# Copyright 2021 Samsung Electronics Co., Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at import copy import time # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================= import numpy as np from torch import nn # import pandas as pd from . import measure def get_score(net, x, target, device, split_data): result_list = [] result_t = [] def forward_hook(module, data_input, data_output): s = time.time() fea = data_output[0].detach().cpu().numpy() fea = fea.reshape(fea.shape[0], -1) # result = 1 / np.var(np.corrcoef(fea)) result = np.var(np.corrcoef(fea)) e = time.time() t = e - s result_list.append(result) result_t.append(t) for name, modules in net.named_modules(): modules.register_forward_hook(forward_hook) N = x.shape[0] for sp in range(split_data): st = sp * N // split_data en = (sp + 1) * N // split_data y = net(x[st:en]) # print(y) results = np.array(result_list) results = results[np.logical_not(np.isnan(results))] v = np.sum(results) t = sum(result_t) result_list.clear() result_t.clear() return v, t @measure('pearson', bn=True) def compute_pearson(net, inputs, targets, split_data=1, loss_fn=None): device = inputs.device # Compute gradients (but don't apply them) net.zero_grad() try: pearson, t = get_score(net, inputs, targets, device, split_data=split_data) except Exception as e: print(e) pearson, t = np.nan, None return pearson, t