Compare commits
No commits in common. "3f529e0ae44f78673377c8f17b5e98608b4a5011" and "c57b6e23a9a119b64b66062ac384d2202c30803e" have entirely different histories.
3f529e0ae4
...
c57b6e23a9
4
.gitignore
vendored
4
.gitignore
vendored
@ -1,5 +1 @@
|
|||||||
./flowers/*
|
./flowers/*
|
||||||
.DS_Store
|
|
||||||
./UNet/train_image/*
|
|
||||||
./UNet/params/*
|
|
||||||
./UNet/__pycache__/*
|
|
31
UNet/data.py
31
UNet/data.py
@ -1,31 +0,0 @@
|
|||||||
import os
|
|
||||||
|
|
||||||
from torch.utils.data import Dataset
|
|
||||||
from utils import *
|
|
||||||
from torchvision import transforms
|
|
||||||
transform = transforms.Compose([
|
|
||||||
transforms.ToTensor()
|
|
||||||
])
|
|
||||||
|
|
||||||
|
|
||||||
#use VOC2007 Dataset
|
|
||||||
class MyDataset(Dataset):
|
|
||||||
def __init__(self, path):
|
|
||||||
self.path = path
|
|
||||||
self.name = os.listdir(os.path.join(path, 'SegmentationClass'))
|
|
||||||
|
|
||||||
def __len__(self):
|
|
||||||
return len(self.name)
|
|
||||||
|
|
||||||
def __getitem__(self, index):
|
|
||||||
segment_name = self.name[index] #xx.png
|
|
||||||
segment_path = os.path.join(self.path, 'SegmentationClass',segment_name)
|
|
||||||
image_path = os.path.join(self.path,'JPEGImages', segment_name.replace('png','jpg'))
|
|
||||||
segment_image = keep_image_size_open(segment_path)
|
|
||||||
image = keep_image_size_open(image_path)
|
|
||||||
return transform(image), transform(segment_image)
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
|
||||||
data = MyDataset('/Users/hanzhangma/Document/DataSet/VOC2007')
|
|
||||||
print(data[0][0].shape) # print the size of image(0,0)
|
|
||||||
print(data[0][1].shape) # print the size of image(0,1)
|
|
87
UNet/net.py
87
UNet/net.py
@ -1,87 +0,0 @@
|
|||||||
from torch import nn
|
|
||||||
from torch.nn import functional as F
|
|
||||||
from torch import randn
|
|
||||||
import torch
|
|
||||||
|
|
||||||
class Conv_Block(nn.Module):
|
|
||||||
def __init__(self, in_channel, out_channel):
|
|
||||||
super(Conv_Block, self).__init__()
|
|
||||||
self.layer = nn.Sequential(
|
|
||||||
nn.Conv2d(in_channels=in_channel, out_channels=out_channel, kernel_size=3, stride=1, padding=1, padding_mode='reflect', bias=False),
|
|
||||||
nn.BatchNorm2d(out_channel),
|
|
||||||
nn.Dropout2d(0.3),
|
|
||||||
nn.LeakyReLU(),
|
|
||||||
nn.Conv2d(in_channels=out_channel, out_channels=out_channel, kernel_size=3,stride=1,padding=1,padding_mode='reflect', bias=False),
|
|
||||||
nn.BatchNorm2d(out_channel),
|
|
||||||
nn.Dropout2d(0.3),
|
|
||||||
nn.LeakyReLU()
|
|
||||||
)
|
|
||||||
|
|
||||||
def forward(self, x):
|
|
||||||
return self.layer(x)
|
|
||||||
|
|
||||||
class DownSample(nn.Module):
|
|
||||||
def __init__(self, channel):
|
|
||||||
super(DownSample, self).__init__()
|
|
||||||
self.layer = nn.Sequential(
|
|
||||||
nn.Conv2d(channel, channel, 3, 2, 1, padding_mode='reflect', bias=False),
|
|
||||||
nn.BatchNorm2d(channel),
|
|
||||||
nn.LeakyReLU()
|
|
||||||
)
|
|
||||||
def forward(self, x):
|
|
||||||
return self.layer(x)
|
|
||||||
|
|
||||||
class UpSample(nn.Module):
|
|
||||||
def __init__(self, channel):
|
|
||||||
super(UpSample, self).__init__()
|
|
||||||
self.layer = nn.Sequential(
|
|
||||||
nn.Conv2d(channel, channel//2, 1, 1)
|
|
||||||
)
|
|
||||||
def forward(self, x, feature_map):
|
|
||||||
up = F.interpolate(x, scale_factor=2, mode='nearest')
|
|
||||||
out = self.layer(up)
|
|
||||||
return torch.cat((out, feature_map), dim=1)
|
|
||||||
|
|
||||||
class UNet(nn.Module):
|
|
||||||
def __init__(self):
|
|
||||||
super(UNet, self).__init__()
|
|
||||||
self.c1 = Conv_Block(3,64)
|
|
||||||
self.d1 = DownSample(64)
|
|
||||||
self.c2 = Conv_Block(64, 128)
|
|
||||||
self.d2 = DownSample(128)
|
|
||||||
self.c3 = Conv_Block(128, 256)
|
|
||||||
self.d3 = DownSample(256)
|
|
||||||
self.c4 = Conv_Block(256, 512)
|
|
||||||
self.d4 = DownSample(512)
|
|
||||||
self.c5 = Conv_Block(512, 1024)
|
|
||||||
|
|
||||||
self.u1 = UpSample(1024)
|
|
||||||
self.c6 = Conv_Block(1024, 512)
|
|
||||||
self.u2 = UpSample(512)
|
|
||||||
self.c7 = Conv_Block(512, 256)
|
|
||||||
self.u3 = UpSample(256)
|
|
||||||
self.c8 = Conv_Block(256, 128)
|
|
||||||
self.u4 = UpSample(128)
|
|
||||||
self.c9 = Conv_Block(128, 64)
|
|
||||||
|
|
||||||
self.out = nn.Conv2d(64, 3, 3, 1, 1)
|
|
||||||
self.Th = nn.Sigmoid()
|
|
||||||
|
|
||||||
def forward(self, x):
|
|
||||||
R1 = self.c1(x)
|
|
||||||
R2 = self.c2(self.d1(R1))
|
|
||||||
R3 = self.c3(self.d2(R2))
|
|
||||||
R4 = self.c4(self.d3(R3))
|
|
||||||
R5 = self.c5(self.d4(R4))
|
|
||||||
|
|
||||||
O1 = self.c6(self.u1(R5, R4))
|
|
||||||
O2 = self.c7(self.u2(O1, R3))
|
|
||||||
O3 = self.c8(self.u3(O2, R2))
|
|
||||||
O4 = self.c9(self.u4(O3, R1))
|
|
||||||
|
|
||||||
return self.Th(self.out(O4))
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
|
||||||
x = randn(2, 3, 256, 256)
|
|
||||||
net = UNet()
|
|
||||||
print(net(x).shape)
|
|
@ -1,53 +0,0 @@
|
|||||||
import torch
|
|
||||||
from torch import optim
|
|
||||||
from torch.utils.data import DataLoader
|
|
||||||
from data import *
|
|
||||||
from net import *
|
|
||||||
|
|
||||||
from torchvision.utils import save_image
|
|
||||||
|
|
||||||
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
||||||
weight_path = r'/Users/hanzhangma/Nextcloud/mhz/Study/SS24/MasterThesis/UNet/params/unet.pth'
|
|
||||||
data_path = r'/Users/hanzhangma/Document/DataSet/VOC2007'
|
|
||||||
save_path = r'/Users/hanzhangma/Nextcloud/mhz/Study/SS24/MasterThesis/Unet/train_image'
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
|
||||||
data_loader = DataLoader(MyDataset(data_path), batch_size= 4, shuffle=True)
|
|
||||||
|
|
||||||
net = UNet().to(device)
|
|
||||||
if os.path.exists(weight_path):
|
|
||||||
net.load_state_dict(torch.load(weight_path))
|
|
||||||
print('successful load weight!')
|
|
||||||
else:
|
|
||||||
print('Failed on load weight!')
|
|
||||||
|
|
||||||
opt = optim.Adam(net.parameters())
|
|
||||||
loss_fun = nn.BCELoss()
|
|
||||||
|
|
||||||
epoch=1
|
|
||||||
|
|
||||||
while True:
|
|
||||||
for i,(image,segment_image) in enumerate(data_loader):
|
|
||||||
image, segment_image = image.to(device), segment_image.to(device)
|
|
||||||
|
|
||||||
out_image = net(image)
|
|
||||||
train_loss = loss_fun(out_image, segment_image)
|
|
||||||
|
|
||||||
opt.zero_grad()
|
|
||||||
train_loss.backward()
|
|
||||||
opt.step() # 更新梯度
|
|
||||||
|
|
||||||
if i%5 ==0 :
|
|
||||||
print(f'{epoch} -- {i} -- train loss ===>> {train_loss.item()}')
|
|
||||||
|
|
||||||
if i % 50 == 0:
|
|
||||||
torch.save(net.state_dict(), weight_path)
|
|
||||||
|
|
||||||
_image = image[0]
|
|
||||||
_segment_image = segment_image[0]
|
|
||||||
_out_image = out_image[0]
|
|
||||||
|
|
||||||
img = torch.stack([_image, _segment_image, _out_image], dim=0)
|
|
||||||
save_image(img, f'{save_path}/{i}.png')
|
|
||||||
|
|
||||||
epoch += 1
|
|
@ -1,10 +0,0 @@
|
|||||||
from PIL import Image
|
|
||||||
|
|
||||||
def keep_image_size_open(path,size=(256,256)):
|
|
||||||
img = Image.open(path)
|
|
||||||
tmp = max(img.size)
|
|
||||||
mask = Image.new('RGB', (tmp, tmp),(0,0,0))
|
|
||||||
mask.paste(img,(0,0))
|
|
||||||
mask = mask.resize(size)
|
|
||||||
return mask
|
|
||||||
|
|
File diff suppressed because it is too large
Load Diff
File diff suppressed because one or more lines are too long
Loading…
Reference in New Issue
Block a user