################################################## # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # ################################################## import math, torch from collections import OrderedDict from bisect import bisect_right import torch.nn as nn from ..initialization import initialize_resnet from ..SharedUtils import additive_func from .SoftSelect import select2withP, ChannelWiseInter from .SoftSelect import linear_forward from .SoftSelect import get_width_choices def get_depth_choices(nDepth, return_num): if nDepth == 2: choices = (1, 2) elif nDepth == 3: choices = (1, 2, 3) elif nDepth > 3: choices = list(range(1, nDepth + 1, 2)) if choices[-1] < nDepth: choices.append(nDepth) else: raise ValueError("invalid nDepth : {:}".format(nDepth)) if return_num: return len(choices) else: return choices def conv_forward(inputs, conv, choices): iC = conv.in_channels fill_size = list(inputs.size()) fill_size[1] = iC - fill_size[1] filled = torch.zeros(fill_size, device=inputs.device) xinputs = torch.cat((inputs, filled), dim=1) outputs = conv(xinputs) selecteds = [outputs[:, :oC] for oC in choices] return selecteds class ConvBNReLU(nn.Module): num_conv = 1 def __init__( self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu ): super(ConvBNReLU, self).__init__() self.InShape = None self.OutShape = None self.choices = get_width_choices(nOut) self.register_buffer("choices_tensor", torch.Tensor(self.choices)) if has_avg: self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0) else: self.avg = None self.conv = nn.Conv2d( nIn, nOut, kernel_size=kernel, stride=stride, padding=padding, dilation=1, groups=1, bias=bias, ) # if has_bn : self.bn = nn.BatchNorm2d(nOut) # else : self.bn = None self.has_bn = has_bn self.BNs = nn.ModuleList() for i, _out in enumerate(self.choices): self.BNs.append(nn.BatchNorm2d(_out)) if has_relu: self.relu = nn.ReLU(inplace=True) else: self.relu = None self.in_dim = nIn self.out_dim = nOut self.search_mode = "basic" def get_flops(self, channels, check_range=True, divide=1): iC, oC = channels if check_range: assert ( iC <= self.conv.in_channels and oC <= self.conv.out_channels ), "{:} vs {:} | {:} vs {:}".format( iC, self.conv.in_channels, oC, self.conv.out_channels ) assert ( isinstance(self.InShape, tuple) and len(self.InShape) == 2 ), "invalid in-shape : {:}".format(self.InShape) assert ( isinstance(self.OutShape, tuple) and len(self.OutShape) == 2 ), "invalid out-shape : {:}".format(self.OutShape) # conv_per_position_flops = self.conv.kernel_size[0] * self.conv.kernel_size[1] * iC * oC / self.conv.groups conv_per_position_flops = ( self.conv.kernel_size[0] * self.conv.kernel_size[1] * 1.0 / self.conv.groups ) all_positions = self.OutShape[0] * self.OutShape[1] flops = (conv_per_position_flops * all_positions / divide) * iC * oC if self.conv.bias is not None: flops += all_positions / divide return flops def get_range(self): return [self.choices] def forward(self, inputs): if self.search_mode == "basic": return self.basic_forward(inputs) elif self.search_mode == "search": return self.search_forward(inputs) else: raise ValueError("invalid search_mode = {:}".format(self.search_mode)) def search_forward(self, tuple_inputs): assert ( isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5 ), "invalid type input : {:}".format(type(tuple_inputs)) inputs, expected_inC, probability, index, prob = tuple_inputs index, prob = torch.squeeze(index).tolist(), torch.squeeze(prob) probability = torch.squeeze(probability) assert len(index) == 2, "invalid length : {:}".format(index) # compute expected flop # coordinates = torch.arange(self.x_range[0], self.x_range[1]+1).type_as(probability) expected_outC = (self.choices_tensor * probability).sum() expected_flop = self.get_flops([expected_inC, expected_outC], False, 1e6) if self.avg: out = self.avg(inputs) else: out = inputs # convolutional layer out_convs = conv_forward(out, self.conv, [self.choices[i] for i in index]) out_bns = [self.BNs[idx](out_conv) for idx, out_conv in zip(index, out_convs)] # merge out_channel = max([x.size(1) for x in out_bns]) outA = ChannelWiseInter(out_bns[0], out_channel) outB = ChannelWiseInter(out_bns[1], out_channel) out = outA * prob[0] + outB * prob[1] # out = additive_func(out_bns[0]*prob[0], out_bns[1]*prob[1]) if self.relu: out = self.relu(out) else: out = out return out, expected_outC, expected_flop def basic_forward(self, inputs): if self.avg: out = self.avg(inputs) else: out = inputs conv = self.conv(out) if self.has_bn: out = self.BNs[-1](conv) else: out = conv if self.relu: out = self.relu(out) else: out = out if self.InShape is None: self.InShape = (inputs.size(-2), inputs.size(-1)) self.OutShape = (out.size(-2), out.size(-1)) return out class ResNetBasicblock(nn.Module): expansion = 1 num_conv = 2 def __init__(self, inplanes, planes, stride): super(ResNetBasicblock, self).__init__() assert stride == 1 or stride == 2, "invalid stride {:}".format(stride) self.conv_a = ConvBNReLU( inplanes, planes, 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True, ) self.conv_b = ConvBNReLU( planes, planes, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=False ) if stride == 2: self.downsample = ConvBNReLU( inplanes, planes, 1, 1, 0, False, has_avg=True, has_bn=False, has_relu=False, ) elif inplanes != planes: self.downsample = ConvBNReLU( inplanes, planes, 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=False, ) else: self.downsample = None self.out_dim = planes self.search_mode = "basic" def get_range(self): return self.conv_a.get_range() + self.conv_b.get_range() def get_flops(self, channels): assert len(channels) == 3, "invalid channels : {:}".format(channels) flop_A = self.conv_a.get_flops([channels[0], channels[1]]) flop_B = self.conv_b.get_flops([channels[1], channels[2]]) if hasattr(self.downsample, "get_flops"): flop_C = self.downsample.get_flops([channels[0], channels[-1]]) else: flop_C = 0 if ( channels[0] != channels[-1] and self.downsample is None ): # this short-cut will be added during the infer-train flop_C = ( channels[0] * channels[-1] * self.conv_b.OutShape[0] * self.conv_b.OutShape[1] ) return flop_A + flop_B + flop_C def forward(self, inputs): if self.search_mode == "basic": return self.basic_forward(inputs) elif self.search_mode == "search": return self.search_forward(inputs) else: raise ValueError("invalid search_mode = {:}".format(self.search_mode)) def search_forward(self, tuple_inputs): assert ( isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5 ), "invalid type input : {:}".format(type(tuple_inputs)) inputs, expected_inC, probability, indexes, probs = tuple_inputs assert indexes.size(0) == 2 and probs.size(0) == 2 and probability.size(0) == 2 out_a, expected_inC_a, expected_flop_a = self.conv_a( (inputs, expected_inC, probability[0], indexes[0], probs[0]) ) out_b, expected_inC_b, expected_flop_b = self.conv_b( (out_a, expected_inC_a, probability[1], indexes[1], probs[1]) ) if self.downsample is not None: residual, _, expected_flop_c = self.downsample( (inputs, expected_inC, probability[1], indexes[1], probs[1]) ) else: residual, expected_flop_c = inputs, 0 out = additive_func(residual, out_b) return ( nn.functional.relu(out, inplace=True), expected_inC_b, sum([expected_flop_a, expected_flop_b, expected_flop_c]), ) def basic_forward(self, inputs): basicblock = self.conv_a(inputs) basicblock = self.conv_b(basicblock) if self.downsample is not None: residual = self.downsample(inputs) else: residual = inputs out = additive_func(residual, basicblock) return nn.functional.relu(out, inplace=True) class ResNetBottleneck(nn.Module): expansion = 4 num_conv = 3 def __init__(self, inplanes, planes, stride): super(ResNetBottleneck, self).__init__() assert stride == 1 or stride == 2, "invalid stride {:}".format(stride) self.conv_1x1 = ConvBNReLU( inplanes, planes, 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=True ) self.conv_3x3 = ConvBNReLU( planes, planes, 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True, ) self.conv_1x4 = ConvBNReLU( planes, planes * self.expansion, 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=False, ) if stride == 2: self.downsample = ConvBNReLU( inplanes, planes * self.expansion, 1, 1, 0, False, has_avg=True, has_bn=False, has_relu=False, ) elif inplanes != planes * self.expansion: self.downsample = ConvBNReLU( inplanes, planes * self.expansion, 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=False, ) else: self.downsample = None self.out_dim = planes * self.expansion self.search_mode = "basic" def get_range(self): return ( self.conv_1x1.get_range() + self.conv_3x3.get_range() + self.conv_1x4.get_range() ) def get_flops(self, channels): assert len(channels) == 4, "invalid channels : {:}".format(channels) flop_A = self.conv_1x1.get_flops([channels[0], channels[1]]) flop_B = self.conv_3x3.get_flops([channels[1], channels[2]]) flop_C = self.conv_1x4.get_flops([channels[2], channels[3]]) if hasattr(self.downsample, "get_flops"): flop_D = self.downsample.get_flops([channels[0], channels[-1]]) else: flop_D = 0 if ( channels[0] != channels[-1] and self.downsample is None ): # this short-cut will be added during the infer-train flop_D = ( channels[0] * channels[-1] * self.conv_1x4.OutShape[0] * self.conv_1x4.OutShape[1] ) return flop_A + flop_B + flop_C + flop_D def forward(self, inputs): if self.search_mode == "basic": return self.basic_forward(inputs) elif self.search_mode == "search": return self.search_forward(inputs) else: raise ValueError("invalid search_mode = {:}".format(self.search_mode)) def basic_forward(self, inputs): bottleneck = self.conv_1x1(inputs) bottleneck = self.conv_3x3(bottleneck) bottleneck = self.conv_1x4(bottleneck) if self.downsample is not None: residual = self.downsample(inputs) else: residual = inputs out = additive_func(residual, bottleneck) return nn.functional.relu(out, inplace=True) def search_forward(self, tuple_inputs): assert ( isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5 ), "invalid type input : {:}".format(type(tuple_inputs)) inputs, expected_inC, probability, indexes, probs = tuple_inputs assert indexes.size(0) == 3 and probs.size(0) == 3 and probability.size(0) == 3 out_1x1, expected_inC_1x1, expected_flop_1x1 = self.conv_1x1( (inputs, expected_inC, probability[0], indexes[0], probs[0]) ) out_3x3, expected_inC_3x3, expected_flop_3x3 = self.conv_3x3( (out_1x1, expected_inC_1x1, probability[1], indexes[1], probs[1]) ) out_1x4, expected_inC_1x4, expected_flop_1x4 = self.conv_1x4( (out_3x3, expected_inC_3x3, probability[2], indexes[2], probs[2]) ) if self.downsample is not None: residual, _, expected_flop_c = self.downsample( (inputs, expected_inC, probability[2], indexes[2], probs[2]) ) else: residual, expected_flop_c = inputs, 0 out = additive_func(residual, out_1x4) return ( nn.functional.relu(out, inplace=True), expected_inC_1x4, sum( [ expected_flop_1x1, expected_flop_3x3, expected_flop_1x4, expected_flop_c, ] ), ) class SearchShapeCifarResNet(nn.Module): def __init__(self, block_name, depth, num_classes): super(SearchShapeCifarResNet, self).__init__() # Model type specifies number of layers for CIFAR-10 and CIFAR-100 model if block_name == "ResNetBasicblock": block = ResNetBasicblock assert (depth - 2) % 6 == 0, "depth should be one of 20, 32, 44, 56, 110" layer_blocks = (depth - 2) // 6 elif block_name == "ResNetBottleneck": block = ResNetBottleneck assert (depth - 2) % 9 == 0, "depth should be one of 164" layer_blocks = (depth - 2) // 9 else: raise ValueError("invalid block : {:}".format(block_name)) self.message = ( "SearchShapeCifarResNet : Depth : {:} , Layers for each block : {:}".format( depth, layer_blocks ) ) self.num_classes = num_classes self.channels = [16] self.layers = nn.ModuleList( [ ConvBNReLU( 3, 16, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=True ) ] ) self.InShape = None self.depth_info = OrderedDict() self.depth_at_i = OrderedDict() for stage in range(3): cur_block_choices = get_depth_choices(layer_blocks, False) assert ( cur_block_choices[-1] == layer_blocks ), "stage={:}, {:} vs {:}".format(stage, cur_block_choices, layer_blocks) self.message += ( "\nstage={:} ::: depth-block-choices={:} for {:} blocks.".format( stage, cur_block_choices, layer_blocks ) ) block_choices, xstart = [], len(self.layers) for iL in range(layer_blocks): iC = self.channels[-1] planes = 16 * (2 ** stage) stride = 2 if stage > 0 and iL == 0 else 1 module = block(iC, planes, stride) self.channels.append(module.out_dim) self.layers.append(module) self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iC={:3d}, oC={:3d}, stride={:}".format( stage, iL, layer_blocks, len(self.layers) - 1, iC, module.out_dim, stride, ) # added for depth layer_index = len(self.layers) - 1 if iL + 1 in cur_block_choices: block_choices.append(layer_index) if iL + 1 == layer_blocks: self.depth_info[layer_index] = { "choices": block_choices, "stage": stage, "xstart": xstart, } self.depth_info_list = [] for xend, info in self.depth_info.items(): self.depth_info_list.append((xend, info)) xstart, xstage = info["xstart"], info["stage"] for ilayer in range(xstart, xend + 1): idx = bisect_right(info["choices"], ilayer - 1) self.depth_at_i[ilayer] = (xstage, idx) self.avgpool = nn.AvgPool2d(8) self.classifier = nn.Linear(module.out_dim, num_classes) self.InShape = None self.tau = -1 self.search_mode = "basic" # assert sum(x.num_conv for x in self.layers) + 1 == depth, 'invalid depth check {:} vs {:}'.format(sum(x.num_conv for x in self.layers)+1, depth) # parameters for width self.Ranges = [] self.layer2indexRange = [] for i, layer in enumerate(self.layers): start_index = len(self.Ranges) self.Ranges += layer.get_range() self.layer2indexRange.append((start_index, len(self.Ranges))) assert len(self.Ranges) + 1 == depth, "invalid depth check {:} vs {:}".format( len(self.Ranges) + 1, depth ) self.register_parameter( "width_attentions", nn.Parameter(torch.Tensor(len(self.Ranges), get_width_choices(None))), ) self.register_parameter( "depth_attentions", nn.Parameter(torch.Tensor(3, get_depth_choices(layer_blocks, True))), ) nn.init.normal_(self.width_attentions, 0, 0.01) nn.init.normal_(self.depth_attentions, 0, 0.01) self.apply(initialize_resnet) def arch_parameters(self, LR=None): if LR is None: return [self.width_attentions, self.depth_attentions] else: return [ {"params": self.width_attentions, "lr": LR}, {"params": self.depth_attentions, "lr": LR}, ] def base_parameters(self): return ( list(self.layers.parameters()) + list(self.avgpool.parameters()) + list(self.classifier.parameters()) ) def get_flop(self, mode, config_dict, extra_info): if config_dict is not None: config_dict = config_dict.copy() # select channels channels = [3] for i, weight in enumerate(self.width_attentions): if mode == "genotype": with torch.no_grad(): probe = nn.functional.softmax(weight, dim=0) C = self.Ranges[i][torch.argmax(probe).item()] elif mode == "max": C = self.Ranges[i][-1] elif mode == "fix": C = int(math.sqrt(extra_info) * self.Ranges[i][-1]) elif mode == "random": assert isinstance(extra_info, float), "invalid extra_info : {:}".format( extra_info ) with torch.no_grad(): prob = nn.functional.softmax(weight, dim=0) approximate_C = int(math.sqrt(extra_info) * self.Ranges[i][-1]) for j in range(prob.size(0)): prob[j] = 1 / ( abs(j - (approximate_C - self.Ranges[i][j])) + 0.2 ) C = self.Ranges[i][torch.multinomial(prob, 1, False).item()] else: raise ValueError("invalid mode : {:}".format(mode)) channels.append(C) # select depth if mode == "genotype": with torch.no_grad(): depth_probs = nn.functional.softmax(self.depth_attentions, dim=1) choices = torch.argmax(depth_probs, dim=1).cpu().tolist() elif mode == "max" or mode == "fix": choices = [depth_probs.size(1) - 1 for _ in range(depth_probs.size(0))] elif mode == "random": with torch.no_grad(): depth_probs = nn.functional.softmax(self.depth_attentions, dim=1) choices = torch.multinomial(depth_probs, 1, False).cpu().tolist() else: raise ValueError("invalid mode : {:}".format(mode)) selected_layers = [] for choice, xvalue in zip(choices, self.depth_info_list): xtemp = xvalue[1]["choices"][choice] - xvalue[1]["xstart"] + 1 selected_layers.append(xtemp) flop = 0 for i, layer in enumerate(self.layers): s, e = self.layer2indexRange[i] xchl = tuple(channels[s : e + 1]) if i in self.depth_at_i: xstagei, xatti = self.depth_at_i[i] if xatti <= choices[xstagei]: # leave this depth flop += layer.get_flops(xchl) else: flop += 0 # do not use this layer else: flop += layer.get_flops(xchl) # the last fc layer flop += channels[-1] * self.classifier.out_features if config_dict is None: return flop / 1e6 else: config_dict["xchannels"] = channels config_dict["xblocks"] = selected_layers config_dict["super_type"] = "infer-shape" config_dict["estimated_FLOP"] = flop / 1e6 return flop / 1e6, config_dict def get_arch_info(self): string = ( "for depth and width, there are {:} + {:} attention probabilities.".format( len(self.depth_attentions), len(self.width_attentions) ) ) string += "\n{:}".format(self.depth_info) discrepancy = [] with torch.no_grad(): for i, att in enumerate(self.depth_attentions): prob = nn.functional.softmax(att, dim=0) prob = prob.cpu() selc = prob.argmax().item() prob = prob.tolist() prob = ["{:.3f}".format(x) for x in prob] xstring = "{:03d}/{:03d}-th : {:}".format( i, len(self.depth_attentions), " ".join(prob) ) logt = ["{:.4f}".format(x) for x in att.cpu().tolist()] xstring += " || {:17s}".format(" ".join(logt)) prob = sorted([float(x) for x in prob]) disc = prob[-1] - prob[-2] xstring += " || discrepancy={:.2f} || select={:}/{:}".format( disc, selc, len(prob) ) discrepancy.append(disc) string += "\n{:}".format(xstring) string += "\n-----------------------------------------------" for i, att in enumerate(self.width_attentions): prob = nn.functional.softmax(att, dim=0) prob = prob.cpu() selc = prob.argmax().item() prob = prob.tolist() prob = ["{:.3f}".format(x) for x in prob] xstring = "{:03d}/{:03d}-th : {:}".format( i, len(self.width_attentions), " ".join(prob) ) logt = ["{:.3f}".format(x) for x in att.cpu().tolist()] xstring += " || {:52s}".format(" ".join(logt)) prob = sorted([float(x) for x in prob]) disc = prob[-1] - prob[-2] xstring += " || dis={:.2f} || select={:}/{:}".format( disc, selc, len(prob) ) discrepancy.append(disc) string += "\n{:}".format(xstring) return string, discrepancy def set_tau(self, tau_max, tau_min, epoch_ratio): assert ( epoch_ratio >= 0 and epoch_ratio <= 1 ), "invalid epoch-ratio : {:}".format(epoch_ratio) tau = tau_min + (tau_max - tau_min) * (1 + math.cos(math.pi * epoch_ratio)) / 2 self.tau = tau def get_message(self): return self.message def forward(self, inputs): if self.search_mode == "basic": return self.basic_forward(inputs) elif self.search_mode == "search": return self.search_forward(inputs) else: raise ValueError("invalid search_mode = {:}".format(self.search_mode)) def search_forward(self, inputs): flop_width_probs = nn.functional.softmax(self.width_attentions, dim=1) flop_depth_probs = nn.functional.softmax(self.depth_attentions, dim=1) flop_depth_probs = torch.flip( torch.cumsum(torch.flip(flop_depth_probs, [1]), 1), [1] ) selected_widths, selected_width_probs = select2withP( self.width_attentions, self.tau ) selected_depth_probs = select2withP(self.depth_attentions, self.tau, True) with torch.no_grad(): selected_widths = selected_widths.cpu() x, last_channel_idx, expected_inC, flops = inputs, 0, 3, [] feature_maps = [] for i, layer in enumerate(self.layers): selected_w_index = selected_widths[ last_channel_idx : last_channel_idx + layer.num_conv ] selected_w_probs = selected_width_probs[ last_channel_idx : last_channel_idx + layer.num_conv ] layer_prob = flop_width_probs[ last_channel_idx : last_channel_idx + layer.num_conv ] x, expected_inC, expected_flop = layer( (x, expected_inC, layer_prob, selected_w_index, selected_w_probs) ) feature_maps.append(x) last_channel_idx += layer.num_conv if i in self.depth_info: # aggregate the information choices = self.depth_info[i]["choices"] xstagei = self.depth_info[i]["stage"] # print ('iL={:}, choices={:}, stage={:}, probs={:}'.format(i, choices, xstagei, selected_depth_probs[xstagei].cpu().tolist())) # for A, W in zip(choices, selected_depth_probs[xstagei]): # print('Size = {:}, W = {:}'.format(feature_maps[A].size(), W)) possible_tensors = [] max_C = max(feature_maps[A].size(1) for A in choices) for tempi, A in enumerate(choices): xtensor = ChannelWiseInter(feature_maps[A], max_C) # drop_ratio = 1-(tempi+1.0)/len(choices) # xtensor = drop_path(xtensor, drop_ratio) possible_tensors.append(xtensor) weighted_sum = sum( xtensor * W for xtensor, W in zip( possible_tensors, selected_depth_probs[xstagei] ) ) x = weighted_sum if i in self.depth_at_i: xstagei, xatti = self.depth_at_i[i] x_expected_flop = flop_depth_probs[xstagei, xatti] * expected_flop else: x_expected_flop = expected_flop flops.append(x_expected_flop) flops.append(expected_inC * (self.classifier.out_features * 1.0 / 1e6)) features = self.avgpool(x) features = features.view(features.size(0), -1) logits = linear_forward(features, self.classifier) return logits, torch.stack([sum(flops)]) def basic_forward(self, inputs): if self.InShape is None: self.InShape = (inputs.size(-2), inputs.size(-1)) x = inputs for i, layer in enumerate(self.layers): x = layer(x) features = self.avgpool(x) features = features.view(features.size(0), -1) logits = self.classifier(features) return features, logits