diff --git a/correlation/NAS_Bench_201.py b/correlation/NAS_Bench_201.py index 733a4bb..f983994 100644 --- a/correlation/NAS_Bench_201.py +++ b/correlation/NAS_Bench_201.py @@ -71,7 +71,7 @@ def parse_arguments(): parser.add_argument('--write_freq', type=int, default=1, help='frequency of write to file') parser.add_argument('--start', type=int, default=0, help='start index') parser.add_argument('--end', type=int, default=0, help='end index') - parser.add_argument('--noacc', default=False, action='store_true', + parser.add_argument('--noacc', default=True, action='store_true', help='avoid loading NASBench2 api an instead load a pickle file with tuple (index, arch_str)') args = parser.parse_args() args.device = torch.device("cuda:" + str(args.gpu) if torch.cuda.is_available() else "cpu") @@ -94,7 +94,14 @@ if __name__ == '__main__': x, y = next(iter(train_loader)) cached_res = [] - pre = 'cf' if 'cifar' in args.dataset else 'im' + if 'cifar' in args.dataset : + pre = 'cf' + elif 'Image' in args.dataset: + pre = 'im' + elif 'oxford' in args.dataset: + pre = 'ox' + elif 'air' in args.dataset: + pre = 'ai' pfn = f'nb2_{args.search_space}_{pre}{get_num_classes(args)}_seed{args.seed}_dl{args.dataload}_dlinfo{args.dataload_info}_initw{args.init_w_type}_initb{args.init_b_type}_{args.batch_size}.p' op = os.path.join(args.outdir, pfn) diff --git a/correlation/foresight/dataset.py b/correlation/foresight/dataset.py index cea71ac..25de156 100644 --- a/correlation/foresight/dataset.py +++ b/correlation/foresight/dataset.py @@ -18,6 +18,7 @@ from torchvision.datasets import MNIST, CIFAR10, CIFAR100, SVHN from torchvision.transforms import Compose, ToTensor, Normalize from torchvision import transforms +import torchvision.datasets as dset from torch.utils.data import TensorDataset, DataLoader import torch @@ -44,6 +45,14 @@ def get_cifar_dataloaders(train_batch_size, test_batch_size, dataset, num_worker mean = (0.485, 0.456, 0.406) std = (0.229, 0.224, 0.225) #resize = 256 + elif dataset == 'aircraft': + mean = (0.4785, 0.5100, 0.5338) + std = (0.1845, 0.1830, 0.2060) + size, pad = 224, 2 + elif dataset == 'oxford': + mean = (0.4811, 0.4492, 0.3957) + std = (0.2260, 0.2231, 0.2249) + size, pad = 32, 0 elif 'random' in dataset: mean = (0.5, 0.5, 0.5) std = (1, 1, 1) @@ -65,6 +74,7 @@ def get_cifar_dataloaders(train_batch_size, test_batch_size, dataset, num_worker transforms.ToTensor(), transforms.Normalize(mean,std), ]) + root = '/nfs/data3/hanzhang/MeCo/data' if dataset == 'cifar10': train_dataset = CIFAR10(datadir, True, train_transform, download=True) @@ -72,6 +82,40 @@ def get_cifar_dataloaders(train_batch_size, test_batch_size, dataset, num_worker elif dataset == 'cifar100': train_dataset = CIFAR100(datadir, True, train_transform, download=True) test_dataset = CIFAR100(datadir, False, test_transform, download=True) + elif dataset == 'aircraft': + lists = [transforms.RandomCrop(size, padding=pad), transforms.ToTensor(), transforms.Normalize(mean, std)] + # if resize != None : + # print(resize) + # lists += [CUTOUT(resize)] + train_transform = transforms.Compose(lists) + test_transform = transforms.Compose([transforms.Resize((224,224)), transforms.ToTensor(), transforms.Normalize(mean, std)]) + train_data = dset.ImageFolder(os.path.join(root, 'train_sorted_images'), train_transform) + test_data = dset.ImageFolder(os.path.join(root, 'test_sorted_images'), test_transform) + elif dataset == 'oxford': + lists = [transforms.RandomCrop(size, padding=pad), transforms.ToTensor(), transforms.Normalize(mean, std)] + # if resize != None : + # print(resize) + # lists += [CUTOUT(resize)] + train_transform = transforms.Compose(lists) + test_transform = transforms.Compose([transforms.Resize((224,224)), transforms.ToTensor(), transforms.Normalize(mean, std)]) + + train_data = torch.load(os.path.join(root, 'train85.pth')) + test_data = torch.load(os.path.join(root, 'test15.pth')) + + train_tensor_data = [(image, label) for image, label in train_data] + test_tensor_data = [(image, label) for image, label in test_data] + sum_data = train_tensor_data + test_tensor_data + + train_images = [image for image, label in train_tensor_data] + train_labels = torch.tensor([label for image, label in train_tensor_data]) + test_images = [image for image, label in test_tensor_data] + test_labels = torch.tensor([label for image, label in test_tensor_data]) + + train_tensors = torch.stack([train_transform(image) for image in train_images]) + test_tensors = torch.stack([test_transform(image) for image in test_images]) + + train_dataset = TensorDataset(train_tensors, train_labels) + test_dataset = TensorDataset(test_tensors, test_labels) elif dataset == 'svhn': train_dataset = SVHN(datadir, split='train', transform=train_transform, download=True) test_dataset = SVHN(datadir, split='test', transform=test_transform, download=True) @@ -97,8 +141,6 @@ def get_cifar_dataloaders(train_batch_size, test_batch_size, dataset, num_worker shuffle=False, num_workers=num_workers, pin_memory=True) - - return train_loader, test_loader