNB3XD3ECfo+2XVrg4yEWf1NYAQGLfUeQKIZi640uzfvJqBy4vhQSyMCjYRExQUiSzcBXTLvRbHU4H+sJk4sk9+bR+MipTWXbdoozqcFwOOdQ3URu/+l0Oz6SCoe41dL6XYeFwJPXFuxONcQeSeTTibq+GItOcxy9PXJnpajxlJwWkpxQ5ES63e4SM+bWFV1t+vFpIpcc6d/KQDZikRhRz9UpnJK4RT4sfeqR++QI/97V6yzBndr3oGvU+IhrDIRvfPP781nhwR+bf3fNX29ph0foqxcu66onsrLlGSWPIeEktDoERRqks9QI8qHQhyO293fvr95d9p4YKREwyh3twxWFbQjtB8fR7k+9L3hz7+jfnaEYG+zq/9t79qwngnSw0zG2oumUlZ5xiLQ9PnXQbtVot8v
"text/plain": [
"<PIL.Image.Image image mode=RGB size=274x138>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Train :: Epoch: 661/800: 100%|██████████| 135/135 [00:11<00:00, 11.85it/s, Epoch Loss: 0.0414]\n",
"Train :: Epoch: 662/800: 100%|██████████| 135/135 [00:11<00:00, 12.05it/s, Epoch Loss: 0.0418]\n",
"Train :: Epoch: 663/800: 100%|██████████| 135/135 [00:11<00:00, 11.30it/s, Epoch Loss: 0.0403]\n",
"Train :: Epoch: 664/800: 100%|██████████| 135/135 [00:11<00:00, 12.23it/s, Epoch Loss: 0.0419]\n",
"Train :: Epoch: 665/800: 100%|██████████| 135/135 [00:11<00:00, 11.83it/s, Epoch Loss: 0.0399]\n",
"Train :: Epoch: 666/800: 100%|██████████| 135/135 [00:11<00:00, 11.84it/s, Epoch Loss: 0.0431]\n",
"Train :: Epoch: 667/800: 100%|██████████| 135/135 [00:11<00:00, 12.20it/s, Epoch Loss: 0.0414]\n",
"Train :: Epoch: 668/800: 100%|██████████| 135/135 [00:11<00:00, 12.22it/s, Epoch Loss: 0.0433]\n",
"Train :: Epoch: 669/800: 100%|██████████| 135/135 [00:12<00:00, 11.14it/s, Epoch Loss: 0.0397]\n",
"Train :: Epoch: 670/800: 100%|██████████| 135/135 [00:11<00:00, 12.08it/s, Epoch Loss: 0.0416]\n",
"Train :: Epoch: 671/800: 100%|██████████| 135/135 [00:11<00:00, 12.19it/s, Epoch Loss: 0.0413]\n",
"Train :: Epoch: 672/800: 100%|██████████| 135/135 [00:12<00:00, 10.96it/s, Epoch Loss: 0.0405]\n",
"Train :: Epoch: 673/800: 100%|██████████| 135/135 [00:11<00:00, 11.94it/s, Epoch Loss: 0.0422]\n",
"Train :: Epoch: 674/800: 100%|██████████| 135/135 [00:11<00:00, 11.93it/s, Epoch Loss: 0.0420]\n",
"Train :: Epoch: 675/800: 100%|██████████| 135/135 [00:11<00:00, 11.29it/s, Epoch Loss: 0.0406]\n",
"Train :: Epoch: 676/800: 100%|██████████| 135/135 [00:11<00:00, 11.73it/s, Epoch Loss: 0.0426]\n",
"Train :: Epoch: 677/800: 100%|██████████| 135/135 [00:11<00:00, 11.76it/s, Epoch Loss: 0.0424]\n",
"Train :: Epoch: 678/800: 100%|██████████| 135/135 [00:11<00:00, 12.05it/s, Epoch Loss: 0.0434]\n",
"Train :: Epoch: 679/800: 100%|██████████| 135/135 [00:11<00:00, 11.38it/s, Epoch Loss: 0.0428]\n",
"Train :: Epoch: 680/800: 100%|██████████| 135/135 [00:11<00:00, 12.26it/s, Epoch Loss: 0.0411]\n",
"Sampling :: 100%|██████████| 999/999 [00:17<00:00, 57.76it/s]\n"
]
},
{
"data": {
"image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQgJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCACKARIDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD2O6vb2PV5okmxAAMLtHHA74rO1LWr60OFusErn7i/4VT13VLiPXLy3tYg7RsgJPbKA1zGs3zSZIfcWHUV4Gd4506So0bqUnv2t/md2BoqpU940W8Z6vFKVe8GO37tOB+Vaui+JNRvhOZLtWYKAilUBz3OMV5k90A7KVJPHJPHNbWh3zRyI6Jt2HJY14mHxlahVjUqScl1u3/XmepXw9KVNqKszuvEviG90bTbCQXaRyyiXc0ighiCAOMZJ57Y965f/hNfEktul5bzSPbljbsvkopMpGUx8p6ngdQTXWavps2qS6LKsVtLZxiZp1lQl+du3aR06HOeta0KWljB5UcMcVsPmCBflU5zwO3PNe/i3KNaUnNqK8/I+eVNyehzNre+J7BNUmvtSnvI7SBfKC20QM0rANhQqjp938fasDVL/wCI9np6+VqySajcL5xtktof9GjHbJX5mOcY9jXc/wBpW5jxE6yFCWCqeST04rjotB1rxDe3+oSat/Z8MuYkEaiVyOR6/KM/j9Kzp13UXNTnf5l1KbhpYg8JeNPEt74T16/1a7/0i0MCwnyUUruchjgLjkYHPpTo/HusNKIje/MRkHyk/wDiawNItJfD3hjxzaT3D3ctvLZhyybVOZSMg5ycj16YqS1jj2IxCq237uckg9K9OjUfIm3/AFczhe2p0y+MNZ3ANff+Qk/+Jok8Ya0EBS97nnyk/wAK5YXBkuZI4ELGP7xz90+lV77Up7eyeZbKaZYjkqmMkn0qXiqfNyuSv6o15Ha9jt/C/jHU9T8V2+n3F55kL78r5SrnCMeoHqBVDR/Evifypnu9Xa5ilAnspfIiQug+/GwC8MCeR+Rqh4Cj3+MLCdk8onzDsI+bJjatBxFbI0RjKRTXBlCkY8tyPm/A8n8a8TPMZUpQgqUmua+3lY3w9JSlr0N2XxJqEMO43xzJufmNP3agfT+deXXvxR8YG5mNvq7RxFz5am2hOFzx1T0roNRvFBkgkyWMWwYPbnr9c1krosF/bCS7QSXEeWEa9FA4HA656V5GCx1aknKtOTv5s3xGHT+HQyJ/ir43jX5db5x/z6Q//EV6x4n8Saxp+v3NraXflwps2r5aHGVB6kZ6mvCrrQ7qGV4rlRHNjcF3A8H6V7P4rgabxVd7Rk5jAH/AFr7zJqka0pczurHz2NlKELR0dyAeMdfI/wCP7n/rlH/8TS/8Jjr2OL/8fJj/APiamttCjj3LqMgty3yoX4GeCCG6Z68Go4vDFibeGOG+Mc8RZd4fekmWJ5HtkCu2vmeCpT5bX9EjClhcXOPM5NfeRP4x18Z26gfxhj/+JroBr+qHQNJuftP76487zW8tfm2vgcYwOK4m9iXSLuKz1Nys0uTG8alkYDqc44rp5Sg8MaJ5ZDL+/wAEHIPz1GYVqUsLz0fLY6MDGqq7VRltvEeqr/y9dv8Anmv+FRDxNqpP/H5/5DT/AArLJ3EGq0o+c4yD1r5GeIqxfxP7z3lCL6G8viTVjk/bOP8Armn+FbPhfWLzUvtxup/MEXl7PlAxndnoPYVwYuAzm3jH3FBc57mun8HBjBqwTlj5Pb3at1XqxhKV22k3+DInCNtjcvdZeBzsnAUj+6ODVWDxIzg7pxuAxjaOv5Vha7lBIeQM/ODXHy3U8ZyhOFO08j5j7e9fIUcZjKz9p7Vryu7HoRw9LlV0etxavJNwsmSB2ArQt5JJJRm4DL3XArhPDV2t3bkSB1eL7zev69eK7GwHl3CBSCjjIOOvFbZfj8VHFxp1puSulu+r067epyYilCKfKcRrer+JNLWS4t/ELypGN628lnETLzyoZVGOKp6T4y1W8T7VNrtwkaOWMMtjGu5RnIJC9yMDH8647UnuI1aSXVBd7QjzGJSnPcD3x7VY0/ww8Wn3cmo3M0QgiJhVH35kJzz6gdMjrzXuLE1FQSlWu++q/r7jop4Rqadf3b+Sd1torb/dbc6nUPHev+Q81vIkflsqrHGiuZST7rwBXI6j8TvGFrNG76qYoJsFNlvC2B352nOD261jvcqLm3gaQfud7SCReg4656//AF6yNan/ALVuI5ZwRd8rN5ahQzdc4HAOMflXpYKcpu1382zPNcBHC2nSleL09GfW1FFFe4eQeNeJdKvdY+KV5a293JFEzR+cFPRBChJx3NT6jZRW4MUTGQRgKWJyT9e2azPGVzqA8eeJYNOaZLh44YUKEDO6KPgE9DyOfaqHhzXtQ1Fls7qxZlTKmRTnBHr69D09q+UzfDzq+9SV2m7m+CrxpVHzdSCawEswbyG85QQGB+Ug/jWva2xihYybtwUggdce1XLkqljcOsIxFGXA6cLjIPp1/Wuc1vVZ59PLWMXmwgrK2SQ6pnG9T/46a8OnTrYhqFrI9avjIKDseqeHpBceH9GmufKaRPPRGZewk2jHvgCtPWLG4urVkt5gj4/i6Cub8NT28HgbRJ7l9qxNcDDcHImI6e1a1pqkj3X2fzFkaTPzDogzx9T7V71emqrlSrvT3bfcv1PNhNQ5Zx3f+Zl+G/DZsr177ULpZZQCgQ8gZ6H3qfxXqlxomkvqOnW320KwE0Snayj+8PX6U3xddx2Phu9aU5RmRDg84JAyD7da8H1bXbifUpraPU7yWz+4N8rMp98d63p04wj7OKMcTWk5ana+H9ZOp+HfHmp3UZAd7IlHPTEjAA/pVGPVpE+zyxJ5kjKrfLzjjPbnvmqPhiFo/hf42kYhd5sF3scAYmPOfbNYGk3Ukc1pDMzKyAlipyMEevpita+GhUhF9k/1Io1pQj6nT3/iRYNPQwKp812zt+Xn14780w67a+ULcbZA/wC9O45C5PT8scVjGGNrQCZWRkQs5YYVjnKn24I/Sn2aW89huMShipaBiuM8ngkdO1YfUqMY7Pf/AIY1eJqNnofgkoPG+kpGuflkctkHgxvjp9K1rnzRH5Uqg5GWYgE59x+FcL8Orn/i6OhxJlAyy713k5HkSEDHoDmu6hhEsHmbtqE/M2c5rxc4pulSpKTvrL9Dvwc1OUntsYH2N1ma6kjAXbuOBu79vpgVU0ZVsr66kaQK9wuEWRsFiD7+1dFd20vnK0Ryi4yPY+1RXVnGInu0ZUuAg+Zui/8A1q8qNdOPK+p11YaXRxXiqGZ7gTys8Me4fvG2lienGAMDp1r2TVr6G28VGL+zlllcKfNDgMOAM8+gx6V4f4q+3pKkNzI0kD/NGI3DID745z9a9z1mzsZdbm8x51
"image/png": "iVBORw0KGgoAAAANSUhEUgAAARIAAACKCAIAAADpF1LuAAEAAElEQVR4Aey9Z7ilV1YeuL+cTo4351s5SFUq5dQtqYM6R5rUjWkbTAPGmLENHmzGxozx2BjDY2O7DSY30IHOQTmVpFIlVa66OZ57cvxynnffe8U882ue+d+71QpVt84+3/723mutd73rXUwcx+SH44cr8MMV+P+zAuz/nx/+4c/+cAV+uAJ0Bfi9Zfjmd1/t6cbI5FBGS6iqRrwoCHwSs5Ztxt5OlnxfjV8Q2GuexQZ6HJqxX+dkIVKHWTsmLBfzIel5nCL6kUCut8eGjv7VyPAR0zG63sCyHNe0PvyeRzHRF//kSX44KI2Ntsxq39xkgzQbR29eXDJt6eTBwvH5R7/24ssvvLaWiuVjE+k2b/kd/Xu/9u+utVZNeXDrrQvfvLaztmVGOvnnn/lwY2vtqy9ddxSiFWQpoc2Pp/vt/jN/2MIsv/+7v018k2fFOOLlZIpj+SgOScywLO8HLgljlmOYMA6FmI24KI44XhRElo1iLwgFnpE4ZmD1A0LimOciLmYZzzUM25B4hWN4XiJf+Me/hllmTjKmTxSWfPZT5GeeJn/9ChEc8oEHyeQIeeFtcmlV/LmnPJ4jikLWW+JCxQtY8mcvks1NEgVEYEnEkX6fCDERJBJERBBJiPXG17QJFxOPJbcvUC/gJ/7ogscJJIw8fFk3YknICQy+ksBwvMAFfhzEJGJiPo7ww3hGhiMa/XG8QC7AM8ahHxM+DlmGDSKGiWI8FWECwrBRxOAPfPvnz+DPPfNnPyOwPEf/H2M1eB4uCH4uZuMALxc7IYzwzQJMgl8NCIu/cyz+fBzTD1HwUZ4/YASJxxdhmTjmBF6OAjYIHdNx8VAf+Zk/ol+PfJ/EMvF8N5Ak8xeJv0jEj5F4k7hveCQfeWk5s0q/fTMm5hwp/QoR+8T/U0I6RPl1Il8m5HkSz/s7x4QUIcm/IgMSxP+K9/848C8G4f0hO6SNfA1zvPATI/E3O9FUsJXKvD5y0Je10Yx58mHl0nW18OryE5rJh4y8VdFbzOpjd93752nGbMVWSyoVNraHv/dcvdL1E0J6eiwoLC8rC62/aml6no9MpuO4fZuIpnznYgez7B8bUZYTxDWdTlrNSESwCJaIEThWljhe7gy3vxglSrGjRJ4d4RX4saARvFu/HTEFElhsiJfuxmnC2FFcVLdTrEtiwfcD0+yRkC9l8nTRCLnrvpPX6zdXNpfOXVwolOVCfjA/PXnmxD3f/ME5Jk7G7O0H7s8Sw35w+mjDW14PwoPsXHr09CSvvrr+nZuN+kbdDBxyeKyUGRO/9Z07Ho6ASeq6k0g6/YK503b2ZonxjnEs2DgMXPoXCVg2wE7zI7x9l8Hg8HZ5Tgx9L+QjTuCwMYOARCwXhdheDMNyXOQ7vu/RQ8PzpuvE2AKBJUpYAWwUOv7559T/9HVLr2AqorHksZNEsomFF10k+QR5+rSXShLbI2utjEV6Y0UyiIgf4oohOEsidhwhFkM4hggM4TE9/l0gJCK4d3C03d7uHIQIQmTZHkN3uMCI2KZsRFiB5VgWWxrngEQ4KrsvixBG5HyR4z1scjw8zgYmYRi8dEzXDvAkOHF+gFcVs/iJwI9ESdybhmFw+YU8TiKPo+CwRI2Z0Itwjj3G5zAbEzsxziDD+DijOIcMi0/mGI4eJJbgu9BV5Vkeh4wOHr/rMwHuXh4PjQ/fH8skniPcbZa9nzhjxL5OoueJfD8hCdFs+2HXb4qCzJDQJcppEqwR8zmSCOgO9f+MBKsk0Y26d8UyT7RzxK0S9d7QvcyrS4zzhMycJNGze5NM/MNC9IXRrYsm9+ZgR1e5rre93VZmZXZiTP/A0B+sWTmh8NlPFMU3l++ev+XdHmmFkTgYsDvu6tnFrJNWckrHY5dXw26HnxtKtTbFHScczipaIjUzrfiwErtj/9jEHJtK5pzQjIIIiy7hxuMkbCeF74vmFVu6R+VreGHEZ1gn9tY4ko1igXfbhHfDWMWNTRiLMFLsdBhJiQW2hVsrCGzOj7PJlMyre5O9unCxYzih652Ym9GSZshYN28tW252plg896o+aHZv79R+4bGP3H1w/ne/vd1cbf/iT3+UVQtDuanuCxsba4OJfP7v//SPfvzRD/359/+gJvpiltVycVKP+x1y5SXn5CMje7N4jgN7EgUuXjGxdMd1qTkRBMLJEvZF5JgwHZLGRQJuUlzPBLaSCWJc0XEIwxkE2FJ+GGKf0O0nRJwmiA6JjcEAa4M12Bs/9qjIsN6v/U5QaxFWJHMj5OIFEhmkUCbDOVJO0V90DWat3zs4QkKRXLhJKg2i4Hhw9LRgw8HmYN/ix7B69INxvYdEkAlOPffOLNjrIr4yvh++I+FCLsI15OCr4pDjq0Qs/o/bHb/JMjiTkc0IYcTjzDAxNS2wG0nJFWPSdGRBEtgA1wf2JS4UehCxo/cfBhNg79P7BlsfW4LFgYE5CegptZkYxwPWxmdgXHDdsDwT4mphcPeEAox0iGdheRwVfCTuHIllFELvgYAN3RAPFr8zCyZjLRK2hOgsUT9OnE3Su0mCV+gq4Hn6USxHQpMjLh7LYv2vELwsB/dKi3AVEoi4V1h+TJQXSHiBMBrhPi7Ji4T7LY6dJdwOiXCR01F6uG85E/nUKHM395uF48bAe+nrzy/cGNz/wZHZceF6eePUA1Ein6o9WrD4Aw2dv/HMIKXlbt7ucWz6E/dXTcb+y4U8XJHVgbCkEWYkwGn1PKHbd2KHO3By/7zs/yMhibiPxUjEJUxwwfIR1lcgfMAkFfcryeC12OEDancJ3l+UoC8tCAItyYVdlpEi/LoSxHYbqxzFiQldOpZ2jThmVCWbUTOO6e09UnOwcmBsfix98s7WNfhmGS0oFbMzZX+jI9qycObQidfOLUyNnRyeO9Pt/q/ZwsjJw/eGbLRSW/nOK7cJk/nvv/7bx47e3WwuvbJy7sDRdMpWX1+q4mgoPGFlMnoIxpsOy7I53hdF7JbQ9ty+bqiKmlBlSY49XhKw5KoMs2LpBsczAjYm69OHo8PH6RFxOTjw1zxZSUSB55OQOhuW2ep1CsVS6IV7s/zLv7B/9xcEL47+4gfk7NvRB54gQ3lS0YkJn6KI25buopYVezqJe6THkldxt9qwHgRfWFCIYxGcB1gebHfsUpze0KPHBvsTf5Ju3d0R0rs6sgOYNHhpTCzy2Lv46RiHBfc9zADhIzgAPM5U7Pgs4bBbcfPv3v8EJydo2go9XwLrBPhtCTPgsoBvDKdVxJWxO/DjOGX4CJgSnMYYpgKGCmcnhMnCl4OFwoGCL4Z/oT8W0fPLevgGsJAefDiO4+GE4O6R4EJGjI354B4GPh6Jjv1pCG5PmfA9YjcIKYfC/YF5Uwp1EhIXD8gQ28CjhfBxuIRMEh8i/Wux/jyTFoiEW9knOt7FtwX46KoNA4eJCfcZEkqEbBIyQeLRvVnsBr7grUxe67WzBW3pwPTM7Svjr7569mrl+WCrcv9PTdm9kZXAzTnGzMnr3HPaXE9NWGUtGq6fntYPc1vbG9XmttvW06pvs5poRwKTxF3A+2alonNyem+W/fcjCRJWjmVFmYd/Szc/fXMMI/NVksoYdRLrDJwYLDt9zYnYq4hRx/VwxFxCesTXCc8SR4oCjcjZI7IqxFFXZjnsPEGQIgGrT0cxqwph/ztvfanSMlMSd+NGGIu13/vnP/+hidlf/dK/e/7y60898EA5O0T6VimZfc8jTzGcFkb2pc1z8Bx/4/P/8vCB036g31y+NFcsfuTBpxN8/i9f+sG3XnoV/sf0XUnY9r1hGd2QcRRZlWVZN2z4ZT2z64pyaQy7jIYRPvYPtiIbILrBkQgdV8BF7Puu5/CSJKgSNZ6Iehjfh9NuWpu1TUuPPMuE06Ql8J7ouLDgvXGH/MIvSA894vyXP2MenY+LedKr7b5Ng/gqwYFptEiCJbJGViqk3yYFuL/YHD52Oo0vEM/gPkXsgYFdsRs0kMik9oeX6S9i0JArYhRRcHF68JO7mxrHh54PPA3d/jFODy45Pna
"text/plain": [
"<PIL.Image.Image image mode=RGB size=274x138>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Train :: Epoch: 681/800: 100%|██████████| 135/135 [00:12<00:00, 11.19it/s, Epoch Loss: 0.0388]\n",
"Train :: Epoch: 682/800: 100%|██████████| 135/135 [00:12<00:00, 10.64it/s, Epoch Loss: 0.0413]\n",
"Train :: Epoch: 683/800: 100%|██████████| 135/135 [00:11<00:00, 11.46it/s, Epoch Loss: 0.0437]\n",
"Train :: Epoch: 684/800: 100%|██████████| 135/135 [00:10<00:00, 12.36it/s, Epoch Loss: 0.0395]\n",
"Train :: Epoch: 685/800: 100%|██████████| 135/135 [00:11<00:00, 11.81it/s, Epoch Loss: 0.0428]\n",
"Train :: Epoch: 686/800: 100%|██████████| 135/135 [00:11<00:00, 11.55it/s, Epoch Loss: 0.0415]\n",
"Train :: Epoch: 687/800: 100%|██████████| 135/135 [00:11<00:00, 12.11it/s, Epoch Loss: 0.0400]\n",
"Train :: Epoch: 688/800: 100%|██████████| 135/135 [00:11<00:00, 12.15it/s, Epoch Loss: 0.0410]\n",
"Train :: Epoch: 689/800: 100%|██████████| 135/135 [00:12<00:00, 11.05it/s, Epoch Loss: 0.0425]\n",
"Train :: Epoch: 690/800: 100%|██████████| 135/135 [00:11<00:00, 11.84it/s, Epoch Loss: 0.0416]\n",
"Train :: Epoch: 691/800: 100%|██████████| 135/135 [00:11<00:00, 11.98it/s, Epoch Loss: 0.0405]\n",
"Train :: Epoch: 692/800: 100%|██████████| 135/135 [00:11<00:00, 12.16it/s, Epoch Loss: 0.0410]\n",
"Train :: Epoch: 693/800: 100%|██████████| 135/135 [00:12<00:00, 11.10it/s, Epoch Loss: 0.0407]\n",
"Train :: Epoch: 694/800: 100%|██████████| 135/135 [00:11<00:00, 12.20it/s, Epoch Loss: 0.0408]\n",
"Train :: Epoch: 695/800: 100%|██████████| 135/135 [00:11<00:00, 11.75it/s, Epoch Loss: 0.0416]\n",
"Train :: Epoch: 696/800: 100%|██████████| 135/135 [00:11<00:00, 11.39it/s, Epoch Loss: 0.0406]\n",
"Train :: Epoch: 697/800: 100%|██████████| 135/135 [00:11<00:00, 11.81it/s, Epoch Loss: 0.0407]\n",
"Train :: Epoch: 698/800: 100%|██████████| 135/135 [00:11<00:00, 11.93it/s, Epoch Loss: 0.0389]\n",
"Train :: Epoch: 699/800: 100%|██████████| 135/135 [00:12<00:00, 10.41it/s, Epoch Loss: 0.0404]\n",
"Train :: Epoch: 700/800: 100%|██████████| 135/135 [00:12<00:00, 11.21it/s, Epoch Loss: 0.0427]\n",
"Sampling :: 100%|██████████| 999/999 [00:17<00:00, 57.66it/s]\n"
]
},
{
"data": {
"image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQgJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCACKARIDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDY8f8AjnxNovizULLTdSMdtF5ZRBBE20mNDjLKTySTWDbeN/idexLLa3DTxEsfMjt4cKMcA5SoPilKYvGviAqRnNuvJ+7mFOR+VdRoco0nwnp8ccbMzRrlRwQx55rjTlzSu9A5bnK3fxF+ICoY01YwTxn94HtIc9OeNlQj4oeOls5DLq5RlAdZPssJyO4xsrY8bQWckEGpqDHdp8jjdhWGO/0PeuJn+Yxt5q+VtPuHyMjnvzWcpzjLluI7Hxh8TvFWn+CvCGq6bqjRTaj9sNyzW0RL+XIqrwVIGASOAM965az+KvxM1CzmubbWQyRMqf8AHnBlmbOFUeXycAn8Kl+INvPceAvAEdvGzu7X6jHTLTJgZqjohbw8LePe6FJC52LzIxABB9MDNd0XeKZ14bCuu32RoaT8WPHrm/kv9bl22kO4oLGAfMSFGfk4HOfwqTV/i942tbG0MOsbJZcuzG1hPynG3jZ9TU2p2OmyeHoykQSdmeK4CnEkw6Lk91UDgVhN4Yg1QmK0mcz267YknxskHPQ4zn+eRTatqXUy+pBuW6R3Pg/4g+M9e8H+LZpNU8zUbD7ELST7NENhkkYPwEwQQOpBx1qbQfG3jy11AjXNSjnhcsmzyIl8rptbKqOCQR9KpfB23axtfGkOoRvEQ9ipRlBIO+VQCP8Ae/KrGv2FzZmMSRKImkZlQtkyRYw2T1P/ANeuatKcbOJyRi5P3S9p/jvxjrHihLW1mljsxKyuTbIAAMjqU6g+/NW7/XPHWlXBguNeWSCUFY7kWsSlDg4JGzBwcDHvW3p2qaba+GodSiQRQyAF1PB3jgj65/lTzNbeJ9BuzaRHzljJQMMlWxkY9+K5nWV/Zxl7z1Q3Qly3LHhDXNcvNShs9UvVnbydz/u0UscHJwAOM4ry3/haHjJmKjWypVSzH7LD27fcrsvCpa58e6TqSTqHe3ktZ4GHzJtVm4/4ECT+FeKSTxWkUrOSQCRz0OeaVarKSXK/60PpeHoUKqqyrRTStv8AN/8ADnWf8La8a29xJ9p1weUoBGLSHLZ9PkpzfFzxqLkRf2ttLKWAa1h/D+CuPgZJbOMXKebJz1Hb/OKhulWG5Yyr5xDKkaKecYyc1mqk27Nu57ssFh401KMI2bT1WqvrZ6P0Vrm8nxf+JEs5xrflpno1lAB9B+75r1Hxp448Q6N40vrG01ExWsXl+XCYIzwY1JIJXJ5J7/pXhjTPLcYZFjMYYjdng17V8Qks7jxheQXBUP8AJtPdT5a4NdEqspQ7bHz9TCUMPVjb3k+bdenToM/4TvxLPawPFrQjkYOTm2iO7aM4+7xUafEDxQYZJG1TpwP3EXp/u1zttf6ZYWTC6mb7TGHDwpEWIzjkHpyMdfesuXUopbVhGTiQ4Jxxj61zzlUtZNm+EhhXXvKKt2t1PS/DHi3xNqdtfXF1qbMilUhUQRAg9SR8vpjr61oeKPFetabZ+H5rW/WJrn7QZ1aJCZNrKFxkYGM44x1rC8GMDoQjGAwkZmPpnoPyA/Oo/iletpvhXw/LHsM4acpvTIP7xMj2yP5V10ZS5LNnFWp0liOflVrvTpsVG+JniTz2tYL9ppYtpmbyYl27hkYyuCOD71jSfFrxckU7nVG8pZG2SpaxEbM8Z+XrisJY08R6TizUR3DHykQt128bCf5H3/PWhWxuAiywAO0f7wBc5deuR/dB44zit7nX9Vp1EnGy+RPH8VvGVkqx3uqmUS72SX7NCuAMYxhcE9eK2NO+Ifi648HeMb9tSMl1YGxFk/2aMbTJKVcY285HHOcdq5W98P8A2/RAftiPLC5VI1BCL3bnvx06DFaHhm1li+GPjG2k8z5GsWCHnafOJ4Pc8DOOOPrWsLPqeVi6UopRUVZW1+7QWz+KPjaSB5LjWNsjSZWIWsPyr/3x61fsvib4te7CS6o0i90FvCCc+ny1xELrI5cscqWrR0tYBq9usrqA74xnBOP5ciqk7dCPZ01Tues3/iPW7azl2664uI2AObeLGSpbH3PpXOeDfHXjDUPibpek6lqvn6bcecHjFvEu7bE7DkKCOQO/ase51Zry2itim5VUhnJ/uscY/A4p/wAO5gfifpKspVmM5HHBxE/Sog23ZmMqUfZX6mr4m8e+KNOvFOna75tvIFYf6PC231GdnNRRfEHxlfxteWmoL9jik8skW8eXPXoRnOCKwdHsbRtFnju2b7Rs3QJx8ze57dSfwqSWLTw9tbAbCjbp5YAdryBsEj/gJAyP6V5Ptm7+9+J57d9TrLnx34psrC1a4nKzNksTChDAknn5eMDA49eeeuNc/ErxWn+r1YLgnO62izx/wGs7Up1uryeCxWRnO1EVTkH1wAPYc1kXdncLAizwtErSqkmeWTnGSOvr+VZyq1JS91uxDbb0PqeiiivcNz52+JulLf8AxI1JWk2rIsQb2xGhBP0wa6BoYx4cVZonjkhjJTadwbjjkdRwK5r4rz3Vt491NokHLQlGB5P7lBjFQx+MNR/4Rw2n2eFr6ECPdjHBHX8q4ebV3YJ2ZS11brWntEumEVl8hBX7xY9cj15qnbxGBJtqZhCARluinHPFU/7S1C51i3muW2CBc4P3SSf58E1NcXqxMUDBonOFbORjnisal27DZo+N50HgLwCZZWSJ3vySnGP36EflVRpmkuWhdoUmQgzsWGFA69vXPen/ABCeK6+HvgJ4EIVm1HauMdJlz/KvP/7Qu7ZlVGwsThvu4ywwOfXp0PvXpU/hR2YbEujfzPQruO2sbX/XCYwHZKQRhg44Kt3C8A49aq2WpzWkkPzrJbmQSqQPwIHfnH6Vy9g5u1ABVY48iOHnMhbGVGPccCny6sIJN6BnaNOMrjDjoCOMAc1a3O365Hl95nrHgDV3aP4hakscbybrJgjZ253SDH/6qPGRnudP0G8sZDPA0TruUHKnHPHUfdNYXwqzeeDvHjyypDuWydpGHAw8hJwPp+JNaWmanFY3X9izXiJcicxyR3ACJsz1VieMjqDXNiI8zseXCpyT5i7qlhct8NYkh+0R/OkpZkC8kZyADnHv71rfDm7uraKSW+LbbgACaU4EjZIwPU89a5nRPiBPZHVLrVDG9oY2MVuD5mXQfu0yM8NuyT04FXbXxxbanosdrPbiDzLeRly3AmVdwyPfBII9cVxexTqKd9vzG8SuVx7nR6Locdh8X4niDLAu5o49+QGMLbmPua8dZ4nSRkVWcAgKRXoHwu8U3Ot+OL
"image/png": "iVBORw0KGgoAAAANSUhEUgAAARIAAACKCAIAAADpF1LuAAEAAElEQVR4Aez9Z5SlV3YdCN7Pu+f9e+FtZkR6i4S3BVShDKuKLJJFFiUaUdSoqZHU0rSk1qh7utU93a01M9JImhbZciSLTiTLO1QBBZtAIr3PDO+f9+/zfvaLCGjN/NR/3pUrM4GMiPs+c+89Z5+996HCMCR/Of7yDvzlHfgvuQP0f8kX/+XX/uUd+Ms7MLwD7MFtOPvcyPiM4tF+r2rVa2o8ExktFNbv1YQIOztTXK82tP5gai5erXQoEkykI23TTxeSjT1zZblFU4GnBqlEKMQkWpJGp2K5WOLy+5tGzymNSBOL8VpF+/CNMiaiKJ7heT4qsBHZdZzA85gY5aleQBGaCzyHhKrHYCG7AUWFVEDkXES1qc/+wqeub17tcp1Qporh2CuLr1977/vVvbrdcHzD5ZhAVlgmDIhAdvcMzJIdkyg5IByx24GjhmJCOTl/7J//g3/qmD0tNFyFvVP5aH337vbmg07dto30r3/hl9vNva//4JtcicmWShEpo2TcbKa4cvXxvR9vj09Pfvb5L5SyScbXTp44ZwTMq5/7GczyJisodBBzPYYiGkVuBiQpEdEjmy7ZYInkkSRLVmny6wwp2cSgSZQmDxWq3g2fIKRKiExIgZAdjvRc8r8RcpWQKCEBIQNCJEI+Tcg396OAf7KQzviG5HmJRJ5aPFW227LrT3ECR0yzOPvW6loYFcX+Gk+76WhCVvL97iBu6k9T0pgTMIY2sNtdz2mG8kPbF3Rr+ot/a/yvfPXfXf2zjuo/eeR521T/2l/5VVzLnxQuudmIwnEvPfeVn26/ubR89dTks08ce6L6aDmU/fbKMlscuZqUf/TTP/jV0Yvp1Gh7ezvCKXq3taTV33L1PcpejCh/Z/zIuWhuNz27291xHz/uJZTLrPXuzgrLMlvtDmYZKU6MjI6fnTp5a+3a/eXHR8dOnBmb8zqDwDPTQiL0TTd0DdexJD7GcTFBiJ6+oHY0JcY5RivOJB3PUmbGO/eX7UZbJ0HFHqiaW9Zr1VbV9/FqeXp/OMs//2e/0dCtN+58j3apaSWvcdXtqp4vTH7hmc8tt6+fO/fSd9/43Z0dTYjwiiycmTze0q2lOzv/7n996/bjN99c+pdz8ed0f10ZG79z74PAiQgMy0jdRkd1+n4geGxovve7eEqfLJtkkpGVsNJQlVR0IsJbfae+21YtM6BEy7KMrkkzrOkwOt4aEnLztNgKXccLLJmiWVs1A4azAk+OELzHWkstRCOl0Vg57JiWy4Xi6EgEM2EwFBWEvmPbTDSCu4SbRIV86IYkDAKbCu2QeKFPaBISlg4DinZ85+nnn52YmL6y9oEUjQaUX4pMJ+xIv9w1mrqrhQxHXI7CevQp1h44B7N4AYlLgap5DOFsx4vzZG3z8VtX33ri2PFBs+Wno7e3blq7Rn40YTsDtW507b3jZ08/V+/99PEPW3xtpzeIFf30s8UvPf85t/K9drsn8jTLU4PWoN2u8tH8wSxFihrzPYNjtcBLBGSMJVGThBRJE1LnyR2PLGI5OaRPSIKQ8YBga+jZIU/ILpYcIRcZUvPJTkh+RMgjQhQy/MqDcNkkZPtgDkK4ZIKzJcXqhY4Vtrp8jBI8R1CEaGwkL8WfpMn3tu5mEhmZSxCfozzJ9vsFPywxAvEsn4hMwMqUQxE2QtmUwMdjCtPrf2786R1iCbSjB4fx+c3B0oRcnDp5abextFUrv378sy1b7T561Ol3LdcfP/386sadSFTYo5mH1dYzctqJMqTdbDBETKVKqrRFWmmfbTjWP929/itcNKqSzli+22tllKwv7DIeHtBwhD69ub2mGnVddRjCz0bSY7HYdq8jC9EIw+m+ydFMTIj4tB96XqAILAmK5xcoY8ApmXwhJQgxXpFWjDoXV3TNtiqhyXZpSuAobLQWG3xyAJx+xTD6A6p/+9Fl0/e7VuB6odbrPdx8vNJYr+tGua/7LAk9v6Opm42dCLaYkey9xx+m5Dk+KGGh7rkdIVRFVjGopu/Ifse3egFri7qmB4nDO3YYpOVyvOtQ9Q1NETnGYgd1dqA5lm5pA+vBnbKp2v2m8+Dhlivy2ASxmry+2K37LEelZCcTZ4tpIvN4uL5uOpur3UqlM7kYTcREQRRbLUOwD5cN3gs6HC4ts6O5QUjxAW0axPWJ54SuR/l4wFg1Ac0SmqEZhkhC9LVPfam+uURhSi3wO9hzYtpuVa8MuIAWA6wwCm+F7fi2HfRV9+DxXHziQnePC0w68AnLki//xguxRPLNG2/UBlhtnUqjYhrhY//ux/c399awrK2BuqkQ6de+9Fv/82//b2NzmfyEMD6W+eaff6c70D/9yivnTx2PxhQ8ecMxHL2fjScOZsEu3gtIT8ZHJb2QZDzmOYU6TpMcTY64xCXsRy45ggVDuBIZfs0dlvSN4XnSockdHCw+iVFknZAbhGAh4oQ5fOyfLKGDWcK+VpwoCbEo6zlqt8PbnqD7lmbykuiF1kh24tde+oXphVOikqYpxTAdynLHGIWnJWxEIUX5tIDz26J8ZLBKtpS+cCIkLt/spjWX6phZMXkwy/Gjp/hQx6PdlZyZMF7KTomF0b5MB5XdKzc/fO/e+w5vHxFS/QHzdlB9p7VV9Zh4LFHjHWEk+/qRyUlaynMil5/5Sbf1xoPL262tgiXFJN71dMYjqtE9mMX27IGu93uWOfCSsjKayeTw0hCKthxH1ynCBJYf0gFWfBDQEs80Gg+qq+uZfO7UfGlE9COcmkyHs2Pxmek8jqOZWEwQedMxRF7hWAkb1sFwAyuT4M/MHY0nIr7kaHboMYwU5XIZkZdTyzsrzU5wdHYc208kJmBTWVY3LKV1b/mDv/jx75yZf3nbvYaf2RlUFC5GdNcPdIqVaJblGS40EnSAKGE4Dh+WyEWw+7M873teu6f5UhiTIlMTI6HsmWrvw/e2E+l4cTyPSyYRr1rRZFcWZU6QiThDJSS+smvrg0BIJXFr2tuu1eO0nhWNx9tVfWur78W4g8koLBovEETKs03sjiHl+ojbqOD1uZOLC8f/3ZXvq/0BllMQ0gzWkR/mshnTa3x09boZBMS1mYiSdoXuepWjRJzsgY/Nm47F49qgbzmefzAHIa2a8ZkvvCSK5N2P3r90dkbynXyOb2mre+29rJB6dPOuZvdDhzebTn6EpeWglD5VLE6FLH1h/AUxIb537dvipL/ReERlnKw1wi0eFyICz1JynEYcyfOHG02KZVTaj5jelkdWCfub6QjxzBViSyy5RMgS8b5DyFcIiZPgKkuueUTwSZ0QLCGLIjhPVEKeCslFj/wBIRUcl588ia/hINo/kQ6uJmHYtb3u+NS017qWtdp7AzpCi66he67pCdyguSqlnpidPvZYv+XgqREvKXIpVaAEnNasH5ouMTTfM1lsSn7pzDNsqaDX6jTjkmYfe5Jp4PAbjkJqQkyPmO02bxqjyUKt337/2jssRSatcDKMNpdvB1OjVC84m0x7xdhb/XrabN8Ro3JgvdfdvciVxlKxhE7d2XjE28GSYEza2u12m1ocIYwkx2LtfutgFicweEFodvuJSOqpiRO847ebPcZD2OIEMqJqn2MRI/TDeIwXWcpx7M3KXtt/4VMXpGigl3d8y+Iyiq/25Ug2wrk2ceZyBZ2yK62mXTfo4ZkzHIgLbN+YzM4sZscebZfFgPcV3gocw+zEOHpj4GRzxVjITednTV0btPqcaJbSM0ejiwn6wb2td2pmtRiZbuqNqNWktBwnUHS6L+kIZ9R8TjIGmcNZDv5wTCyj5txEnHKtgPKKuaRo0SXZdyU+M/XEyYVXWZoTZdb3qd3a0l7lgW0Mctm8ZwUcFRNinCLJruvlSjE80URUYlmv1dREMTHQsY84dmvnYBYpJgR+4Nqej8QldImHS7UnU7m/96m/ennv6sREunHPjESje/22Q/xoMuI51KMbj9SG5vHIg9yjk8cLbmS5/SgdizUa5jAIoxiehLIgd4zeJzEOkTh5YWEqkzXE1Hg6mWMZ7Ynnld3AbfR
"text/plain": [
"<PIL.Image.Image image mode=RGB size=274x138>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Train :: Epoch: 701/800: 100%|██████████| 135/135 [00:12<00:00, 11.00it/s, Epoch Loss: 0.0431]\n",
"Train :: Epoch: 702/800: 100%|██████████| 135/135 [00:12<00:00, 10.67it/s, Epoch Loss: 0.0408]\n",
"Train :: Epoch: 703/800: 100%|██████████| 135/135 [00:12<00:00, 10.80it/s, Epoch Loss: 0.0398]\n",
"Train :: Epoch: 704/800: 100%|██████████| 135/135 [00:11<00:00, 11.27it/s, Epoch Loss: 0.0412]\n",
"Train :: Epoch: 705/800: 100%|██████████| 135/135 [00:11<00:00, 11.61it/s, Epoch Loss: 0.0413]\n",
"Train :: Epoch: 706/800: 100%|██████████| 135/135 [00:11<00:00, 11.75it/s, Epoch Loss: 0.0409]\n",
"Train :: Epoch: 707/800: 100%|██████████| 135/135 [00:13<00:00, 10.38it/s, Epoch Loss: 0.0416]\n",
"Train :: Epoch: 708/800: 100%|██████████| 135/135 [00:12<00:00, 11.11it/s, Epoch Loss: 0.0416]\n",
"Train :: Epoch: 709/800: 100%|██████████| 135/135 [00:11<00:00, 11.41it/s, Epoch Loss: 0.0448]\n",
"Train :: Epoch: 710/800: 100%|██████████| 135/135 [00:11<00:00, 11.77it/s, Epoch Loss: 0.0428]\n",
"Train :: Epoch: 711/800: 100%|██████████| 135/135 [00:11<00:00, 11.39it/s, Epoch Loss: 0.0421]\n",
"Train :: Epoch: 712/800: 100%|██████████| 135/135 [00:11<00:00, 11.93it/s, Epoch Loss: 0.0427]\n",
"Train :: Epoch: 713/800: 100%|██████████| 135/135 [00:11<00:00, 11.94it/s, Epoch Loss: 0.0422]\n",
"Train :: Epoch: 714/800: 100%|██████████| 135/135 [00:12<00:00, 11.01it/s, Epoch Loss: 0.0419]\n",
"Train :: Epoch: 715/800: 100%|██████████| 135/135 [00:12<00:00, 10.46it/s, Epoch Loss: 0.0423]\n",
"Train :: Epoch: 716/800: 100%|██████████| 135/135 [00:12<00:00, 10.96it/s, Epoch Loss: 0.0391]\n",
"Train :: Epoch: 717/800: 100%|██████████| 135/135 [00:12<00:00, 10.48it/s, Epoch Loss: 0.0403]\n",
"Train :: Epoch: 718/800: 100%|██████████| 135/135 [00:12<00:00, 10.67it/s, Epoch Loss: 0.0412]\n",
"Train :: Epoch: 719/800: 100%|██████████| 135/135 [00:11<00:00, 11.27it/s, Epoch Loss: 0.0411]\n",
"Train :: Epoch: 720/800: 100%|██████████| 135/135 [00:11<00:00, 11.59it/s, Epoch Loss: 0.0402]\n",
"Sampling :: 100%|██████████| 999/999 [00:17<00:00, 57.58it/s]\n"
]
},
{
"data": {
"image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQgJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCACKARIDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDd8deLvFWk+KNWi0zU5IbO1WLbG1rE0YLRjPzlSepz171x+pfFTxo9yI7PVGg2j5x9mhIJ9RlK6Hxraz6n8RdUs5Z44rMeSzBjy48tOPzrlLq1iGoxareXAulKhEjiHyv1GOcdK4JV5xbTPT9ipU1yLUmt/iX8QLm3M0WrtsWVYmZrWAAMen8FaGm/FDxVcrFHJrBMvmsHJtoh8oGcY2dapaF4cTUU1Cee8kgs4Zg4ijXJJGcZPYDFVtasdLtvEgtrBitttLHacknaSeayWJk5K5jFpqMuVWenzPVrHxDruoeEdJ1CHUCJ7h7oSP5MeXCzFU424GFGOKhOreLCc/2ttA7eRFz/AOO1D4LuLC2+G/h2S6uCqBLnDnpgz4OfoSOfb61c1DVbXT544GCvK1wYiAeQBg547YOc17FPE0oQXPa5506NScm4mPJrnjhpMR6sAM97eL/4mpLfWfGsk+2XWdqe1tF/8TXQRvazrFKk0W2UZT5h+PHqO9UdIvI7qa4RIwTHcmJWVg29duc4HTv+VdXtqGi019DD2dXz0KeqeKPEukeCfEmqNf8AnXFp9mFqzQxjbuk2scBcHgjrmuW8OfFnW7+xSK91Lbe8/MYIxv78Dbiu38SR2l34E16NJUkhJgBKdARKOPzrxe6t4rU27xrgI+c14OZVb1OSDa66GsW0kmemSeONf+z7l1YgkZBNvGDj6baLTxN4ydSsuq4mJO1DbxcjGf7tcjD5kzRCCJJ5JFG2Nz8rfWuggVor+DblUQBPvZwPTJ696+WrY3EQWk39/Y6qFLnTbOk8KeKdc1DxNa2V9febC5cOnlIucIxHRc9RXJWvj7xjOzY1gYAzzbxD/wBlrf0GOO0+JlhCFO6RHfODjPlv/hXnVs4Ckg4B9a9vAV51cOqjbd3/AJHBX5oaXO3h8b+KG2B9T5Jwf3EQ69D92rdr4t8TSks2qM6glQFt4+T/AN8Vz+nXMM9sJWWJcHBjIzt44OKpR+Jr1rkJCgitjKfnYckgkfKAeAeffrXcqkr9TCMpvqzpr3xP42xLLbamoiXj5YIjg491r1bUtVg0tI2nDnzCQAorxmDVlmsXWKJ2AHzndwp75967/wCIF2kH9nQMqt57SAhjgYAGf510YZuTfMzpoSbTuakfi6zkRn8qUAHHOB/WslviXpyzbPslwVHcEc/rXG2nnX+nyyTsLe03t+6jb5toOBj2965y50tImZ7G5kZUXmN+SmO2fpXZaJ0anuWm+IotSeNVtZ4vMXcvmY5H4Gue+JHiu88LW9hJaz+V53mFvkVshdvqD61zXw98Ryah4oh0R1aZra3MrSbx+7xgAHPJ6jge1VP2gbowR+Hodu4S/ac57Y8r/Gona2g1vqcZrnxb8c2l/I1nrGbSc7rb/RYThf8AvjPqOa7y0+J1zP4Qi1GXUysoCrKyQpuDkZPykYx/hXhX2iaF1jihacMQVQjkH2q68N/bSpaeRJAtyo3ROpAyfugA/hzWN2UdV4c+LPjfUL+aS78QoLOIHAe0hUMewyEznFdnpXxA8R6j4W8XahFq3mPZtaGykNtGDGJJCHGNuG445zXkGo/D7XtK0n7ZcGEQh1LxxuSVyeCf8967PwVBPZ+AfG8c64AGnsp7HMrZ/pTk2k2iZbM2x8QvGaxB21Xr/wBO0X/xNWLDx54yvgI4tSaSUnGFtov/AImuPN0zIF7Y4ruPD+NI8Pw3LbFFySHJbaGJ+6CfUfN09K8+lKc202c8W5O1yfXdf+IGgJaSXWsRslyCV8uCE4x2Pye9WPBPjPxJq3jCxsdQ1PzrWTzN8fkRrnEbEchQeoFcf4j1OWbWJLIXDy21qTjcOrHn19ABWl8OSD4/03nn96f/ACE9N1JKqop6DbtOyZys3xf8dI6bde4J5/0SD/4irKfE/wCIkmHXWRsOMf6LB0P/AACuAt08+88nPIP6CuvsbaGaBgXAVYTg54AwR+ea6atScXaO50wjdXZLc/F7x/A5VtbKkNg/6JB/8RTF+Mvjtm41zjr/AMekH/xFc/ry+U4/djMjE5PfH/66yLFRJKN2AK0hPmipESVnY+46KKK2GeJeNLE3HijxRcW4mOoQvCbcAgKcQRnHP/AqxBohhtdGu7rTHlHlyT3IRsj5ue3THXHtWt4w1pLL4j6xbSk7d0TD0/1CY/UVhJ4uliSSLzMrJH5W09htxXjVqiU2mup6CnSVNe90NTw1cW1r/bH2eVWgYeYFf+6vXP51Fp9nothHPqNugkmt5nYTO25vm4wO2MHiuYMsupStJp8sdokqi1kUcKx25JPseKo+GtUFveCK4b90dwYdt46H+dZKUrXj0Io4uneNOUV69j0Hxbq0WieCfDcenRgQ3DXeNvIXMqlsZ92Neb3V/eLcTXcl60kjMcOsnzAdhjt6V1fjqeK38G+CGhP7j/T1KA5DfvFBB/HNed3cpmkNzHFGu/I2Kc49v/r11qndp90jCo3ztJ9To4ryUtGJmYCM/Iu88Z6/nWrY6zZRShJYsKoCodvYdz61xk10Ulg3YmCxgdxnjv8A/Wpj3AncmHChgSqOefcZ71Cw93rsNTkup7gbu2vvhx4g+xSE7fsrEBicfvR/ga4O8SEQRqx3SYyQe3Gc1ofDaZpfBvjKN13BBZfKD6yPRLZNI2+CNWDHLn0A/wD11yY1qEop9v8AM5arblc5myNzFelWuZUV2Ctn+FT1GK9NtXtbeGIzyLguQJCAN3Gcgeg5rgNXge1uA8actsIY9PWt9Jri4jgVmZAuNoz0zzXlYun7eEXexdGryJnT+D7k3Hj+1DurMGkxg5wPLbFcFaoskQ+U7CcA/Wu38CxQw+OLMphWk8wnA5bEbc151DqCFdigrtwB6V6mASVCy2v+iOWv7yudba2TIwNrCsgZRvxnJx0P+fSsy7g1HSNXgiEZeC5cNLGT8rjIyr4HANauiag0kQlMpSRj8zHuf6UxhZxasZnQSXWwqk0hzsXkYH516MHGOrMINR3Ni5R542mRYjDMA20x7XU46H26fWu58X6PFq+r6SLhnEEKzM+04JOFwM15/qOvStAI2HyxRhUJPXt/OvVfEjvDYLKkTuwbA2KWI49vpXXTcU7nRSteVjyPxHJd6DeJdyfPp6xvAydzGBwfwOK5xdU0260G6uLaeaS5vEzFC6lcleM59Biuo8S22pa7ojRSafcI4TaWVD84x9OCc1ydv4P1e3NkYrS9eO3DKF8sthD07d
"image/png": "iVBORw0KGgoAAAANSUhEUgAAARIAAACKCAIAAADpF1LuAAEAAElEQVR4Aez9Z5hkWXoeBl7vb9zwkZHeVWV5193VdqZ7TI/HDAaDATAgCCOSIrmkKFKURFJaSngekitKWC4fcUnuQiRAgSAIaIDBGBCDHj/dPd1d3VVd3mald5HhI673d9+TETUiH+7+4O/F7ZnKqszIOHHPPed83/d+7/d+dJZl1J9efzoDfzoD/ykzwPynvPhPX/unM/CnM0BmgBtNw+mTFdakJJW3B+kvf/DVKwePzj71iUrpzOqD6+3Hdx40bzvcIeNpfhAtqgovUXE35VlRz006LNUZ7M9oTMYysW8fW6kuGEv7CU9xpf7gYHLunBGlv/fev7vy+AEG+vx/97VKTg3CJKbwCirOkjD04zAKozgME5ZjBVmK4ij0vMD1w8DPUopm0ihKaI5nGJrNmJiKkpTmaIphWEHkRFnkOYahMrvvBK5z5St/F6P88t/66f3966urB0qR+fN/dl6TfD8TPJ8NEm9oWx7lBUmsy7kiU07SwHSGlht3W4HnsIEbaQWakSNR5VmWkVk6SnlJ4uIg4mlGUvgoDRg6+ed/w8Yo5/7iCudxPpPy5NNQoqILLJ/FnK7zrm/Pzc2aw4iKPUnRwixhIjaMvCzxZVX0Q8+nMoFRF2snzdiuFaaj0Hn39ndlRvAsN00yWWT273dWv789ejT/8Z8JhQGpkKJEioKrgH+On+J/+FJ8n6WoKM4YfEIqTdMsSUOWETiGTTNMfhBGiS4q+KV/+o/+sRt0siRWdF1kxT/4ypdv3n6QMrzE06dOn3l47wHDcB/+2CePrZz41Mde9c2HmbC0vrq5ur62e9D5/nd+p901IzyYMOAY6uTZE2dPLi8dP0nR0re/9ZXA8fAIb9xawyjTTz2rSmGuksl6xtMUy5FPRLP4eYYP53oJx3OyyqgSlTF0FtJpysSp7wVp7GPmYxq3mqYUk3ICQ/M01gGbMGlGbo2KU45m3/i3ZJTlM8dxX3hHhqaGfSuhEnyqXKEgCaLrOVkaJxHmi8VfMIwiq6phDPstz8t0mY2i2HI8zIwksZrCxTE+XEqnSZRmR0uRlVR16x55LuMJ/+RClbXwiYzVHNt/vNkbPvJnn+/010/yPK2IrcRPJLHKcT0u4UWaDcOZ5ZnUjtq+SacCxfoBIysi6wiRx3YuzFwuBfk3/+SrF1Zmi2rEVxeoWzFGwlWrlhSRVrBtkqMrSxSeC8QwCKkkDvSCQiep7TBOktFxxlFJkmX4mawodJaJqhymNB8GDIttkvG8UCwYvEDnVBWT3FX67UPsRHLdvHJ9v7nleNm0LLjDPl7McLIgkieAcwFDeGachBmtcRztcEmisCyVCn0mCrEjM6lWjCQ+5yW2yqpWkuDZxVQgSmLChVKaCfx4FJWXEoFmLS/LWJ7h0jgSeCWgGT+JOBa3lCqGbnZ83KkockaxaPc7Hp3RXJyFXDGfl/lCaWKBcQ7XhndyDHaKiIXCYSlR5E/VwLP9/36lR1slxLqPY57nsDdGOwc7BBdWA01zjufGWLaSnNIUbhIrK8ZGYyiJkUdvymLV0iLLBaN/8hKXOslg0Ov3BxfOX8iX8tiMWUJlvNBpNQaWjSX48MHdS0+dT62r7PBakDNUXb5w8ZKRX//hdwTXJe/D4JMLXF5ig8A1zf7k9DGWE7rdA44dzxjHhPisNI3dG1FcxtI0zsQ0i5mESSiyMLOUprGjOY7Bi0Q2ixMO08hmAetS+AQpG2OucUaxWLURz3EJnVBMho1DJzRPThJy4XdxkGX4mmJnZng/Gs+ewg7E041THMJsQmcy7o8XyVni9ttchvFCHCX4EKzEUgFNY4XGzNHuTfCx8CmxC/GOCWb/6Bpvm5cU4fEgPnZ6cdbO3775um0yg/2HgW4Kva7pHmpR0o5TT2WETAqzjJMEKrSxojjXzSTeUSJelkU2yATqkAqH3fXdodJT893aKb69pzIGRY0nztAlXZcoH78aBlEYx0kQUxorJzj+laoscUMrpgVTYIRQV+LAiLIQ9g3TgpmUsXCpNApFTpB1SRIkero2UdSEKEma7UGUsRwzHmXt8SaNRcJQ/V787hXrzHmB002lgGfKRX4yVTh5vFbbb66xjJWwA1pIRE7xvFAQKYXnWYY/P8XKGbantu2KA89UJIrTKJpKaErEFCbheObolJc5jpKxChKZE3lJpwWGPC2KVhTedt2aUXPYXggDxEkhbIOUcZmg8nmfMyVKOzG3eNA/8KmwJBS6/r5eUSmLNr2U9nyaZSv13Pj5HH2JoyDEc8RCSFLfyQIculhiVBKoKpZBmsQZzXqOY5o29oeHObNtrazJQkEScTJTKU+pHA5YLhVpkVdxdgQRpQhYc+On32m32s0DWshsy+31eiwjpnGK3Z5E8frmDkbGwul1mrViyWqvZnQpgisQhnFoVid0lhVGHzVlM1UVlxaXOJWjPSsJ3Fc/9umvf+V33eFw9AJZdDmJZ4WYxjZheewQPCNs85TBaUUsDDE+GY8TnmUYfJtOY1aiRRybolwv13e7jWa7AzvDcRm2KMNj/fMZn2Y4YWhWkkfnBp47zh0BkwIrhPePEhxpeHOy49KUODpxRqli5AeBRMspFYR+yMkKLWZBFOA1VIwFnuJeIkxyDBuDez96+NhaOH388UEznri9zsHNvUifm2WS+KQg1E7P0VJ/d++g2R00eU7VNZlhEz2hJKFvBVrfv+EMLkilY5PFW3aDl8O5JaGxFfdCmvHimKG3+o/VwuJkfZHevd7fvulz/mjiJqs5kaID3qMpWGIRKx6HuSBgPeMe2QjHOh3hNPdE/AVQRRxS2PI4XchpHES4MRz9SULRhZwmyrLMcIIgSkwShEaYWIYMn4Vc2DM4k+A2OFZ654FvSOzkiQSfq1AKo4jafLSvlQe85FOCiwOPxTOjYCgSRaPEiKlU6ALN6q4dGHRxhlIaWT+W/ciHbRcEKmPh6Y23TQgLymaamvNsk5PUycVFyx4UGcF0+rwgRWHGU74ksLjVOIpTWaoWJ9b27uZVdmXlOZpP7DTw/JRT2FxxhnHdOGdzPle0dTnOTK/t9aXRveBPGJOD3db91TVBEf1B1jddmCw8k2JOVQqGPzBDLGoq6Lf72xtbXkKcG3hMdMLyooClhCWgFXQF05wrTlaVubkZo1ov5gQsWJzGo1Ese9i3h2yW9Xvd3eKWmtMXF493e21YrTTAfFMCzdi2eeP9aytTzNTxi6IxefjwzVt33hZ42XLc0ZtgrU/WizOL0/Xq4vWbVxvXr2Ie4EPTxvgIYEVfxDZQEh7WWch4PFrysDK4kRzFwroQZzeDGYAJoUSGCWMuZ8w9d+pjBWnuxMlTdzff/Rf/9n/JWBhzBAT4XYbhsc+YiM4EkeF48m64Muw+mDSse3hxNIdlhYVE3pTOFD4t43Syo5XJaPMwJSe4THmWFASRg9dkERdJcPBgc7iYxpmewg5iI2XEicQJQzNcHGE3kms8ce0g8xCz5ES3s5/GWIJw50ScubbouXymMVItV1yv9PE5PXjirJfRWX6h/tkXnvPe+WonTMsT3M3VziCJBSe739yzopDGKttbFxLzwG4HnDkaTBGIxyDLuRQ7m2Ox80VJICcN/oMDjgWcij2HN82AY8m5zTN0zGUKnFmO8RyfERnfRzgUaZKk5bQsyTSJCSM+p0RUgn093jYCTyU+xcJGR5TXT96/6+93WLXInHgq9VMnxC7r9apThudnfugndColeBfmZC2cmec7vif6TCa73Q59ZnqYzSoP9mBOWMRWOKt4Phd6TxwbViBOBmw3ln7FYCVPoWksxoQRdU60abbvDERDpaOAZdjpSr3VOVBFaWB2RbUVmi4TyUWpFsUOwziGoUSeYBSUPFvFSXLQvdfT/k+oBodcq2mFw9i104TLQiYILC9NfUqUvZ4rpYlQzFltu7O1BcvmJ0HqBTg3EpFJQpdFRMApJ2YWdMXABoK3kOAtsKYoJqFFvPPoGvbaruWGobe2ttbqtefmjz//4vPvXnnH3FiH9yNzCpwi2Luv/buvP3v
"text/plain": [
"<PIL.Image.Image image mode=RGB size=274x138>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Train :: Epoch: 721/800: 100%|██████████| 135/135 [00:11<00:00, 11.99it/s, Epoch Loss: 0.0402]\n",
"Train :: Epoch: 722/800: 100%|██████████| 135/135 [00:12<00:00, 11.14it/s, Epoch Loss: 0.0429]\n",
"Train :: Epoch: 723/800: 100%|██████████| 135/135 [00:11<00:00, 11.88it/s, Epoch Loss: 0.0398]\n",
"Train :: Epoch: 724/800: 100%|██████████| 135/135 [00:11<00:00, 12.10it/s, Epoch Loss: 0.0390]\n",
"Train :: Epoch: 725/800: 100%|██████████| 135/135 [00:12<00:00, 11.03it/s, Epoch Loss: 0.0434]\n",
"Train :: Epoch: 726/800: 100%|██████████| 135/135 [00:12<00:00, 10.96it/s, Epoch Loss: 0.0411]\n",
"Train :: Epoch: 727/800: 100%|██████████| 135/135 [00:11<00:00, 11.82it/s, Epoch Loss: 0.0434]\n",
"Train :: Epoch: 728/800: 100%|██████████| 135/135 [00:11<00:00, 12.02it/s, Epoch Loss: 0.0383]\n",
"Train :: Epoch: 729/800: 100%|██████████| 135/135 [00:12<00:00, 10.97it/s, Epoch Loss: 0.0396]\n",
"Train :: Epoch: 730/800: 100%|██████████| 135/135 [00:11<00:00, 11.63it/s, Epoch Loss: 0.0414]\n",
"Train :: Epoch: 731/800: 100%|██████████| 135/135 [00:11<00:00, 11.73it/s, Epoch Loss: 0.0395]\n",
"Train :: Epoch: 732/800: 100%|██████████| 135/135 [00:11<00:00, 11.25it/s, Epoch Loss: 0.0383]\n",
"Train :: Epoch: 733/800: 100%|██████████| 135/135 [00:11<00:00, 12.06it/s, Epoch Loss: 0.0433]\n",
"Train :: Epoch: 734/800: 100%|██████████| 135/135 [00:12<00:00, 11.13it/s, Epoch Loss: 0.0424]\n",
"Train :: Epoch: 735/800: 100%|██████████| 135/135 [00:12<00:00, 11.17it/s, Epoch Loss: 0.0397]\n",
"Train :: Epoch: 736/800: 100%|██████████| 135/135 [00:10<00:00, 12.40it/s, Epoch Loss: 0.0426]\n",
"Train :: Epoch: 737/800: 100%|██████████| 135/135 [00:11<00:00, 11.85it/s, Epoch Loss: 0.0404]\n",
"Train :: Epoch: 738/800: 100%|██████████| 135/135 [00:12<00:00, 11.22it/s, Epoch Loss: 0.0412]\n",
"Train :: Epoch: 739/800: 100%|██████████| 135/135 [00:12<00:00, 10.99it/s, Epoch Loss: 0.0456]\n",
"Train :: Epoch: 740/800: 100%|██████████| 135/135 [00:12<00:00, 11.07it/s, Epoch Loss: 0.0425]\n",
"Sampling :: 100%|██████████| 999/999 [00:17<00:00, 57.54it/s]\n"
]
},
{
"data": {
"image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQgJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCACKARIDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDqPFfjfXNM8b3ek2l4IbcbAhaKMhAY1YnJGSc7sD/61VJvG3iFrWS9j1KeG32kxvNbRBW57fKSfbtWd41fT/8AhY2spd2yuxhX5mbg/uU9jhh1BrJtb6KayNvdOFSMhllmlAby3U7flI5AwD7H6V59eVSMuaN7L7v+CdEFFqzsdRJ4/wBbbTF1OO/BtztBSOJDjkgtkr04z+JqGDx/4jSzjnuNQgJVWkkQJGWI7AYUAcsO+a5VbWTRtSS2F7B5EkxkKGJmEXIACnpknqRxVK7u7UaXHG7ysou3AMA/dqep4PJB3ADoOKcJzkkoy0k9H5ajdlutUei+KPGus2WgeHb211YQPdPcfaTFDG/m7HC7VLJgYJxnAyAaxIPHXikXFws3iBgzXJWCJ7aD5I+MFiEHUnj2rA8ZyG2+HngsfNtIvoyffzVx+oGDXOasfK0A6pbzCKUrE3lquQoGFXJI5JxnivSpxskmcsnds7iT4reJEuv7O+2obp0wkixR4BI4OCvbr6cGrU/jnxRYT/Yr3xE32wEf6q2h27SBg8x9Mg1wugayQrXVxbRTPcJtZjGGMaj0yD2ZjxippRbawl3fMJlkhXy0RzlyecL/AFrV2eljNPqjs9M8feL7zwF4t1ObVokvrF7SO1KwR/ui0u18jbg7gQOentXDWvxY+JV5dJb2+ttJK/3UFnb5I9fuV3uheE4r/wABeJbGOdIZb6KzaSd1JUlXLZxkemOvoa5q/wDDq+GInntJ42vZI1MizZ/ekrtdQeDy2fbnHNcVavCnLkv7xolpdvQz2+KPxFC3n/FTQl7ZA4QWtuTJlgPl/d8kZz+FW4/iV8Q4Ln7Pe63KJtu9ljs7dsAgFcDZkt2xVOymltdKtbVtOikntpPkkERSXd1G7bncMd8elZ93ai61EXKxXsN1IxM6tJ8zFupAPQ5J79ulcyxEm7GSn03PQvAvjfxhf/ETStJ1TxBHf2k4maWOO2iUYWJyMlUBBDAcZrPg1b42y28MralFGZZHjCSxWqMCvqCnftVH4UK7/EqxP7uNYpJ1WMnL7TC/584rt7fxBbTIlhcLcT36YRkliXaJMbWJPbkV00qto+/ua04SnscZceLPjBaG736gJTaSxRSLHb277mk+6Fwnze+Olar+KfidrT3TadfHS5rGBZLq0ubOPcMrnKZjJbgdKtaJeLp97eQvLi3ixKIYjv28jJB9P8fanXfiaS61WPVobZ1ZN+yTG1JIwxwCe56e/NP28bXZ1vDNysn0uc7rHj74naLoGmX91qCeXeKSs6W0WQx5VWUpwdvI/wDrVpfET4j+LtB+I2oaZpuqiGwhaEJG1vEwXdEjHLFCepJ610UN5pmuJZza1p7zxpc/aI38ltqlCAoyODnJ49zxWpc+GoJvHPiO81COyvbK8a2KQugdoZEiUHORxkbTx1zW0Wp7HNOEqbakcZfeJfijaaU96+p7ZI7wW8lutrCxVSBtcHZypJAz713UFx4pa+sN+v74oCgvFS3iAmwgLclMjLZ6Y49Kj8QazaafAxu2RLZIn805Hy9MfzP4iuHfxTqFxaTLazBGuJMKydegAx/OqajF6nO59CxP4r8eaVqOoS3HiKK5sYGaGFWtIlMkuAcDCfwg9c88V2mi+LL5/DWg3F1e/abi+e5RpjEqbwspVW2gYHGBXnHjeZ5pbLTJ4g89zJ5jbDgKhHJ/Qfka2JlMPw/8KuisqQfa5C4PCgS9/wDPasnKMZbm2HXPV5ZHY634n1XT3HlXACsCRmNTgY+lR6R4q1W5jiMt0HJ+9mNQenbArnbjWNP1fTbaeC5WUsSjDuhGOD9Qas+Hrm1XVrZXbAYHYrf3jnA/SonXhCaT6nqypwVFR5ddb/idbqGs6nEsX2acFnI42LkDuelY0ninWovCGuXf2wNe2bw+W4iT5Q0gUnGMHjPWpPEl6tleW7BQCP3ZJUgDcR+dRaTNb6f4a1uW5izCssSyCQhuC+D/AOhZ/GuiVmrnE0lRempx9/478bWQEr6kRC4LRuLaIhh/3zW34N8S+K9ftpbu91p44AoVNtvDy3c/c7Cuf126t4bOTS1Ilt5WDW7oc8Z6D8DWX4YsNZs7xrW2uZIUncq2BkbcZJGe4rGq02uQ5KV0rTPQvEOp+LLHNxpevm4iiz50LW0O8e4wnSqvgnxtrmq+KrKw1DUfOim8zKCKNc4RmHIUHtW/p/leVp0ap5kwjUux6vx824/rWtpWkaRZX8EdpYwI9szeXIoG5cqQeevQmj2En70X6g5a2PK5fizrKWEE8N+ZJpHKyRtAgEIyDknbycZX0PXA7ssviJ4xe0kludVgT7MSJ1aOIMckjjC4+XK44wcc1xVlFPKLuOxVhHNAA5mKlnB6ge+R29K3J7e3try3VLiOOG+mSE2oX7iAhSGYdef1GTXzk684e6pO++7fnby0vY74Ruk5LTb/AIbua118QfF1qoZ/EADG1Eio1rDlm5/2OM/L+dZ8HxP8ayQyl9ZCyAfKv2WLPHUfc/WqFxbRXF9Ldm1WLymECwuMLtVduT1w2efrWc1q21mRtsLjarFeR0P4jpWtLETcfek7nNWST938+35H1fRRRX0BJ4D4/Z4vH2t3LIv2eGSAyvJGSAGhiU4x97qCe4A96zRNZXN5F9pSaKOWVjbpIAFkAXq2fugk5HXOfWtHx9fLH8TdTtHaIiVocIRhmIjibbn0O0/yrkdVv7e+ki1C/wDNZmkCSeXgDgkEdyOBjiuKvCc5csnZdGvTa36m9Nxjqtzbv79NTe0S307CxyukmxRuAxuAXbknpu/DvVZZLuxe+0yWaCA3ZDIxwU98k+wAHHPPekt5bHSXs71rb94su5pBKCFRl+XaD1AJBzz+FVLuZtT1yUzyzvbNdlrkQjMcMRGEYY6j6etcsI/8u18C62vZp+vS3zuayfXr2Or8UWdzc/CvRLd4x9oxeIE3Y5EwweeowP1ry+ZprnSore4tpjNOEjh6hT83XAOCckDBr07Vb2G18KeC/mAhlbUNjIDjPnAqK52/sd9rGwcNJFIPKdFOYt4LEsB1GSfpj25+ghC9NNHnSl77B47e3SSwj03yriaMiAQyEbyCOxIBBUEfj+XNXV5c6dcyPBsE0aBQi/OHAPOfU89fwq3qGmaxqeoub24NxPEFUOV/dFTzuXGMDb+tWotKs4vMe6uLlbgFIIVXBcuygndgcL6H6U2mtRb6HReAtRmtvh14vv0mdb2G4s
"image/png": "iVBORw0KGgoAAAANSUhEUgAAARIAAACKCAIAAADpF1LuAAEAAElEQVR4Aez9Z3id53UmCr+97973xkbvBMBeJFIU1SWrWrbcHblk4sSpnuTMpE2S6Ukm9ZvYjp04TtxtybKsanWJvYAkCBK9bAC79/L2fhYE+FzXfL/O+e/XRbZEcuEtz/Osda/7vhfqui7yi+sXT+AXT+D/yxPA/r/84l/82l88gV88ge0nQOw8hv/rt36bQhC9unHnSb/mqG+c3rj7DjbbuK2hqJsbV4mO5g/t9QbjYmnl3ifvuT350jtvVNvYnYVap69rYlMuOSIh4Mb5+eWT++5JRSIG0slsnT61r6VTAkdFMvOzH/2TNyHQo4999ub1Sw3VfOzEBCuEXnj3bFOqjo4ea5rmvsmecMQnNnlG4NOhYJQ1FB3Pany6t5tV61//t69pJhXpGsiXbt27Z3j61pI3RNXroocNsP7YaM9ALTt76fqlUnYNomCYB2MRG3MRG4F/Yy7qwObAIoiLoRbqYghqogThmLaLow6KY6iNOrbK+2lJQjDcsnSHiQgeDmVR3FXRqqJbBoISjkXgrOPahq21O+9HSSGYw+C4g2MY6jiuhaMkjrmW6VIkZjk2iVOma1IUypOUNxn71S/8x3h/5FvPfOPMT141RQIncd20ccxGMYT2+e794C/RNHLl4qskJUk1rV3pNMo5iBJP9FiGRSIIRRNEkA8fSDmGo0tOY7FICTRi65paY3nT74a1ivPHz37l/OaP5s7OLl+umWVzcHTy6997+Qsfe3jm3DuM4HdtU1bkez57730njq+vz7zx1g25g27NLEGUN567nBzppRlc6agISRP1plIt1zleEyVC1L2egOfmvO/yudbY4aWDBwRKoTwQkvMiLCGQpINQuKuoLmIhhmKKFckmcERr0/M3vKWyGo9Ix0899tgYRPnkb9/ZNocxOii3Kq6NIvAuDA1DNRq3CUNiG5d8QXvLvEsx4LOpT46Ph6PRXGktSgYUqXFLXLIlHUdQxEGDfp+XiVEKKRmUQ7AkQoS8mIVg//i/vwdR/vJ/j3VurD91h+/b71mdNvbfvzh6/c1Sw+t95WLmx7PYj34ZIUzjX9a9ebf9nz449NV/VW61ikcGifUyslnQEv0o4cUoEjcQSzMJNGu7BIZgaCgKKRlutyy5al07p0CU3WWDtWVHXZ70lzub6Z9tjMQCajpqtNqLMU9p/ITPtfaSqH150Vbo6I3p5dGpFcxPbCxsUN499c7NA1HUDY08c/ZaNNWdGOlr5Je3trbK9eK18EjAoweojC8ahkhwuSSrGMan7z1+5/4QGRuRXev7z/4o1RP83bsfeeb8dVGhNEPKLNRLAXF/3PH5/F5v17W5jbiftZiYpZZDQQ+FpU72IMOjj5GWjGjyar5yKVN/6fXZajvL2rAyti824DFN1cVsBEUdwsbgv+GVuihi4wzrurRtixj8XYJCHINAcPhnFOranTYsLzfAefcc8F0rl7uiEY/jrRrF0hKsDVIhnUDINkTMtNCdKC7m4IgLCxP+cPjDYM04rovDH8dsr1WUQlAH/j5qGahoGGKm8Pabb+493DPQba0O+HLLqqHZjqMjtoMQmNPqrN6Y5ljGlUTVbrUqNqLvBEFQFyFJ3DXgz0adliat1ime0pqm6zipeEDstLQm/NSYTZpIwCtYQa/U/eChE0Pc+uV333jk0U94eKJvvL+0lZFUxRBV3TQl1blQOJ8tbPKegNys7oQxO0qr6pBMm6dojMJUC6UVCTPajmKEM3mvjUmqrHCI5OMQ1OINzVOw3GzTHE4irA9FbZ6mMNNsaaaNErat041SwMaoarupaSo8Irm2E6XasFAf6aP5mtGkXBa3KdN0MBR3LJREWMfyWirp9Zu4I+7pOfLh+z9dLWUnhscjhJ922Qam/+iVf1vJ3BBoXNFlntUxxKIwTEMxltnez0KJ3p0od0STf1lZC847f/G5xHeeKyzeKP3VUu2RlIFopuBhb21omSxGs0qx7VtZJ546bBcv2MkA8ev7sN/5R0yQCMtnmhpWy1ukRPTXbJV27X6EZDGphdQ6FsPtvv3dZZOvtPYMDtcby+cyfl8wd98RmdXLEyMHl7Oq01oVAuOqUiPtCkUPNEzv9y6MHzrqNXyxfQfY7IZ64eLNia5cpdhGOuI7p9/g+Ua2tRn1tocH2udvjV67Wv303fjOLY0NJxV5PxFCb+bNOCbn6logFPrYvXeGKOrISNd6rjSeDM24smxjl1a3XPG845mngyOdJseyfNoHq9P04Fww1L3W0lsNtYvDR6Lhty7O66rBct6hyOBOFB/jbxIWDv9CTcdE4UwhXBLFbctySIogUFcmUcR1LcLxRqi+YGzmZpakafgQTdgtMWwknCiJhVrVGT0Y7/Ykk56CVjVmkUog6eg1qyLuBEFwHMUw3DVtOH9Q2iUx3DFNC3fh7+g4SkFEOHJUx4YNi6YI3H37rZ/Y+BP93Y1947zS4FrNmut6fB6hXatZLpyF9vLsFUWRGYZydBd3fh7FcWBdOrDMLdfWkE62TuKWYRJd6d4nH//E5QtnK8sZgqQ11bzt4YdGB/fMLk6P9E/EwmlJlg8eOV7KV48/cMfh7uP/8u2/31Ll8bGJvUcObUnz1VXzCx/8/Etv/nQnDC7X1ewtI5amWJ0lCDJIOTXCr0l0q8PUGw4tuKqow7NTVUbRcMS0XIcp5pkw7gZ8BEHgsGlgBkW4BGpY+SW/2Gb9PYaHNP1Bi3LxWn4niibqtEDgfADHddt1bQsj4LFbFvxPw8F0NWBgGOPHJJ06PHHPxOCeTZKJJge9HspWYDdBqA+mf/TMP9K22JIWdK2NWzTsVigucQLSJFolMbcT5Ytfuf4rD3cP9jP18jrP83/8b6UM7Y661IV5MtTrGHVnxWbG4shhVP7G1xY++6Az2SVEjHalRHgdN3hAIChrLOT9+moZ1R25hw1sSeiaR0nJoRiHc241swsE7C6bulq+nhe3tqKsN7o/ugCn7xu3JnLlGknAkRSSb83+yqcDB9LXXr6MltDJhpEOceqnT77c0rqu1ieWi0Q3ejEeGnVCXckuz317jcVCTyTQnJ/eXMkUv/hUqye8+xWsrmcfvPvR1999Nyg4TpCuV6VjB/elPdQLF5bqUsfLUsPxYFvHLIosbnHLBbu2cSUyRpm6vX+499c+MFComW9fWsiKJtpWKg0pV7b3JoMcK7RymwcO7j92cGTnwYX6UnRVKNczmOtiNEbAKYPyKKM7koMIbvSwIEto55oid9zDR0c++cGP/fon/pOiafEEMzk2eHp285mrt9AGyQbbG+1z6I3E1P2JwIQSWwuurSqi2KL9uw8OpShTUk7dc/unnv74P375m416a3Lv3mazHPL6W/XKpdmZgD/66EfuXr25fGn6CmbZtuVk1peys7nuvr4//qNfDQf89VbnnTOn565cGOhL//s//KMv/8M/f//b38MxyoaDEd/daBAUw3HDJXFbg3TOOXLsIYYmpi+d5ljf/fd/eHR8/4W3XycdO5gY+K1//wcEiY4N7gsLfsu0773rkbDfbzp2d3e3KJQjl/zxfXd99CO/ulFfKXS2eMLf0cWKuHvawPIvX7nA3yaEB7vkpkh6ODwYIjN1TG+RkNKaqqNrsKmQWIdRqjrNoALGxH2YL9DKbHHpJBfgMFpjKVpuSAhhoQ6DhUNEbMS8mXHFJrn3np33AkvL0nKocL8/csisn9VIysE4SIsRQ7UMw3YobDvVRfcP3d8diBhyw8PgmlijuWCrXYbldVt/uOtzf/q97/8dyTRqkoxzOOYYcBK3SEXHRFnd/ZLLurJQgsSWHjuJvbKG5DUqyeqkosY9SMPjvNHGDiW1D426kcP2uwk6VzcwBiU5bE/SmuzGBihW5VlHr4cbVg1DRRb1RFiBxXSEn/B5btqdogv58va1GyzRP7q+PhuP9dGY88DB9kzOv5CnspvZD9wzFoqEaVReWBbdgtYoL1UkJuA1ihWJQLoT3VaKrd/kInVtuT9M+A/u47TV4sbZ1VxXz22qTYc0E0HIh7/y7KX/3+P
"text/plain": [
"<PIL.Image.Image image mode=RGB size=274x138>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Train :: Epoch: 741/800: 100%|██████████| 135/135 [00:11<00:00, 11.78it/s, Epoch Loss: 0.0389]\n",
"Train :: Epoch: 742/800: 100%|██████████| 135/135 [00:11<00:00, 11.26it/s, Epoch Loss: 0.0405]\n",
"Train :: Epoch: 743/800: 100%|██████████| 135/135 [00:12<00:00, 10.51it/s, Epoch Loss: 0.0422]\n",
"Train :: Epoch: 744/800: 100%|██████████| 135/135 [00:12<00:00, 11.07it/s, Epoch Loss: 0.0412]\n",
"Train :: Epoch: 745/800: 100%|██████████| 135/135 [00:12<00:00, 10.97it/s, Epoch Loss: 0.0411]\n",
"Train :: Epoch: 746/800: 100%|██████████| 135/135 [00:12<00:00, 10.96it/s, Epoch Loss: 0.0412]\n",
"Train :: Epoch: 747/800: 100%|██████████| 135/135 [00:12<00:00, 11.18it/s, Epoch Loss: 0.0406]\n",
"Train :: Epoch: 748/800: 100%|██████████| 135/135 [00:11<00:00, 11.96it/s, Epoch Loss: 0.0411]\n",
"Train :: Epoch: 749/800: 100%|██████████| 135/135 [00:11<00:00, 12.23it/s, Epoch Loss: 0.0436]\n",
"Train :: Epoch: 750/800: 100%|██████████| 135/135 [00:11<00:00, 11.36it/s, Epoch Loss: 0.0436]\n",
"Train :: Epoch: 751/800: 100%|██████████| 135/135 [00:11<00:00, 12.11it/s, Epoch Loss: 0.0411]\n",
"Train :: Epoch: 752/800: 100%|██████████| 135/135 [00:11<00:00, 11.79it/s, Epoch Loss: 0.0411]\n",
"Train :: Epoch: 753/800: 100%|██████████| 135/135 [00:12<00:00, 11.25it/s, Epoch Loss: 0.0411]\n",
"Train :: Epoch: 754/800: 100%|██████████| 135/135 [00:11<00:00, 11.42it/s, Epoch Loss: 0.0416]\n",
"Train :: Epoch: 755/800: 100%|██████████| 135/135 [00:11<00:00, 11.90it/s, Epoch Loss: 0.0419]\n",
"Train :: Epoch: 756/800: 100%|██████████| 135/135 [00:11<00:00, 11.90it/s, Epoch Loss: 0.0421]\n",
"Train :: Epoch: 757/800: 100%|██████████| 135/135 [00:11<00:00, 11.30it/s, Epoch Loss: 0.0416]\n",
"Train :: Epoch: 758/800: 100%|██████████| 135/135 [00:11<00:00, 11.81it/s, Epoch Loss: 0.0401]\n",
"Train :: Epoch: 759/800: 100%|██████████| 135/135 [00:11<00:00, 11.83it/s, Epoch Loss: 0.0399]\n",
"Train :: Epoch: 760/800: 100%|██████████| 135/135 [00:11<00:00, 11.78it/s, Epoch Loss: 0.0406]\n",
"Sampling :: 100%|██████████| 999/999 [00:17<00:00, 57.18it/s]\n"
]
},
{
"data": {
"image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQgJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCACKARIDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwCb4g/EvxNoXjvWtK0/UjFb2wiMMYt42xuhRjyVJPJJrkI/i58QJoU8nWnkkbJwtlAeMf7ldJ8QrKGT4law6oPMfyTIx/64oMflXOafpcGkSTXCbGZ23Rgn/VqR0NIdhtz8YPHkMaka4Q+3kfY4Ovr9yrWnfF7xpLbP52t7pQM8WsIx/wCOVm6zpUWpxwtaPGjwkhsjA7HH864+2Zo7hlYY5bIIx9RRfsJo9o8S/ETxZa+CvCepWGq+VcXy3hupPs8Tb/LkVV4K4GAT0xXGz/Fz4ieQhi1o7skE/Y4Of/HKu68Gl+GHgQKMk/bxn0/fimaDocc0SG4ACFtwDdcincDobHxt48uoIy2uEOI95zawDcP++PrUet+O/Htjps9xba5uwMpi0hJznpjZVm5lgilKEhR9McVSvJUuIJoVYEFcAnHGQcUrq4HQeAfHfiPVPC/iK71nVVaezitjDI0MaBGdnB6KBzgdc1i3PxN8YmQzx3vk2rSGOItBFhsDk8rn156ZFReGm/s/wj44k+ztMEjsAEAyX/eOOB+Ncnazx6nfQy3yMkYYmJfuBWyB83p1rycZKpCrzJu1v8+h6NFUZULN+9f8NOvqdSPij4wllCxaqACRgNbQkk/98/Spv+FleMAjv/arOWOI40toSf8A0Gs7/hEUhkim1CQwxyHyztcYfJyp9f4cFcc+tZselXN1q91bJCUjs2LPOYjuAA7jPBPYVwLG8yvGbsvMyeFqwmvd3dl953XgX4geJde8c6ZZXepb7GfzDLA0EQORE7AZCgj5gD+BFU7/AMf+M4igi1IRyGYYjMEJJUjAB+XjqDxVL4a2oT4k6fK8iPJmVQwBXKiKTbgewJzkZzmsn7V/aN6L1Zdr+VuEfmcFlBUn68Zr2cNUvRcm9medi+aDVjW1L4m+MIzZR2uqZ8yXZLIlvCcMP4cFOmT19qfcePfHdrZK76uP365hmNvBzyOwTHQ9655Lea5ljtbEwC7Yb4y3AI25OSM7e/8A9bFRa+moQQWEN5PZN5dqbdY4W3pnAG3PUN8yH06Yrp54Ws3Z9P8AP0Obmm431NZvif47ilXzdZjDM5jWP7NDgn1J2cVe+InxF8b6Z8Ur7w/oesCC3DwRwRG2hYKXiRj8zIT1YnrXmwjlS2ia7kfyYyQDnDdeAD36cn612njfSk1f9oLULdpmiIaCUFep228ZwKE9Dai273Z063HxYNgJf+Etg+0gndELKAjHUYPl1w+r/E/4oaNceTd62YyRlSbK3wf/AByvbbAxLbKrNtkYdB97pXmvxY0eC90Rr8boZLRyeVzvGcEAj3qYzbdjoaOL/wCF1fEP/oYf/JK3/wDjde2+FfFOv6t8OtA1Se/El9dC5M8piRd+yUqvAXAwBjgV8rEccV7toupTWHwl8GxwnAlF8WP93E5Of1reElF3kZzu46HbXHjXULS4SCa+2FuN7RKBn06elQzeP7q3vbeym1Bo7m4JESmBSGx15xxXEfaltUV5pPtC3DqoRgzZYnOcnuP16UC9Se+mJuI47q0OYt3ILd/l6jjPQ1y1MRUdR2soq3TX0/zFyqMU23c9QbXdTS3DnUV3df8AVJ/hWdr3ivWrXwJr2o2t5svLX7P5MvlIdu6UK3BBB4z1Fef3XiC5kn+zSI6PJiRVT5vL/wB7HetKK9k1X4ZeKVcspVbQksuDnzyT9enFdtWvT5WktfQiipKabd0c7D8VPHR5k1klAp3N9kgGPf7nSrT/ABL8bmKORNdIWTnP2SE7fX+D2ri7d1gfghoHj2tkckf07jNTKIvs86yyMejDbkEjjBGOO3615cqkr7nt3jzuNl92vbZ6XT8zqD8UPHYiJ/tk7+yi1gzj1+5XSeAPH3izWvHun6bqWptNZyiQyxm3iXOI3I5VQeoHQ/pXmUZZd7H52kiK4+6QSRjj6H+ddZ8LF2fEjSFJJ2mcDjr+5f8Az+FXCpLmSbFLlUXzpeWm+/nfR23XmegWfiTxPcSRr/aW7cuTiGMD6521eOta/JBNZvqxt7l0PlTrBGxQjHOCuD16VyPhG8/0aK5WTzLebDoo/hyORjtzniuvmjE9zbmMj5gx/AAf412Hms52b4j6xdeFtehtryW01fR41Sa5nt4yrOOrDgrzggDHcVxms/GDxnJpqS2moHTrqGNJJImtoj58T4xIu5T3xwOx9q73xZc6fceEr2zcoVm3RMqj+MZHzY54x17ce1eGappmoXmjaddSQPNcSgWkeM/diX5SnqGUdOuV96aA+z6KKKAPmP4kX00Pxo1WBGO12gXH/bCOqPnNdQGMspLr9zOCDnGPYYNbfxI8pfiprLsitNtg8rK9D5SZJP4gV59p+qPFqLq8RAfIfceVxz/PFRe7sNPodJbxtbwTyttVMggjnHvXF3Uc39oTl0AVnbYQCAea7HULu2i0+OAEEyDkjkc8nPvgisV7OBISIZWcu2QGOSp9M01boNnWXys/wu8BKVLE/wBoDH/bcV0EW210yCIYMhQDnnnHNc34rSW1+HfgEWjsAh1Akn/rsv8AU1deeS40+1k3EFOpK8D39Kb0JMrV73lxKrMGU52gk+g/l+hqW1uyYVcuC33fmHJPYn9axdTbF8jJuZwwKsh5cn+gAq1ZGQr8y4AcFST2NZpFt6WO78MhX8J+LTuYp/oLfKNxIErHGPfpWQmmwrOLi8swNuBHbp05IILYyOfTvVjw1dfZPBfjSUNtCiwGcZ6zMP61lXWu6Da2V99qurySZ4lAQEje56hWx2wDk5614eaRm6seRPVdPU9rLlhXQft7XTv66fkdDNr2n3jLCUjuC0uIiCCEcDIye2Oc/jVyRbmyupJILm0+zzyBptoX5mxks2T24rgbPVbu4uJUhjmNvNtmV2t44zuzw7HBHGMZA5PTrTr+7v5JduoMFS2QNJbpEYhJuIALjHORz/8Aqry5YJxkop6ff/Wp0xzWm6fPKGq8tL+rO8+HlhEfG9pfvc+dNvlA35BGY3II9cqe9eagiKABJQJopGw68/eyfyrrvhxf3UnxM0OweXfa24uFiUAYUCKTHPUj0znFcGN0kV7Ekbfa5ZIxgHAGAc/419Ll8OWl7+zf4HzeYShKacFZfqy5barPb3yNbTmUW0EokDEhXXByPYc4+oFRX1xJPZ2mo2yosYXY+0cghsjP6AfT3FZ0ZmSa5KnajwmNip7bccfjUYuLi2UxrKyhtqlFztbHt0PWvU9lFWlGP/DHC9
"image/png": "iVBORw0KGgoAAAANSUhEUgAAARIAAACKCAIAAADpF1LuAAEAAElEQVR4Aez9Z7gl53kdiFaOO+d99smxc47IgQEMAAGJSlSwJCtLI1myrTvjscfWtXXlINvS2LIky5IoUYkUI0gEEiByoxtA53D65Hx2jrUrx1l1zobnuf9m/rPIB2h0n97frqrve8N617teMggC4nvX957A957A/5snQP2/+eHv/ez3nsD3nkD4BJj9xzA1NZZJpeLxhG5oHMN2umq1UnV8guG4REL2bLNn6EHg+y7N0FwhK8m8WG926812Mp1geW57s0ayZETmI1I0kU/kh4ZoglG7bbOrpaMRXox8/aUXsFAqm2fJgKJo3Qloz47Eoul41PA9TbM6ja6umyQZRBNCPpsZHUqTLFWuN13bE3ghnohxLG3ZZLPTGkpnWZrqdPtbm+VKo00Q1uz0dCIudRRtaWklvJ3fH37pfcZ5nEibysJrdn+dvu8w5lRQKDrzLcEmtbG02+qTLUJ4UHDW++6SLkwcZgjVNcxgY9GIxRJjsiEIwYxL6zUzOipsqn5307QoeisrlG8au9sOFvmR3/oVx6FqzhsT+Y95Vf5b//0bsw+XxAkvSRWtPhfJGwa3a7Dq3b/UXJPMzk76Pccqm+z5XbkQqGZwYnry8ptLrW1h4jjNCBZhk5V1TqkZYpyePDMuu/a7f/oOVqFFxvcJIggoIiBp0sN/kDThU4TnEhRJkLB6XnjLVECzlO+ReEX4YcIlCB9/TuGV/f/HEjTBe4SNv0Dir4SfZIV//jtffc2wIrTHkjz+i6Z9R5RommA9zw88l2I826Hx7lma9CkGX4VyfcfFF8A3YFw6sO1AkDmGljjaI/zA1vD7HiES+HiSC2iH+LVPHsLnPpGNUR3qsEc5keD2SHK0QpCk2zvrFm7RKYeekEZfJu8c2CZkUVidEJmOFW/aFu3uJjiT9+MM4UfYozWCVlnd9d7KKLNM7IOSN7MYFG3h5WH9QJf61m4Vq/zmP/olVoySFNnr91mGTibTkhQ1TMOxbE5goql8LpWIZXI8bf7ef/6Dl59/6eDM+H/8/d8dnTyo9LsMy5se9Y9++ZeuXb70r/75/zZ84EQ2Ebt8/cpv/x+/hU8mKJ7wbTxS/HJwbAzLNFwn5nuCwLlW0Nc1PFmRJDmGEXnedPH4LGx4Bg/Zd4KAxSOjaEaKRPD6DKvHMAQese+SPI+nxXpYXGJJ/AhHuYHLU+FKuFzbYUWZoQiBxVNnLc/xXGwB31ZNEq8bb4ziE4lEKp7AVorGIrpDsByHLRKPp1mWDQiSYWnTcVmOliOiruP9WwTBOj5eEI1dtb9KEOceJfXXO/qX76lNm6GPyjGD6Ww3lg2BHvJnh1llgShExfvrvTfwdy3CkszVVX9uSKRUdwRfPuhycZYjRHLD60ToHuukRoiNLuNWXU0mfXPgnyPBmEfpd1djotOSWIPJCDgfZs22nMqBEwdIjuu6K74SmE0+MkzxcYvXs64l+NhmdH04n2j27UCLirzf3iW6DSVZlC2biKbkdDrplomyBnMQXuEuDQLXDh8PH9otPKUAz3p8egoHe31t1ycZmgxv3MbvcyRp4Ujj3HhkeIUnCw+G9AK8O/zPp3wSfx+mK3zYOICDeyGdFkXKPo0TQDGUz/I04XE0S5oG3rzDERx+k5eMgKB8R/CDICW9pvepsvMYL+OgYJMQMYnDEfZwJLAhWNfDq3JpPyA90+Tx3vaueJPsDsmvKtqEF5zuUVHLWzS84i7besS3r1tjrfbUI1kl3j2xEDu8Q/5B3pirBRMe0UuIJY04sU3gHL4nGO2U82PV9HXfzXTpAxnRzhGb7XaU8ic9aX8Vy6MlluFjcQ/blMN+ZKSozAm851gBRbuOZhiUZEgET/3iL/280Tc50pXkjNbXOp1OOpnBPrdcFabo5Re//Ww0ubTqiZx04Ojswp0l7F+CZPdXGRwbHBq124tHoyLHmK5t2rh9h8NqvBhaDtLGs6fDg4YHT7rIh3yKo2iRo7FtCQu/hwsHgPQ9i3AFTVcTHO3gvxxXJT3SpPcXc32fE1j4DcqxcZwsP+g5fZEQLcfRHHxVB+ZJYMVIMsvgLTBiLpMvZfPVVosmg9HSpKL1ZCleb2x7npfK5ROpek9rcxSLbWAHPhMMViFyFLnunfLoFxX+zoYruXqaUvkhodP0YBzqq1RBJlqEzpFEdNQXaM4yiWbA7KgqZ0oTuimWGFImNI62i25qh1moO+Zpis8RHZuPek58aPDE2KHEtZe+LdI0H+0SlDd8PK5UNUHEw+GoiNdtOa2qsvwNN0gn5Fndz+14Y3353JDhSJWrUYqOjJz0aZaR0govelpfbm4G2RE+NRTTWv3m/A4dlfefGDyGhwdDhRbD8XyOp8WoZPnEow89cP7B4+++d8tQOr1Ob2Vn3dBd13Habi905ySMGOHjLdMkC7dBhUYSh4imApeCmcKfwVFRJAzY3uV5JZ6D3fHhGBnGJmxXztFqt9lv35ET0zzpEpbebTEUnyllrkv0+0eyt/288dJSUgseZBkjnY7GorRpk0Hg2Tq+aoDlSddVYWIsytVC5xxelDfVcSfFiKgQfENviUSaJEqLVpYW35zVt9fWDjORYFi87BtdoZ/vSqsnKbMgRW9qq7sWI7BSVNImM0xDneeUc7bs0e6ja2TAJb5KV851CoeswdtPxmXHMNOl4YgkdxtV21F9K8pzosezlt73A5cJsFUdkc/YpvEbv/lPXvrmV2uN6vydq3MHD0+MT7Q63gMPXlxbWzD1+h/+tz8eHYlPzBz7kc/+2L9c+JeEG97a/q186G0MA9YiqemuzSuabhmW4bqyhIfrqZoF4wG3gLeC9yBKcTgJJdC9wA/fje/YDg4MjjbiN5wtnAgTBg5WJvB8zbGkgNepwYMTeC4WFWGUdJ9FUEHZumdTZCRgYBYYBxvQxX9TVESSBIFG2EEEdiKTEZKJ5m4dXi9CRuMcDAi+TCAwiDZCy8pxEsUxPENZ2At7F8k1rFPDlfe2C2lqseI+NMm1SNpteAfzhMEF/Z7T6gWNjpvJ0u0ewTlWLCkIDuXqvM97wTGS8mlFJ5qWuthx1C3sMzqz45dMmhPZVt8pHdhfhHjtna+7BP3QxVMqf6O54klJvr3pJmJSIhnvdSXL7Z85debuX92ChWrdFEvHeWpKbTe2CS977vDF1lbcd95OHe0qaxHTYZNJWyjyifFop9Y1PTVzKJqUI/vLBB62N540LJBHi/Rnnnv20PSMKIu5RGxqaqpUKlRq1UBXl9art+8vVsu72LBKX0VwArdiw4rt2TgEczghcEkw/zgSdGj/KTJww1hu7xIighyR3UA3aYsXRJYkjfa91Vu3h+UrU/kY7VBc4eh6ba6rVRbWe2ey17973UCIVzryVjOIM/IB7BOacCMiPJVHikFfcxGswK76rmc4Hszn/ipqgirQsYLnyKz35ZhOZ/l027bKHrXKfEQc6VGtnZYSm4oweWp2IzN5i/kfpfJOhDjGcfESsTqG4Mef871tn1hXfUZV7k7po+nc5PXKXCCLsndfqeyvIiYzsfBWSYGBn4jJnJdMp6RY3DFdU4whdqFo7IF2Ol3yWScdS5Ac/Q//4U/bFvGpTzxRKg43lf6Zkxff+M63y01T6zUVtdNoqMOl8bOnz3/w3hViYGc+DNJIksKp6HSVmMCZtm2bXmDDW8CZh56EQuBFsdFCUVVaEVHgaIZAzOv4MGaB7Vk+/CElkBRCJQNhu+f4vkeJXBhN+J5rI37WB69HFkQ6gtgG/onGj3NkTMTHsUY8YCM8SxKmbiYSEVgvVhR1VUkmhlheGkoleYqDAcO5jEVioiTyAr2+tJ5MxGs1KZ2JxcQITbs4w/tX4wU5KlpX4tSfbmifPsf/u3Pyq7ve39YtBJFRBI9tn7SY9FjQpQVf9yIsY2v2zJTQUylHd5MCr7OW3w7qm540zRyliTvXEVIGnbJ/8CHh5g5RLQ9MwFTp8NnTn7i99ILi6lIkyXoxOeGMnPL8ZryxbDHRREvPHXsqunL9VcbIj8/OltXyM8d+MRMttdr
"text/plain": [
"<PIL.Image.Image image mode=RGB size=274x138>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Train :: Epoch: 761/800: 100%|██████████| 135/135 [00:11<00:00, 11.86it/s, Epoch Loss: 0.0407]\n",
"Train :: Epoch: 762/800: 100%|██████████| 135/135 [00:11<00:00, 11.88it/s, Epoch Loss: 0.0417]\n",
"Train :: Epoch: 763/800: 100%|██████████| 135/135 [00:12<00:00, 11.23it/s, Epoch Loss: 0.0385]\n",
"Train :: Epoch: 764/800: 100%|██████████| 135/135 [00:11<00:00, 12.09it/s, Epoch Loss: 0.0400]\n",
"Train :: Epoch: 765/800: 100%|██████████| 135/135 [00:11<00:00, 11.92it/s, Epoch Loss: 0.0425]\n",
"Train :: Epoch: 766/800: 100%|██████████| 135/135 [00:11<00:00, 11.52it/s, Epoch Loss: 0.0400]\n",
"Train :: Epoch: 767/800: 100%|██████████| 135/135 [00:11<00:00, 11.59it/s, Epoch Loss: 0.0420]\n",
"Train :: Epoch: 768/800: 100%|██████████| 135/135 [00:11<00:00, 11.89it/s, Epoch Loss: 0.0424]\n",
"Train :: Epoch: 769/800: 100%|██████████| 135/135 [00:11<00:00, 11.77it/s, Epoch Loss: 0.0427]\n",
"Train :: Epoch: 770/800: 100%|██████████| 135/135 [00:11<00:00, 11.99it/s, Epoch Loss: 0.0434]\n",
"Train :: Epoch: 771/800: 100%|██████████| 135/135 [00:11<00:00, 12.23it/s, Epoch Loss: 0.0403]\n",
"Train :: Epoch: 772/800: 100%|██████████| 135/135 [00:12<00:00, 10.77it/s, Epoch Loss: 0.0421]\n",
"Train :: Epoch: 773/800: 100%|██████████| 135/135 [00:11<00:00, 11.42it/s, Epoch Loss: 0.0401]\n",
"Train :: Epoch: 774/800: 100%|██████████| 135/135 [00:11<00:00, 11.94it/s, Epoch Loss: 0.0412]\n",
"Train :: Epoch: 775/800: 100%|██████████| 135/135 [00:10<00:00, 12.48it/s, Epoch Loss: 0.0412]\n",
"Train :: Epoch: 776/800: 100%|██████████| 135/135 [00:11<00:00, 11.90it/s, Epoch Loss: 0.0416]\n",
"Train :: Epoch: 777/800: 100%|██████████| 135/135 [00:11<00:00, 12.22it/s, Epoch Loss: 0.0403]\n",
"Train :: Epoch: 778/800: 100%|██████████| 135/135 [00:12<00:00, 10.82it/s, Epoch Loss: 0.0386]\n",
"Train :: Epoch: 779/800: 100%|██████████| 135/135 [00:12<00:00, 11.13it/s, Epoch Loss: 0.0407]\n",
"Train :: Epoch: 780/800: 100%|██████████| 135/135 [00:12<00:00, 11.16it/s, Epoch Loss: 0.0402]\n",
"Sampling :: 100%|██████████| 999/999 [00:17<00:00, 57.48it/s]\n"
]
},
{
"data": {
"image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQgJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCACKARIDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD1PVrrVLjV7i103WPshhKh1kiRlXKgjBKk5JJ6ntWhqF1f22mrI9zFG4AV3iUNg92wR0rM1TxLa6Zrt3bfYkkbMZmlL4wNo65HYGo9U1WLULTCECPAz5Y4bPTn8RWatqr6g9EMsrjxHNdBrbWYL6JCC6GJFBHpkDNW/Fup6jpGjrPaX6JKrYbeiZb6AisSCGTRNLu7mDziz43gdR2GB3PNWxq/hTXLKFb+RZJZBsxcKUKnGSR6dOtZWai4p2frcLnM+KPGniTT/Cvh27s9S2Xd39p85vJjPmbHUL1XAwCelcqPib4xgYCfWstuOR9lhIA7dEFavxYtLWDR/C1vptws1vvuhCfvBsuh7dhkiuH0nTJNZ1OK3jcBdw3kf3Qec+4xVxUmkm9TCTadrnaP8TPE0WmrPJqig7cs3kR//E1Qtvij4umuo421dV8xxgG2i4GP93pnHNdHJ4E0qbTzHBK/ngblLtkAjp9RXj+oxz2Ul3aXsYF1A4QsuACCc8fSqnTnHcaUt7ntdv4v8QQ+DfEd9c6xvurMW3kytbxgRb5NrcBcHj1B/CuRT4leMtTmZbHX4olTubWL5vwKn9D6VHo1zcXfwy8YxsqiJYrCJCTk4MrBmJ9cEH8KyfDFvYp4zt1t4Asnkt+7eXCkqBkLnvknivPxVR0oOab0Tf8Aw5ab0R6Ja+JPGd3pkDS6ibW4MqAMIIWEkTAfP90j8qtajrni2yW6uBrP7lXYxx/Zos7MZB3bee/5D3qMXKJOtlHEYYy2VXByD0IA7c/hU19bwXdtPaM24bRu3NhTnt+OK+Oeb4r2ivJpfpc7Hh7RbRT8FeM/EGqeL9Psr/VzcWs/mfIIIgGxGzAZVAR0z1HSnwfELVHlSzlvwl0NxP7gEP0wAduD1rC8BR2Vj8S7HT4bmOSVDKSkaEKpETdD06GuZh1E3Q0qZGS3ktmcyW8mBubIwQT1zyefQ195hK1opy1u+vaxyQjzRdzofFfxO8U6TeiO11BgFH7xRbxHaPU5WrGr/EjxFaeH7e7j1cpc+UryqbWPgupwCCvUEqePeuX1jTDrdxaPavF5t2T99igJBJ2Ht/D/AOPCqevsZ4IQ91tnGDOoH3G5GP5ce9dFSUYuVjVJ8qHn4v8AjxUVRramRsYDWkI/H7nSvorXdWudMRpIgXwcBQBz8uep96+UIfDOp3cAnFujpMNsbK/459MYB4r6v1q0jv1mt5CNpIz+VedjfavDyVJ+95BBWfvFWz1+4vdIivF3I7g5QgZUjr2p66zdCEu0nTqGUCktLGOysVt4lARRjBOefWqd5cx2dvLJcAbFHIJrxXUxVHDqVSTTs+vm7X89kU7OeiHaf4oa9uWtBOftCAMwKDGPrjrXHfGXxv4h8JwaA2i6gbZrsXPnHyI33bDHt++pxjcenrWxYQWFvetPGGillUMd57g8gf55riP2gFee28JbVZiftfH4xVrklerOM1Uk3bu7+v4hX5b+6Z9542+JdlpWnagPEcFwt622OKK2gLbtu7B/d/yrsbjVPGk0tzPa+JpIYJYFktIntICUfur/ACZ6/wBfSuC8JeFzfaRaPfGWK9WRmgmc7iqAcBO2PfFdxZyTQWyyPMpQYOHTJzXrVsXClo2TCm5anG6146+K2hJG99qQSKTO2Rba3YD6/Jx+NbnhD4jeKtU8F+Kr691QyXenm0FvL9niXZ5kjK3yhcHgDqDV7VEvL/Tr+xiha9kuIJIUgjUA5YfLgnsMjJ9q4vwdZz2fgP4g2UyOtzC9ikkbdVYTPkVaq89NuL6MmcXE6zS/iF4lvdQgSXV2ETsFYJBCCM98lK6K9k+INvZRSW2stcXDSGORPs8AWP8AusDsHBHr0rM+GuiTRaUbm7hsrmC6G4KCGZD/AHWyOvfrxzXeXviHStLdIbycRNJ0UisYRcKblWna+2pnCEpbHi918RPiPbXKs19cfZzLJHn7DCSGQ8g4TqARmtj4a/ETxX4h8aafYalqqXFnKZRJGLeNSdsbEcqoPUDpXqb6bp93p0tuUD2k4ffsON4c5bkdM55rybwzpelaT8cNOtNHlZ7ZXuHIUEIjGGTKDP3scc1t7y5bSumVa2jPRLbXNakg8xrrPY/u1/wqY69qiqMzjP8AuL/hVO2m8u1O7oQcDjimSOyr907fUdK9uU6cZpSSV3Zbanm802rps1LfWNTkbLXPy5H8C/4VrT6jKLXfHIQ2M9BXAa5eXUNlFDaMyu7nJBxjj1rX8P6jJeWwgnbzWA2M+Putjp+lfPzzRRzF4aoko3srb3039dkd8KUvYKondnoNFFFemaHi/jiKe+8c31rFIZMmIeXyuB5anGeh5yT9a24tUhudJs0jia2NvK1u3GVZ1C4A/Lg1yfxBudnxB1JI32SDyvmDkf8ALJffHT+dZWl6yik2c8rJAzkl1B3Kcjn1/LmuJqzZaktLnotxq3mW0EU5WYBw7k8Acg446+tclr0unSxtNAAgjR1K46kcgY9watPqNvcwC3wzh9qZUbBwevTPYdevNYVw1vZa7OhjLWxUsqEEjnvjjdjnof5VzpTnK7djokoctrXIfGst2ngPwYtkfKLG9J4GQPNWsDwnMNH1GNMb96lX3Z+bPINdR43hCeDfBwRZGRWvTgAhuZV4x/npXDAOkwaGV1l4OWPAI9D7V3U5ctl6Hn1N7I73Stdmi1JgTKwZurOT9ABnj/61ZXji1iv9aIgjRmeNWdtv8fT/AOvWNbeJb1IYnkRGn8wuxdeGOeuBjAqT+07u/kubszosrgk87iBnt9DW9SqrWRMpN6HUeHYTbeAfGElxIgQiyGcYAxKf8RXDaJ9ll1G1lkuIY1Qs7SBdzqvTPseM/lXZaUBqvw08Z2zv5ZP2EbyD184kfmR+tcd4Vt7i1uJLzcgaAELJgtjYynOPbHftXnYhLkb62/zKtpqd1r1xc2b2l0TICCFQyAhiByCw7HAzV7Tddnne4kuAjCVRuJ+Xrnv+NLLq1jqCSfagZLcFgkz4+YEgAg9M5IP0zXH33ic6SxtooxNaKHjlLLy8bZG39Fb2P1r5OnhJ117Nw1XU7PbpR0Oq8DGI/E+xZIpCHlndZX75ifOeB1PQY6YrgrTQbvUbNtSjvYVjs08ySISEuFzklcdMAHg89a6r4dao+p/FDRZtnlxf6QgVmzyIW6fhjiuC0nXZtG8+JSyPcQOrFAMNwQB+tfYUIctNRZzQ21LWoySLIILS5eWMTPOQGO
"image/png": "iVBORw0KGgoAAAANSUhEUgAAARIAAACKCAIAAADpF1LuAAEAAElEQVR4Aez9Z5gl53kdilbOVTunznl6cgAGORAEwQAGUQyiomXJlq8sW9eWZVu+js85smWdc+T4yLJlyZZFH1miSEokGECCAIgMDAaTc+fu3b1zrpzvqu4eP/fef/59VRQpkLNnf7uqvvC+611rvWQcx8RfXH/xBP7iCfyvPAHqf+XDf/HZv3gCf/EEkifAHDyGf/0f/1/rzW1e3HOdOk+XBvXwl//qvz179iH8qdurd3TLcuP3r/9Bc/THpm4OhrEXR7KUpdkxNuA+8czfPbN86tL7r6bVpenxSSf2rt3+YX+0fnP1NkFGteZuSMq//1uv4qse/thJOzSjiFIE0bc83/DdkZPJaWRBoBlOyciSRtvNqDhZEvMFMiADzyFdrzYYcJEb0r3Al1ev3ZmYKU3Ozty+dKcwpWk5enelzfj4Hj8/mfnW/7iFUb70V3J7bXfxjCKxbZGcXruxs7fNtmpR7IeFDCfMCh//nDtbkHfMh2683Vldu6XEFWnM/snPd//bH2alPG0yznROG1T3Ti2x795jei2ZClzH1rm0HNIibcQXX6pilF/79a8KgrRwesaPeN3wLbvZDXiNFGTiW5H00VTt7hvf+O0m/gLZ41lFIkqL6XF5ZiZcetDnpKuv/s7ujVc/9dGf+MYbP6xubtqMmy2maS4TuQ05k7WGJh+5N6+OMEpt+12BY+yg4dLfSWsESYQBteGHZSliHO8LsScHoRd6LZdcNckbLJtn/LJIzjBUiueZ2PcJJqx2f7NYusMTHEN81Il/xHC+rwqfcF2VITWWFkqVxzCKqNGkGFMUF3ouyXAcQXE0HRCx53qeHzN8uLBw9Ec+9dk721vf+Po36SDIpARR5kdmV5ZJMo48I6YJTuVFm4oc02Zi3g1c1yNcN5qZFsu88vr1BkZ55CfIMCCOLGX8qO9FRK9J4AeKKl0pHdXtzk6twbvEXodgYiJXIcYqBOEQ9ToRRoQ1xD8SpEVQEWEbRLFM5lPc+o4bhEQlQ3gsQcWEIhNvvJDETf/s998VNZWhaE9kaZLhJTKgOTaKIpajIk9mQ4Zi8S8i4m0/DAMvIJgopP3QY0JbS/EphrZtT+LZhXE6xzMCw+lRpNshvqClO6RDPncav+z+snnq0Y8/RQS94c2v/vBPRfpEJmdevPpmJjeZEqXthuWaQ1WVl2d+SumU6o3X/LBRkjXbtcJQ8wL52vX3Rt32ycXHslqOk0XS0oM4e2fzzZCS+kPH97Mcw2EkXKyW9y3Oc/SQiGhZtJw4c7SYyuRGum1ZbY9woqFqWzavMrQkBB4dB/gXEUSUQ2hex/FJi0rFxshobFV9MnZNekQJUkpLpeTQsESNPRiF4DOmsb55K67IYttwhkMlKtAq65u7nkGQIsOur/GNjejMx6rPfC5tfmfKbnVK2fZjZ6i7t+yX3wqOHvVbd4YPnvQ7/uL0Eq9mB4MBpQapmBEowi8fFQ5GIfEC9bp57U7xoWert6v+0GSmln28yszj2xu6ZunTC6ej3qC2Z5IRwTkjL6QfOHrEs7YtM3rqsWf+aGPtxmZve3eN5jiZydCMYDeMgIttc+QPfALvdf+KqZilGDtmBt0rfOQb3c2sNFBneIZ60umRQYQ/jAhKjdyIigpEoBAkH5Gh6w8If4NR9Mj8aAZ3bPqs5HOZd0MjTznCwP5AZB5lyDGaPHxgpEZEMUWSAcuTZEhlZSWM3FHssyxDiZ4YZdqd0WMPnVw6snDn4o36+vrPf+JHFk6cevn9N9547ztxGNM0TfqBh3sPfI6JMLl8L4xZQuZ4fJuLib9/yQoRY4J6DqZxaPnpHE34hOULzz74lyuF87/+Bx89ccz9+fGfrg5n7m7/3xGxZXkEVnAhK1zbdWSN6PcJzHGOJsggdu2ADAm3T+yOiJAhIobIpA7vJRT4EZ6LxCq0H5OEH3JRGJIRRQRuhDVIx1HgjwwsFZuiY4JiIzKOo5ilmZgko4h0sKApMqVQAkHSUcDRsRoLFJvcX8TxLcs9GObwtLH1xsljj7y2s/bMkS9p4rhLupEftLsNMj0xlkk7El3rN9yYWJr5WCrz8Bk+JPyoWr82Muqexdl23/HjdEam8a4pSlLlI7PTG63c7Z2XCX4opcZpzjsYTBBFllU63s5g0NekvGtFhMCy+I16RBLC+NSyPWrEeNCuEzt+RIVBzPq6R5txyBn2qBuRtJIaD0zPcfEUiMnZWVPvs+m0litSQSemwoNRNlaC+bnJuZnIqAtba67tkSxnlooZosSzrIQpcu0ajkviuU+31dzdI7OLa9zC0x8tOe7tmXl6smH9wk8Qe+1Mu+/eu0GFzEhRc7XdZqGsiirX7+1Gh8+NCPa+S1ITffkY3/MYpxlls0w+FXW2CJfK8IYf0ANnq1Zr9Kt7XHqMpWKe5FNUcPbU+NWVKylxKsfnJZpQNW3Qs7Mq3+t3aVrI5dVmo2eYAe0fTgLMZoILMfviPcujVoar3taO+MDzHjV3keF6QZh1gq7ufMXxL7HMYyx5losthm4GRDSKO7x/JYjv6P29HHYpipAiS0pfZOnnGr0Vln2SwXoL6INhYjdZNFSIGU8wVKhmMqzAlOi4ZlWHPTL24zhwfScqljM//ROff+GF78ydOTU1P/WFymer2/fura8EbuiHBEOalkcLdCTxDEsyeVnQI39gEAPLOBiFtglBjPZaTjpPsyRWviuqhOZHdza+lc9MPHj8s3t73zz6iV9+MjP35W+vXrq3RTI4i4hiUQ0Nh88QrEJ0O0SBJ9SIKOIUNUk3jI+UiD5D4GdzzOEe4Aa4VQG3QQkkH5OGRwh0SFJWTNAR/i/E2ROEpkTSNEEnG4zIsT4RY/GH+I7Ip0mB4jN5tROTghdyfODgOCJjxowYrH9MyoN7OVw2e4Mmv7kiq/nPfvxHCIrx/IAg/cijKJbmaIagco1BzzcMrJHluXHfJ23dJ6lYoB9Ip3Lr1Y1yYUxgBYJl4tDD81e13PGFh5v6FctsRULPpg4fXJzsiqTnOKIgCuVUcjZJSqfV8+OAJPjmLt63iYNYSee9mPCxoYRe4GC/YEfdbccypXTBG5nZfD6yLDLw3X5XK6bZVIqLOD9Mu3r/4JbGz2VFMd7u6isrG+eOPNvfG/ozdXWMllnetcOb7wcpno1UxxlQlYw0OdFu17mTY3XXp0V55vGHN1TNmZLJnR16YS5657oT8vWJhbTnM54xsjw3PztxMEp2cpwO83ZYqF26JqUns4Ulx/VbVjSkOc3ejv2dLkd7Azx1ZndneyxfMk0qVVho9zKMPX715sXlueJrF99RWc3kR55kc3h4HBlGakB0WJEdyyeRAC4ar5wIjOEb9vDW3pD5wbuE3iBINXxywtCUTcteIKKQimiaOu26Tc98OxTGcNzEtKWq5ywr7PZflKm+b/Fu3a2+ZeWOX8/MV9PyXw0dj4wkmjtcnY5LsGTos0ToEwszE7/wV/8fM4sLVOS++PJ3/vjLXyU4ahiYX/3GCz/7cz/x2MNnRXxMiGJEPUz841/60rVL16qNhmMYo6G5urdte0mEJ4us5QSWgwPIxXw8uLCE8nLMI56LSBLrkyFC7H6R3elfN0a9Lz3zty7cOhqEMUcFZ5Y/dWnlK3gOJ6eeeOedH9IqIeQI1iW4JkFExGYTf5eh+ZBzyBTOZ4FICzi3DpEtfHeBIxX8KcXhY6rMDC1XYTxMeDfScJt80GdFzo9FbBMkHUS0x2BnIkiWJmQZkWnIx/fs0fsUm/PVzxFBEMWEF5KeH7pBzETBwb0cLpt683av23nsgY+tVDc4Oiyky7KcJhSS2N/CIx+hq9ip1XS/TjFDjpR10+GRA2VzWa1SKVdMN0QIJeCwJjEwIfKCJDiq5g2NiKZa5OEdESPDlFShPFkWM0LIkFI6N2oOY4qnaMYNHKerU6rDBryPSSpgKyApiowUqtfeG3RHHCE5+sh0LS0tuZYlcWJ/0J9YWg45ybYRMCJmO1ycO29dYRnRk4SdbcqqXy6ImYWJQihW8wiFuoNjn6Qee0h
"text/plain": [
"<PIL.Image.Image image mode=RGB size=274x138>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Train :: Epoch: 781/800: 100%|██████████| 135/135 [00:11<00:00, 11.49it/s, Epoch Loss: 0.0401]\n",
"Train :: Epoch: 782/800: 100%|██████████| 135/135 [00:11<00:00, 11.99it/s, Epoch Loss: 0.0421]\n",
"Train :: Epoch: 783/800: 100%|██████████| 135/135 [00:11<00:00, 11.49it/s, Epoch Loss: 0.0421]\n",
"Train :: Epoch: 784/800: 100%|██████████| 135/135 [00:11<00:00, 11.95it/s, Epoch Loss: 0.0399]\n",
"Train :: Epoch: 785/800: 100%|██████████| 135/135 [00:10<00:00, 12.32it/s, Epoch Loss: 0.0404]\n",
"Train :: Epoch: 786/800: 100%|██████████| 135/135 [00:11<00:00, 11.29it/s, Epoch Loss: 0.0397]\n",
"Train :: Epoch: 787/800: 100%|██████████| 135/135 [00:11<00:00, 12.07it/s, Epoch Loss: 0.0377]\n",
"Train :: Epoch: 788/800: 100%|██████████| 135/135 [00:11<00:00, 11.85it/s, Epoch Loss: 0.0419]\n",
"Train :: Epoch: 789/800: 100%|██████████| 135/135 [00:11<00:00, 11.42it/s, Epoch Loss: 0.0390]\n",
"Train :: Epoch: 790/800: 100%|██████████| 135/135 [00:11<00:00, 11.84it/s, Epoch Loss: 0.0411]\n",
"Train :: Epoch: 791/800: 100%|██████████| 135/135 [00:10<00:00, 12.67it/s, Epoch Loss: 0.0404]\n",
"Train :: Epoch: 792/800: 100%|██████████| 135/135 [00:11<00:00, 11.94it/s, Epoch Loss: 0.0422]\n",
"Train :: Epoch: 793/800: 100%|██████████| 135/135 [00:11<00:00, 12.03it/s, Epoch Loss: 0.0424]\n",
"Train :: Epoch: 794/800: 100%|██████████| 135/135 [00:11<00:00, 11.48it/s, Epoch Loss: 0.0406]\n",
"Train :: Epoch: 795/800: 100%|██████████| 135/135 [00:11<00:00, 11.69it/s, Epoch Loss: 0.0435]\n",
"Train :: Epoch: 796/800: 100%|██████████| 135/135 [00:11<00:00, 11.77it/s, Epoch Loss: 0.0415]\n",
"Train :: Epoch: 797/800: 100%|██████████| 135/135 [00:11<00:00, 11.34it/s, Epoch Loss: 0.0396]\n",
"Train :: Epoch: 798/800: 100%|██████████| 135/135 [00:11<00:00, 12.08it/s, Epoch Loss: 0.0412]\n",
"Train :: Epoch: 799/800: 100%|██████████| 135/135 [00:11<00:00, 11.77it/s, Epoch Loss: 0.0402]\n",
"Train :: Epoch: 800/800: 100%|██████████| 135/135 [00:12<00:00, 11.07it/s, Epoch Loss: 0.0422]\n",
"Sampling :: 100%|██████████| 999/999 [00:17<00:00, 57.65it/s]\n"
]
},
{
"data": {
"image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQgJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCACKARIDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwBfHXjzxtZ/FHUdA0XWxaWySQJDG1rC6rviRmJZkJxkk1zcPxM+Ib6xHaSeKNlrK8iRXX9nwbX2g9Pk9QB+NS/FSKZfihrbxq6mR4AsinGMQR5Oap22nPp+k6Nb3kNpPAlyRvX53Tc2SApxkkEflXHOs4yZ6OAw0MQ2pdLP5X2/Mo/8Lk+IyzNE+vMroxVgbKDII/7Z10z+O/iTDoqXM+uGOVi5A+xwEsMKQfuYx1rmdO0y1tviDDaujojr9oCl1YhypbYTjpnj+tan9qNrrXST2xB3G4gAfhmBHy44wOv8qKlZ6WNsLl/tFUUviV0vVa3fyO4PiD4har8PfC+paTrESX9z9qN7LLBEPMCy7Y8AoQMAHoBnvVFr/wCMG3KeILNj6CGD/wCN1vaIrQ/DTw8vleW2+52x7s7QZmIH5YqFdcsIL1bOaV1uXiMqKBkEDnH1PanKpJa3OOnQdRuMFe19vIxhqHxh3bW1+zB/64wY/wDRdSvqPxWVQT4mtVI6j7NCc/8AkOq8vjcReLU0dokMMjqiuUYOpYDGc+59KkufElva6q1nK5kc5woP3SB3qfayW5s8DUukle6vv08zb0vxB4yj8J+I7rUdaEl5b/ZfssgtolEW6Qh+i4ORgcg4rkm+J3jXUb+Cy03VcOAQ7LbQtuI6/wAP8q19S1bzvh14y8hfkjSzxLjht8uCMe3P51yXw2ltE1hkYR+YIsRl3xnHJAGOT0rix9epRpurF7LY4oU1OqoX0O6Txh45t7bzLlnZB8u/yos56ZIC9K5uH4p+JodQt7efxLFMFLfaAlpGhTBPynKDnGOlehtLDuYFw3ovTt/+qvKviDollbaqb63VlnvV+aJY/lUr1bPqePyPrXg5dm9WvUdOrdX2sdmJwPsoc8Wdz4c+IfiHVPiB4e0i4fZZ3gmkl+RP3gETso+7kYIU5HWqbeNvFFvp8sr+JEkk/hzbQjbz/u1zfwk0+4HxG0e9u5Xl3W0rQ7j90bZAf6/nUPjSxsLjXJiizRW0akTJAM/OBnj2zX0iqu0Y3fXX7jwMU5RjFqVtfvNmy8XfErxHcu2h6ygt4gNzSW0IVjnoGKda6/W9V8XaVo5u013zpkC+bELaLCgnBIO3nGa8z+F0urfb7uHTWgazI2ypLLtZD/eA57Z+tevXVmdQ0m4s55UjLxMok28g4449K8zF46vSxKpcyS0fnbrc9Gjh1UouTvfXr9xz1t428STaZLfLf7oYuGLRRqf/AEGuX+JnxM8Z6D8RtW0nR9W8mztxEY4fs0LbcwozcshJ5JPXvUviW3voLLTLO2nX7POCrqFwflxk575zWf8AG6LTk8X3F3bxldQRk85/LIB/dJt56NxivVwld1Ic3fb/AIJy4WEo1JU5u9rf0ilpnxS+I8xjmudXC27ypFl7SFTlj2+Sk8Q/GHxraa1NaWusiGKEgE/ZYSW4znlKllRb+2tGu3SxTdHL5SLuyxH3sdgP61jeI/A+ojVbm/trR5LR4nuTIxAUIuNx9gMj866lUUm7dDujB6KXUdL8cfHIeHy9YyEPz5tYf3nP+5x+Fe4QeN7rU/Cuja1p7y7b6K5Yq8aDDK20BsjsQRkda+TI4mmJVOo5x3Ir2uyhYfCjwI0cpjuFlu1j54O645yO/AqqmkHZkXvI6C78deLrUwvJeBUluRCF2QkqDzuPy9K5xviP4/ksRcjVlhh8wh3NpEXQbiMbSncdKpalcRRwWVmZpD/aLeZA6Ll43xmMAH/aOP8AgR9BUU2m22lwLdxzTXSvJuMV07EKnTcSoO3DgdQRXHTq1OVc71/O39feJqx1sPjfxssSQz6kqzOnmq0kMSnaxIGfk25GM9veut8L+J9Xu9H1f7ZqDXdzZi3IuPIREJdjkJhQGGMc/lXlBvby9068vp4FuZZbhLREWT90oIKHkdhknPHJ9q6f4ZX03/CP+KrGa4Ei2H2aIcHapMsvTPbGPwxXNB1rylN7Ju1/L+vzLSV0kegv4g1BFVvtZPy5x5a/4UxPEOpPPgXX7vbkYRD/AErjru9h82Npy4VDlSp4zg9farFpq1nuEQOWcbgB3Nc6r1bXuzs9nHsSePPFXirStHF9peqNCYz86i3ibI/4Ep6Vyfwz+KHi/wARfEfStK1PWPtFjP53mRfZoV3bYnYcqgI5APWu11cJf6NdQMNyvGV9zkV458G08v4zaQn91rgdc/8ALCTvXq4So5q7ZxVY8sj0/wALfE7U9X8S22nS6gXR1fIeGNdxC5xwOtd9PrV6FRo7jjPPyL/hXK+HPDOhadp8K28UU8gO8XYIdt395WHSq/iPVZbeRtPi4Yj95Ih5B4x9MiprV1h4c0mTh6T+Hc7GLWb5p0BuflwcjYv+FMfWdSaN9lxtYjanyKefXpXmGieKVtdVS3ub0yK/yfM2drV6LFz8yMNo/jPOB7epp0MR7WN1obThyux3NFFFd5znzj8V7T7d441mE3KwjfDkckkeTH/jXMyrHHbwiGRlngXIJ53gkDOfXrz71qfFS7iX4p63byuUw8BU9v8Aj3jrk2nlMEZBUYkKIV6n1rzp03zP1uZxqzpybg7HXWZstN05dV1S3ijussUJ+aSTcDlu/GOOeKmur621TSNMuLO2Nmrbo0WPO0AKfXOAMY/E1z0z2dybdlkWMxwFZrbdl+OSV/vE9f09KqXWqPIYIrDzLe0gfMKk5IbGM/j+XJqVG+59LPFU6WCUU1dxsrb3e97fPc9KvbqW18B+EmtzsyL4EqQR/rh1rCsJYNQ1yPUbny/OtVHysMBsAY6kAkc1tgWF58NvBz6heC2c/bGR9hJ/13PTp2rlbK60v7SyXl3mIO28kYGOQpUfTFVUTT9DwKVapTtyt29WdjfWulT3v2y3MM1yHCmcICFOeMH1APeuejtLG48SyXLo0MiuVSWEeYGdRliVPB4xTodQ8PzssH21pOpzkICSeFz1/Sqlq11axBlaMPFM5BEgyQcgH3JzUalOtNO8XbS272Ox11EPwy8Vx28RijIsyqspBwZxmvHIrmbT1X7LPLFMqn5kOCM9RmvXrx7xPhl4qN0u2QPZtjB6+eM15YkPlzbmGWY5A78niprSVknroKo1z3ht9x3WheJReslzc+b5a3EFnFI2FcZBJkc4xyf4fSrvivWbW40OGWxl3yGZ4QVPCEZDEjp9D7153MbmzvnDFfmYZCnKq3Bz9cGp40a300faZgvzFo1QcOT/ABfrXhvLqf
"image/png": "iVBORw0KGgoAAAANSUhEUgAAARIAAACKCAIAAADpF1LuAAEAAElEQVR4Aez9dZyl6XkeCD8v02GsU6cYuqqaeaZ7eEYzGrE8ssCSLMukGBPHmzhfdpMvsBtvduPEjmPHEJPiiBlGMMwzPc1YzFWH+ZyXaa+3TrUcZ/P9vuR/PRpVd1dXn+eF5+brvm7K933y4/XjJ/DjJ/A/8wTo/5kf/vHP/vgJ/PgJBE+A7T8GiqOIRwhDSN/2cIS4e7+nIVceoQhxaOJ4ez9OB3/0PMLxxHUomvi0J7KU4xPHpUcG5IfOpb7zXJUXvW7HMHvE5xjftH03+NxkVKQ92vU9imMZlmIpYuEDaNp2PQYb40cowrKU7/m+R2gGP0A7bvAvGZpjWcahXYEWHcrVNY04PsUQVlTEkOQ7jt3Vfd8p1NrYZfY0LYfoZF6ZmBoYGMpvb+4++80VYnusSDEMlcnLI6NyMpkTIyQRGVLNpiDGLK31lS+8TXxm9mCI5bmlmyVGIOOTkZnZyWw+U9PqB3KzYTb+hc9/61tf37Lbwb0MvHO85XfouM7l+YHJ8Syl9NbKVoPE2GjE5Y1We3m1vFPzSNclvEfGlbH3HxE4L9mm1G6RGgqLjGPXdbvthsPp0FjIlBxXYGlR4USFt3muqn7z5z+PXXIcbzlek/iSzNmWGZFlHi/KJR3Kpl1yYNA/kVd2ShQ9Pjs2d5h1dKbT2Lp96/J8pecxhmcxhIqJ7oFU9NiE3Gy0X76jbuuUzVCf+cRH/v7f/19evvDs3/k7/x/s8vd+7WPvuOfIoSP3bSysX9l4bW2tLocY1Re6lkNTjMyTXIJbnG9eur5x/HiapVzHsbZXWktrZRyb2dHQ8ob1sU9E7znnPv+Cq0hqOO68dNnTVFbvWvecFc/NxX7plxexy9vf/jWXpihKEDnRJ6znur1uW+LdRDSk2zbPCpruaV6sbegcsVKK5/o8Lco0xWq2a5nOdqXzn7/8nZtrKw4JzoRn0K5FbMv3TJ/C4XB9XXewy5FfPRU6PhAWkh5T08zqef7wz5/9tEAJek+lGZoXQna30az1XNPkBUEUOJelKMIwtKh2W3WtFQ6lkkMZyaMa9ZYosSxNlcsVQVQUCaeHfvvNSz/3G/8Iu+yLDXEoSvJDUcZ2fEP3ICkpnqupNqEhM7hyeHLesfzAWqfXDUSBJYE0+YTGb3CiHVwQ52FzSuFYTSdKmI/lSLjLbq+rvuUQcd+m8Txj4xQQH09eCMSCpXgGgsk5tGeZeBb4g+VYxINcEgZb4iDTjA/RxLtmefwPn4+fwg/bjOOaDmF9Fo+Mxa8M5UPogzU+rdisJ8oKH/YWFpda7UYoQfcanu8QWfbSaSeSYhjWrFWrHqnwcqZtdJuluqk7zaKTinmsJFAcYWQixxLZbFa1u9u7xYQ8WtC07e2KZ/U3IZmpQdsVLaEjDYR4KSHF0t2VKuux6VDYdVm13Wnh8vHTHtQNTSASEjMdkh8aMbebsZt2TDdqqmFSuZCcj1CM63oUa+NdUJ5DeEnm4/vvBWcHp0QUWCURru7atmkaeCi+bzO0EA6vVbqNRvtAiItFlaggulq7vj7/5s1dhtCUbysslRA8jpN93/J0drluNz2oI8K63ouXrvx8T5MiQ/2bOXuKC0dp33Mv3Xk2NrnOV+c4RRRs32LbviW4ttWtsZVCz6a828sFn9IlSeipflvTj5yJTU1nTH/7zmJXV5z8IDE0a7PETqaYG5oVHSDveKzraPtvX3WIIricQLMMxzACTdmeJ8i8TViB93wXDykaN7s67bRkQWAEnFPfZ2nICGEoz/Nwcs+dOWzYjfV6VbdwgjyehcLFyXZsH9o3ODNYuam0y9OcVu3ZVc1pLnfW6UOEiEQQJXy4T2msIDO8SijODXQ/njg0NAWRYCVRcCEbLC6QYmlGDA55r9cTWFHmeU+A2iamY/R3uSs2BKffG8hDB5JKxRrPJP/FqYd+9QvfLjkO4SBbtMe7f/q+n9raKn74mS9iG8gS2RMdioLWh2omjMDqji1T5H9Vjvy6fI2Ok45rKBHb0/3gr/dWOhOpVlqwSjBkPucLLBUSeTwRx2dM1rUMvBfYkkCXUzIXlkJ4kbTnWY5rQ35EEgnL0bCMMxENh3EATM+B3hLDiijjr2D68BCClcwz5ZJbq7XiObWjauWSo3UIHkIk4WcyFE7h7naT893l9fbkNDs66nZVk6HsucNCI5p48pF7v/v9b0JSfRvWz+zp3TduLpgWJVmrP/z2zXrVhWrqr8xRmfOTUlQKS4rLuhBZWpB4kTZMjvLxFH1Kpqg4H02EWh2VOPaM6PzyscRj4R6rTH6jOvGVC1c2d9ZioRAn0u2OQUuKzCu0xnVdc3d30w4eb7CwHQ8R8Gm7XBcYv2fTAh4IoXBxjq7hPNUcTjTs4UiIYynV0N+4Xuo6XpynbcuLcJRIKMdzyh3nuy293PNtFz4EhQ9cubP8jae/8653vbu/S63TGk69vV0fM+nOarlwZ5O2dPnATI+jBm/f2eYo69GzYzzl9Krd0VPU5m63UYVdEGcmps6fUfDzfsSOD1GN9Qjx3Qru3PWnotGZvHXv2Wha8F+5VO7v0jGg8ThcG8cKHM93Wj2JNTmGs208ITMkCBRMh9ZkPM11w/AkCM3Tvuv5UD2CEA5lOG98eOhOJrHZqMIfgcm1bOgkz6UY33Epbl9phqFndR+akKMdZpc5NHiUJqztWDROuCgYhiGJMkfxPtEJwzq2RUNmPZ/2TY5nRR62HBaR9m3oMFdXDdfQGDHkMh7ruIbuDI2N9u/lrtgwLl60aTma5+Uz7Nc//SvOS7c+Exn4/W6lizMgcopLc9XmHO/ipBqeTSBMwbuDEQu0HwXnKeK5pn/MIiet+L8KDf+ZYtxpFyJh3xcE3TH7m33iPQ95notLhuiz8ahp6LBjtMuwOLaOV653LE2LZQbhyfV6GgVTBqXDS3jOUNayAIXiu7yAJwljQdMS3L1WvdPRLRc32K3veXPBPhRPZg57q8vO1iKp1x1PD7zLWISM5bmoDNNHCjWLZ91PvkOYX1dLiwbFkmiGPXwwmnz4+OGZQ9XexkvPXOV8vBVqvdCoVpx8NqLqvU7HhVcQOKh7C+pnICLHk3GP5m3LNi03nMh7rq13LJiEDutRSfbgeOKf/9Tg/Lp9u819+uyZJ7PQVrxvWe9LP+vNjL3+vOiVnU2ughtJ5iUxGkqHBOitW67Ts6BZguXCGfUpmHTZY20GbxO/h4ND8ywTjkUGhzOczzQa26IUE0Ky1u1UNZOFMEHZsCxcXdPxacqpmX5d9WCM4XrDxbP21Mvv/u4fdJvdBx98GLt0CsUdnjbFa5raKhnaxJheqbUfv2f89jL54pW1bIqZ/XDoi1+uOKY7Nj5w5Ih885bq6KHxXGZ9sbHTsIcnso+e9577ujw6Z5ybar5xXfYk+0NH5SNzyd/+D2sLa/ZvB7dCZJaD8bQsFgZHoFz4Jr7LOQYsgGPZqu4TWeQpT8e34cm4cHsYivN10+IdyhN41nS9TDySh0W7tUxMj4IK8KCgaDrw6CkH73hv7by+pSMqMGEjHa+nOw8bHuyRqSPMYDmJpkUcF4qDmCA6wNmFy4nzR7uuHdgCj4bvQjzbcS3HtCzbYFkeh41i4YW5rXYvkx7o77IvNnA5Eao4Pgs3ciYVH22Jd9Zai93KP1bi32KtN1ot2fPtasGw1DOK8GrLwXUSHm+BwQviqMCGHhmd+oXx0an5OgmJ44Y+6MZKkbqu89VNEy+5v9m5s6d5XsKLl3CxvITDJtDwnmG6fNvjBZ53LVcOiXhUbcujsQmcF+gKhgpBJzHE1AzNpeAQwuuB84P3rwhcUjN112tIIl5qf5dWzR3N0ofnhG99NRDwUAynjiRE8sh4oMQH897Ojn/kQH06T3Zm2Is3nd0aCRHn9VvN3Z1n68XnJJk24aOKnOvJO5s67/rjQ+m25p66b/TqSzv4TX8XRjNbdNdnPAZW0aa9LsQVV653a00Leink0SHpQ2fiZyftR2Zdlj4gKzGz+opJDVHmssi+cW/aPDU33bPsjUrblAx
"text/plain": [
"<PIL.Image.Image image mode=RGB size=274x138>"
]
},
"metadata": {},
"output_type": "display_data"
2024-04-09 10:14:05 +02:00
}
],
"source": [
"for epoch in range(1, total_epochs):\n",
" torch.cuda.empty_cache()\n",
" gc.collect()\n",
" \n",
" # Algorithm 1: Training\n",
" train_one_epoch(model, sd, dataloader, optimizer, scaler, loss_fn, epoch=epoch)\n",
"\n",
" if epoch % 20 == 0:\n",
" save_path = os.path.join(log_dir, f\"{epoch}{ext}\")\n",
" \n",
" # Algorithm 2: Sampling\n",
" reverse_diffusion(model, sd, timesteps=TrainingConfig.TIMESTEPS, num_images=32, generate_video=generate_video,\n",
" save_path=save_path, img_shape=TrainingConfig.IMG_SHAPE, device=BaseConfig.DEVICE,\n",
" )\n",
"\n",
" # clear_output()\n",
" checkpoint_dict = {\n",
" \"opt\": optimizer.state_dict(),\n",
" \"scaler\": scaler.state_dict(),\n",
" \"model\": model.state_dict()\n",
" }\n",
" torch.save(checkpoint_dict, os.path.join(checkpoint_dir, \"ckpt.tar\"))\n",
" del checkpoint_dict"
]
2024-03-31 14:51:57 +02:00
}
],
"metadata": {
"kernelspec": {
"display_name": "DLML",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
2024-04-01 00:16:59 +02:00
"version": "3.11.8"
2024-03-31 14:51:57 +02:00
}
},
"nbformat": 4,
"nbformat_minor": 2
}