################################################## # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # ################################################## import math, torch import torch.nn as nn from ..initialization import initialize_resnet from ..SharedUtils import additive_func from .SoftSelect import select2withP, ChannelWiseInter from .SoftSelect import linear_forward from .SoftSelect import get_width_choices as get_choices def conv_forward(inputs, conv, choices): iC = conv.in_channels fill_size = list(inputs.size()) fill_size[1] = iC - fill_size[1] filled = torch.zeros(fill_size, device=inputs.device) xinputs = torch.cat((inputs, filled), dim=1) outputs = conv(xinputs) selecteds = [outputs[:, :oC] for oC in choices] return selecteds class ConvBNReLU(nn.Module): num_conv = 1 def __init__( self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu ): super(ConvBNReLU, self).__init__() self.InShape = None self.OutShape = None self.choices = get_choices(nOut) self.register_buffer("choices_tensor", torch.Tensor(self.choices)) if has_avg: self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0) else: self.avg = None self.conv = nn.Conv2d( nIn, nOut, kernel_size=kernel, stride=stride, padding=padding, dilation=1, groups=1, bias=bias, ) # if has_bn : self.bn = nn.BatchNorm2d(nOut) # else : self.bn = None self.has_bn = has_bn self.BNs = nn.ModuleList() for i, _out in enumerate(self.choices): self.BNs.append(nn.BatchNorm2d(_out)) if has_relu: self.relu = nn.ReLU(inplace=True) else: self.relu = None self.in_dim = nIn self.out_dim = nOut self.search_mode = "basic" def get_flops(self, channels, check_range=True, divide=1): iC, oC = channels if check_range: assert ( iC <= self.conv.in_channels and oC <= self.conv.out_channels ), "{:} vs {:} | {:} vs {:}".format( iC, self.conv.in_channels, oC, self.conv.out_channels ) assert ( isinstance(self.InShape, tuple) and len(self.InShape) == 2 ), "invalid in-shape : {:}".format(self.InShape) assert ( isinstance(self.OutShape, tuple) and len(self.OutShape) == 2 ), "invalid out-shape : {:}".format(self.OutShape) # conv_per_position_flops = self.conv.kernel_size[0] * self.conv.kernel_size[1] * iC * oC / self.conv.groups conv_per_position_flops = ( self.conv.kernel_size[0] * self.conv.kernel_size[1] * 1.0 / self.conv.groups ) all_positions = self.OutShape[0] * self.OutShape[1] flops = (conv_per_position_flops * all_positions / divide) * iC * oC if self.conv.bias is not None: flops += all_positions / divide return flops def get_range(self): return [self.choices] def forward(self, inputs): if self.search_mode == "basic": return self.basic_forward(inputs) elif self.search_mode == "search": return self.search_forward(inputs) else: raise ValueError("invalid search_mode = {:}".format(self.search_mode)) def search_forward(self, tuple_inputs): assert ( isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5 ), "invalid type input : {:}".format(type(tuple_inputs)) inputs, expected_inC, probability, index, prob = tuple_inputs index, prob = torch.squeeze(index).tolist(), torch.squeeze(prob) probability = torch.squeeze(probability) assert len(index) == 2, "invalid length : {:}".format(index) # compute expected flop # coordinates = torch.arange(self.x_range[0], self.x_range[1]+1).type_as(probability) expected_outC = (self.choices_tensor * probability).sum() expected_flop = self.get_flops([expected_inC, expected_outC], False, 1e6) if self.avg: out = self.avg(inputs) else: out = inputs # convolutional layer out_convs = conv_forward(out, self.conv, [self.choices[i] for i in index]) out_bns = [self.BNs[idx](out_conv) for idx, out_conv in zip(index, out_convs)] # merge out_channel = max([x.size(1) for x in out_bns]) outA = ChannelWiseInter(out_bns[0], out_channel) outB = ChannelWiseInter(out_bns[1], out_channel) out = outA * prob[0] + outB * prob[1] # out = additive_func(out_bns[0]*prob[0], out_bns[1]*prob[1]) if self.relu: out = self.relu(out) else: out = out return out, expected_outC, expected_flop def basic_forward(self, inputs): if self.avg: out = self.avg(inputs) else: out = inputs conv = self.conv(out) if self.has_bn: out = self.BNs[-1](conv) else: out = conv if self.relu: out = self.relu(out) else: out = out if self.InShape is None: self.InShape = (inputs.size(-2), inputs.size(-1)) self.OutShape = (out.size(-2), out.size(-1)) return out class SimBlock(nn.Module): expansion = 1 num_conv = 1 def __init__(self, inplanes, planes, stride): super(SimBlock, self).__init__() assert stride == 1 or stride == 2, "invalid stride {:}".format(stride) self.conv = ConvBNReLU( inplanes, planes, 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True, ) if stride == 2: self.downsample = ConvBNReLU( inplanes, planes, 1, 1, 0, False, has_avg=True, has_bn=False, has_relu=False, ) elif inplanes != planes: self.downsample = ConvBNReLU( inplanes, planes, 1, 1, 0, False, has_avg=False, has_bn=True, has_relu=False, ) else: self.downsample = None self.out_dim = planes self.search_mode = "basic" def get_range(self): return self.conv.get_range() def get_flops(self, channels): assert len(channels) == 2, "invalid channels : {:}".format(channels) flop_A = self.conv.get_flops([channels[0], channels[1]]) if hasattr(self.downsample, "get_flops"): flop_C = self.downsample.get_flops([channels[0], channels[-1]]) else: flop_C = 0 if ( channels[0] != channels[-1] and self.downsample is None ): # this short-cut will be added during the infer-train flop_C = ( channels[0] * channels[-1] * self.conv.OutShape[0] * self.conv.OutShape[1] ) return flop_A + flop_C def forward(self, inputs): if self.search_mode == "basic": return self.basic_forward(inputs) elif self.search_mode == "search": return self.search_forward(inputs) else: raise ValueError("invalid search_mode = {:}".format(self.search_mode)) def search_forward(self, tuple_inputs): assert ( isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5 ), "invalid type input : {:}".format(type(tuple_inputs)) inputs, expected_inC, probability, indexes, probs = tuple_inputs assert ( indexes.size(0) == 1 and probs.size(0) == 1 and probability.size(0) == 1 ), "invalid size : {:}, {:}, {:}".format( indexes.size(), probs.size(), probability.size() ) out, expected_next_inC, expected_flop = self.conv( (inputs, expected_inC, probability[0], indexes[0], probs[0]) ) if self.downsample is not None: residual, _, expected_flop_c = self.downsample( (inputs, expected_inC, probability[-1], indexes[-1], probs[-1]) ) else: residual, expected_flop_c = inputs, 0 out = additive_func(residual, out) return ( nn.functional.relu(out, inplace=True), expected_next_inC, sum([expected_flop, expected_flop_c]), ) def basic_forward(self, inputs): basicblock = self.conv(inputs) if self.downsample is not None: residual = self.downsample(inputs) else: residual = inputs out = additive_func(residual, basicblock) return nn.functional.relu(out, inplace=True) class SearchWidthSimResNet(nn.Module): def __init__(self, depth, num_classes): super(SearchWidthSimResNet, self).__init__() assert ( depth - 2 ) % 3 == 0, "depth should be one of 5, 8, 11, 14, ... instead of {:}".format( depth ) layer_blocks = (depth - 2) // 3 self.message = ( "SearchWidthSimResNet : Depth : {:} , Layers for each block : {:}".format( depth, layer_blocks ) ) self.num_classes = num_classes self.channels = [16] self.layers = nn.ModuleList( [ ConvBNReLU( 3, 16, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=True ) ] ) self.InShape = None for stage in range(3): for iL in range(layer_blocks): iC = self.channels[-1] planes = 16 * (2 ** stage) stride = 2 if stage > 0 and iL == 0 else 1 module = SimBlock(iC, planes, stride) self.channels.append(module.out_dim) self.layers.append(module) self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iC={:3d}, oC={:3d}, stride={:}".format( stage, iL, layer_blocks, len(self.layers) - 1, iC, module.out_dim, stride, ) self.avgpool = nn.AvgPool2d(8) self.classifier = nn.Linear(module.out_dim, num_classes) self.InShape = None self.tau = -1 self.search_mode = "basic" # assert sum(x.num_conv for x in self.layers) + 1 == depth, 'invalid depth check {:} vs {:}'.format(sum(x.num_conv for x in self.layers)+1, depth) # parameters for width self.Ranges = [] self.layer2indexRange = [] for i, layer in enumerate(self.layers): start_index = len(self.Ranges) self.Ranges += layer.get_range() self.layer2indexRange.append((start_index, len(self.Ranges))) assert len(self.Ranges) + 1 == depth, "invalid depth check {:} vs {:}".format( len(self.Ranges) + 1, depth ) self.register_parameter( "width_attentions", nn.Parameter(torch.Tensor(len(self.Ranges), get_choices(None))), ) nn.init.normal_(self.width_attentions, 0, 0.01) self.apply(initialize_resnet) def arch_parameters(self): return [self.width_attentions] def base_parameters(self): return ( list(self.layers.parameters()) + list(self.avgpool.parameters()) + list(self.classifier.parameters()) ) def get_flop(self, mode, config_dict, extra_info): if config_dict is not None: config_dict = config_dict.copy() # weights = [F.softmax(x, dim=0) for x in self.width_attentions] channels = [3] for i, weight in enumerate(self.width_attentions): if mode == "genotype": with torch.no_grad(): probe = nn.functional.softmax(weight, dim=0) C = self.Ranges[i][torch.argmax(probe).item()] elif mode == "max": C = self.Ranges[i][-1] elif mode == "fix": C = int(math.sqrt(extra_info) * self.Ranges[i][-1]) elif mode == "random": assert isinstance(extra_info, float), "invalid extra_info : {:}".format( extra_info ) with torch.no_grad(): prob = nn.functional.softmax(weight, dim=0) approximate_C = int(math.sqrt(extra_info) * self.Ranges[i][-1]) for j in range(prob.size(0)): prob[j] = 1 / ( abs(j - (approximate_C - self.Ranges[i][j])) + 0.2 ) C = self.Ranges[i][torch.multinomial(prob, 1, False).item()] else: raise ValueError("invalid mode : {:}".format(mode)) channels.append(C) flop = 0 for i, layer in enumerate(self.layers): s, e = self.layer2indexRange[i] xchl = tuple(channels[s : e + 1]) flop += layer.get_flops(xchl) # the last fc layer flop += channels[-1] * self.classifier.out_features if config_dict is None: return flop / 1e6 else: config_dict["xchannels"] = channels config_dict["super_type"] = "infer-width" config_dict["estimated_FLOP"] = flop / 1e6 return flop / 1e6, config_dict def get_arch_info(self): string = "for width, there are {:} attention probabilities.".format( len(self.width_attentions) ) discrepancy = [] with torch.no_grad(): for i, att in enumerate(self.width_attentions): prob = nn.functional.softmax(att, dim=0) prob = prob.cpu() selc = prob.argmax().item() prob = prob.tolist() prob = ["{:.3f}".format(x) for x in prob] xstring = "{:03d}/{:03d}-th : {:}".format( i, len(self.width_attentions), " ".join(prob) ) logt = ["{:.3f}".format(x) for x in att.cpu().tolist()] xstring += " || {:52s}".format(" ".join(logt)) prob = sorted([float(x) for x in prob]) disc = prob[-1] - prob[-2] xstring += " || dis={:.2f} || select={:}/{:}".format( disc, selc, len(prob) ) discrepancy.append(disc) string += "\n{:}".format(xstring) return string, discrepancy def set_tau(self, tau_max, tau_min, epoch_ratio): assert ( epoch_ratio >= 0 and epoch_ratio <= 1 ), "invalid epoch-ratio : {:}".format(epoch_ratio) tau = tau_min + (tau_max - tau_min) * (1 + math.cos(math.pi * epoch_ratio)) / 2 self.tau = tau def get_message(self): return self.message def forward(self, inputs): if self.search_mode == "basic": return self.basic_forward(inputs) elif self.search_mode == "search": return self.search_forward(inputs) else: raise ValueError("invalid search_mode = {:}".format(self.search_mode)) def search_forward(self, inputs): flop_probs = nn.functional.softmax(self.width_attentions, dim=1) selected_widths, selected_probs = select2withP(self.width_attentions, self.tau) with torch.no_grad(): selected_widths = selected_widths.cpu() x, last_channel_idx, expected_inC, flops = inputs, 0, 3, [] for i, layer in enumerate(self.layers): selected_w_index = selected_widths[ last_channel_idx : last_channel_idx + layer.num_conv ] selected_w_probs = selected_probs[ last_channel_idx : last_channel_idx + layer.num_conv ] layer_prob = flop_probs[ last_channel_idx : last_channel_idx + layer.num_conv ] x, expected_inC, expected_flop = layer( (x, expected_inC, layer_prob, selected_w_index, selected_w_probs) ) last_channel_idx += layer.num_conv flops.append(expected_flop) flops.append(expected_inC * (self.classifier.out_features * 1.0 / 1e6)) features = self.avgpool(x) features = features.view(features.size(0), -1) logits = linear_forward(features, self.classifier) return logits, torch.stack([sum(flops)]) def basic_forward(self, inputs): if self.InShape is None: self.InShape = (inputs.size(-2), inputs.size(-1)) x = inputs for i, layer in enumerate(self.layers): x = layer(x) features = self.avgpool(x) features = features.view(features.size(0), -1) logits = self.classifier(features) return features, logits