################################################## # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # ################################################## import math, torch from collections import OrderedDict from bisect import bisect_right import torch.nn as nn from ..initialization import initialize_resnet from ..SharedUtils import additive_func from .SoftSelect import select2withP, ChannelWiseInter from .SoftSelect import linear_forward from .SoftSelect import get_width_choices def get_depth_choices(nDepth, return_num): if nDepth == 2: choices = (1, 2) elif nDepth == 3: choices = (1, 2, 3) elif nDepth > 3: choices = list(range(1, nDepth + 1, 2)) if choices[-1] < nDepth: choices.append(nDepth) else: raise ValueError("invalid nDepth : {:}".format(nDepth)) if return_num: return len(choices) else: return choices class ConvBNReLU(nn.Module): num_conv = 1 def __init__( self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu ): super(ConvBNReLU, self).__init__() self.InShape = None self.OutShape = None self.choices = get_width_choices(nOut) self.register_buffer("choices_tensor", torch.Tensor(self.choices)) if has_avg: self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0) else: self.avg = None self.conv = nn.Conv2d( nIn, nOut, kernel_size=kernel, stride=stride, padding=padding, dilation=1, groups=1, bias=bias, ) if has_bn: self.bn = nn.BatchNorm2d(nOut) else: self.bn = None if has_relu: self.relu = nn.ReLU(inplace=False) else: self.relu = None self.in_dim = nIn self.out_dim = nOut def get_flops(self, divide=1): iC, oC = self.in_dim, self.out_dim assert ( iC <= self.conv.in_channels and oC <= self.conv.out_channels ), "{:} vs {:} | {:} vs {:}".format( iC, self.conv.in_channels, oC, self.conv.out_channels ) assert ( isinstance(self.InShape, tuple) and len(self.InShape) == 2 ), "invalid in-shape : {:}".format(self.InShape) assert ( isinstance(self.OutShape, tuple) and len(self.OutShape) == 2 ), "invalid out-shape : {:}".format(self.OutShape) # conv_per_position_flops = self.conv.kernel_size[0] * self.conv.kernel_size[1] * iC * oC / self.conv.groups conv_per_position_flops = ( self.conv.kernel_size[0] * self.conv.kernel_size[1] * 1.0 / self.conv.groups ) all_positions = self.OutShape[0] * self.OutShape[1] flops = (conv_per_position_flops * all_positions / divide) * iC * oC if self.conv.bias is not None: flops += all_positions / divide return flops def forward(self, inputs): if self.avg: out = self.avg(inputs) else: out = inputs conv = self.conv(out) if self.bn: out = self.bn(conv) else: out = conv if self.relu: out = self.relu(out) else: out = out if self.InShape is None: self.InShape = (inputs.size(-2), inputs.size(-1)) self.OutShape = (out.size(-2), out.size(-1)) return out class ResNetBasicblock(nn.Module): expansion = 1 num_conv = 2 def __init__(self, inplanes, planes, stride): super(ResNetBasicblock, self).__init__() assert stride == 1 or stride == 2, "invalid stride {:}".format(stride) self.conv_a = ConvBNReLU( inplanes, planes, 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True, ) self.conv_b = ConvBNReLU( planes, planes, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=False ) if stride == 2: self.downsample = ConvBNReLU( inplanes, planes, 1, 1, 0, False, has_avg=True, has_bn=False, has_relu=False, ) elif inplanes != planes: self.downsample = ConvBNReLU( inplanes, planes, 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=False, ) else: self.downsample = None self.out_dim = planes self.search_mode = "basic" def get_flops(self, divide=1): flop_A = self.conv_a.get_flops(divide) flop_B = self.conv_b.get_flops(divide) if hasattr(self.downsample, "get_flops"): flop_C = self.downsample.get_flops(divide) else: flop_C = 0 return flop_A + flop_B + flop_C def forward(self, inputs): basicblock = self.conv_a(inputs) basicblock = self.conv_b(basicblock) if self.downsample is not None: residual = self.downsample(inputs) else: residual = inputs out = additive_func(residual, basicblock) return nn.functional.relu(out, inplace=True) class ResNetBottleneck(nn.Module): expansion = 4 num_conv = 3 def __init__(self, inplanes, planes, stride): super(ResNetBottleneck, self).__init__() assert stride == 1 or stride == 2, "invalid stride {:}".format(stride) self.conv_1x1 = ConvBNReLU( inplanes, planes, 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=True ) self.conv_3x3 = ConvBNReLU( planes, planes, 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True, ) self.conv_1x4 = ConvBNReLU( planes, planes * self.expansion, 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=False, ) if stride == 2: self.downsample = ConvBNReLU( inplanes, planes * self.expansion, 1, 1, 0, False, has_avg=True, has_bn=False, has_relu=False, ) elif inplanes != planes * self.expansion: self.downsample = ConvBNReLU( inplanes, planes * self.expansion, 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=False, ) else: self.downsample = None self.out_dim = planes * self.expansion self.search_mode = "basic" def get_range(self): return ( self.conv_1x1.get_range() + self.conv_3x3.get_range() + self.conv_1x4.get_range() ) def get_flops(self, divide): flop_A = self.conv_1x1.get_flops(divide) flop_B = self.conv_3x3.get_flops(divide) flop_C = self.conv_1x4.get_flops(divide) if hasattr(self.downsample, "get_flops"): flop_D = self.downsample.get_flops(divide) else: flop_D = 0 return flop_A + flop_B + flop_C + flop_D def forward(self, inputs): bottleneck = self.conv_1x1(inputs) bottleneck = self.conv_3x3(bottleneck) bottleneck = self.conv_1x4(bottleneck) if self.downsample is not None: residual = self.downsample(inputs) else: residual = inputs out = additive_func(residual, bottleneck) return nn.functional.relu(out, inplace=True) class SearchDepthCifarResNet(nn.Module): def __init__(self, block_name, depth, num_classes): super(SearchDepthCifarResNet, self).__init__() # Model type specifies number of layers for CIFAR-10 and CIFAR-100 model if block_name == "ResNetBasicblock": block = ResNetBasicblock assert (depth - 2) % 6 == 0, "depth should be one of 20, 32, 44, 56, 110" layer_blocks = (depth - 2) // 6 elif block_name == "ResNetBottleneck": block = ResNetBottleneck assert (depth - 2) % 9 == 0, "depth should be one of 164" layer_blocks = (depth - 2) // 9 else: raise ValueError("invalid block : {:}".format(block_name)) self.message = ( "SearchShapeCifarResNet : Depth : {:} , Layers for each block : {:}".format( depth, layer_blocks ) ) self.num_classes = num_classes self.channels = [16] self.layers = nn.ModuleList( [ ConvBNReLU( 3, 16, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=True ) ] ) self.InShape = None self.depth_info = OrderedDict() self.depth_at_i = OrderedDict() for stage in range(3): cur_block_choices = get_depth_choices(layer_blocks, False) assert ( cur_block_choices[-1] == layer_blocks ), "stage={:}, {:} vs {:}".format(stage, cur_block_choices, layer_blocks) self.message += ( "\nstage={:} ::: depth-block-choices={:} for {:} blocks.".format( stage, cur_block_choices, layer_blocks ) ) block_choices, xstart = [], len(self.layers) for iL in range(layer_blocks): iC = self.channels[-1] planes = 16 * (2 ** stage) stride = 2 if stage > 0 and iL == 0 else 1 module = block(iC, planes, stride) self.channels.append(module.out_dim) self.layers.append(module) self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iC={:3d}, oC={:3d}, stride={:}".format( stage, iL, layer_blocks, len(self.layers) - 1, iC, module.out_dim, stride, ) # added for depth layer_index = len(self.layers) - 1 if iL + 1 in cur_block_choices: block_choices.append(layer_index) if iL + 1 == layer_blocks: self.depth_info[layer_index] = { "choices": block_choices, "stage": stage, "xstart": xstart, } self.depth_info_list = [] for xend, info in self.depth_info.items(): self.depth_info_list.append((xend, info)) xstart, xstage = info["xstart"], info["stage"] for ilayer in range(xstart, xend + 1): idx = bisect_right(info["choices"], ilayer - 1) self.depth_at_i[ilayer] = (xstage, idx) self.avgpool = nn.AvgPool2d(8) self.classifier = nn.Linear(module.out_dim, num_classes) self.InShape = None self.tau = -1 self.search_mode = "basic" # assert sum(x.num_conv for x in self.layers) + 1 == depth, 'invalid depth check {:} vs {:}'.format(sum(x.num_conv for x in self.layers)+1, depth) self.register_parameter( "depth_attentions", nn.Parameter(torch.Tensor(3, get_depth_choices(layer_blocks, True))), ) nn.init.normal_(self.depth_attentions, 0, 0.01) self.apply(initialize_resnet) def arch_parameters(self): return [self.depth_attentions] def base_parameters(self): return ( list(self.layers.parameters()) + list(self.avgpool.parameters()) + list(self.classifier.parameters()) ) def get_flop(self, mode, config_dict, extra_info): if config_dict is not None: config_dict = config_dict.copy() # select depth if mode == "genotype": with torch.no_grad(): depth_probs = nn.functional.softmax(self.depth_attentions, dim=1) choices = torch.argmax(depth_probs, dim=1).cpu().tolist() elif mode == "max": choices = [depth_probs.size(1) - 1 for _ in range(depth_probs.size(0))] elif mode == "random": with torch.no_grad(): depth_probs = nn.functional.softmax(self.depth_attentions, dim=1) choices = torch.multinomial(depth_probs, 1, False).cpu().tolist() else: raise ValueError("invalid mode : {:}".format(mode)) selected_layers = [] for choice, xvalue in zip(choices, self.depth_info_list): xtemp = xvalue[1]["choices"][choice] - xvalue[1]["xstart"] + 1 selected_layers.append(xtemp) flop = 0 for i, layer in enumerate(self.layers): if i in self.depth_at_i: xstagei, xatti = self.depth_at_i[i] if xatti <= choices[xstagei]: # leave this depth flop += layer.get_flops() else: flop += 0 # do not use this layer else: flop += layer.get_flops() # the last fc layer flop += self.classifier.in_features * self.classifier.out_features if config_dict is None: return flop / 1e6 else: config_dict["xblocks"] = selected_layers config_dict["super_type"] = "infer-depth" config_dict["estimated_FLOP"] = flop / 1e6 return flop / 1e6, config_dict def get_arch_info(self): string = "for depth, there are {:} attention probabilities.".format( len(self.depth_attentions) ) string += "\n{:}".format(self.depth_info) discrepancy = [] with torch.no_grad(): for i, att in enumerate(self.depth_attentions): prob = nn.functional.softmax(att, dim=0) prob = prob.cpu() selc = prob.argmax().item() prob = prob.tolist() prob = ["{:.3f}".format(x) for x in prob] xstring = "{:03d}/{:03d}-th : {:}".format( i, len(self.depth_attentions), " ".join(prob) ) logt = ["{:.4f}".format(x) for x in att.cpu().tolist()] xstring += " || {:17s}".format(" ".join(logt)) prob = sorted([float(x) for x in prob]) disc = prob[-1] - prob[-2] xstring += " || discrepancy={:.2f} || select={:}/{:}".format( disc, selc, len(prob) ) discrepancy.append(disc) string += "\n{:}".format(xstring) return string, discrepancy def set_tau(self, tau_max, tau_min, epoch_ratio): assert ( epoch_ratio >= 0 and epoch_ratio <= 1 ), "invalid epoch-ratio : {:}".format(epoch_ratio) tau = tau_min + (tau_max - tau_min) * (1 + math.cos(math.pi * epoch_ratio)) / 2 self.tau = tau def get_message(self): return self.message def forward(self, inputs): if self.search_mode == "basic": return self.basic_forward(inputs) elif self.search_mode == "search": return self.search_forward(inputs) else: raise ValueError("invalid search_mode = {:}".format(self.search_mode)) def search_forward(self, inputs): flop_depth_probs = nn.functional.softmax(self.depth_attentions, dim=1) flop_depth_probs = torch.flip( torch.cumsum(torch.flip(flop_depth_probs, [1]), 1), [1] ) selected_depth_probs = select2withP(self.depth_attentions, self.tau, True) x, flops = inputs, [] feature_maps = [] for i, layer in enumerate(self.layers): layer_i = layer(x) feature_maps.append(layer_i) if i in self.depth_info: # aggregate the information choices = self.depth_info[i]["choices"] xstagei = self.depth_info[i]["stage"] possible_tensors = [] for tempi, A in enumerate(choices): xtensor = feature_maps[A] possible_tensors.append(xtensor) weighted_sum = sum( xtensor * W for xtensor, W in zip( possible_tensors, selected_depth_probs[xstagei] ) ) x = weighted_sum else: x = layer_i if i in self.depth_at_i: xstagei, xatti = self.depth_at_i[i] # print ('layer-{:03d}, stage={:}, att={:}, prob={:}, flop={:}'.format(i, xstagei, xatti, flop_depth_probs[xstagei, xatti].item(), layer.get_flops(1e6))) x_expected_flop = flop_depth_probs[xstagei, xatti] * layer.get_flops( 1e6 ) else: x_expected_flop = layer.get_flops(1e6) flops.append(x_expected_flop) flops.append( (self.classifier.in_features * self.classifier.out_features * 1.0 / 1e6) ) features = self.avgpool(x) features = features.view(features.size(0), -1) logits = linear_forward(features, self.classifier) return logits, torch.stack([sum(flops)]) def basic_forward(self, inputs): if self.InShape is None: self.InShape = (inputs.size(-2), inputs.size(-1)) x = inputs for i, layer in enumerate(self.layers): x = layer(x) features = self.avgpool(x) features = features.view(features.size(0), -1) logits = self.classifier(features) return features, logits