import torch from torch import optim from torch.utils.data import DataLoader from data import * from net import * from torchvision.utils import save_image device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') <<<<<<< HEAD weight_path = r'D:\\MasterThesis\\UNet\\params\\unet.pth' data_path = r'D:\\MasterThesis\\data\\VOCdevkit\\VOC2007' save_path = r'D:\\MasterThesis\\UNet\\train_image' ======= weight_path = r'/home/stud/hanzhang/MasterThesis/UNet/params/unet.pth' data_path = r'/home/stud/hanzhang/MasterThesis/VOCdevkit/VOCdevkit/VOC2007' save_path = r'/home/stud/hanzhang/MasterThesis/UNet/train_image' >>>>>>> 37fdde8e83ce6de72d8d7226f22343e79b8a56d0 if __name__ == '__main__': data_loader = DataLoader(MyDataset(data_path), batch_size= 4, shuffle=True) net = UNet().to(device) if os.path.exists(weight_path): net.load_state_dict(torch.load(weight_path)) print('successful load weight!') else: print('Failed on load weight!') opt = optim.Adam(net.parameters()) loss_fun = nn.BCELoss() epoch=1 while True: for i,(image,segment_image) in enumerate(data_loader): image, segment_image = image.to(device), segment_image.to(device) out_image = net(image) train_loss = loss_fun(out_image, segment_image) opt.zero_grad() train_loss.backward() opt.step() # 更新梯度 if i%5 ==0 : print(f'{epoch} -- {i} -- train loss ===>> {train_loss.item()}') if i % 50 == 0: torch.save(net.state_dict(), weight_path) _image = image[0] _segment_image = segment_image[0] _out_image = out_image[0] img = torch.stack([_image, _segment_image, _out_image], dim=0) save_image(img, f'{save_path}/{i}.png') epoch += 1