# Copyright 2021 Samsung Electronics Co., Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at import copy import time # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================= import numpy as np import torch from torch import nn from . import measure def get_score(net, x, target, device, split_data): result_list = [] x = torch.randn(size=(1, 3, 64, 64)).to(device) net.to(device) def forward_hook(module, data_input, data_output): fea = data_output[0].detach() fea = fea.reshape(fea.shape[0], -1) n = fea.shape[0] corr = torch.corrcoef(fea) corr[torch.isnan(corr)] = 0 corr[torch.isinf(corr)] = 0 values = torch.linalg.eig(corr)[0] # result = np.real(np.min(values)) / np.real(np.max(values)) result = torch.min(torch.real(values)) result_list.append(result) for name, modules in net.named_modules(): modules.register_forward_hook(forward_hook) N = x.shape[0] for sp in range(split_data): st = sp * N // split_data en = (sp + 1) * N // split_data y = net(x[st:en]) # break results = torch.tensor(result_list) results = results[torch.logical_not(torch.isnan(results))] v = torch.sum(results) result_list.clear() return v.item() @measure('meco', bn=True) def compute_meco(net, inputs, targets, split_data=1, loss_fn=None): device = inputs.device # Compute gradients (but don't apply them) net.zero_grad() try: meco = get_score(net, inputs, targets, device, split_data=split_data) except Exception as e: print(e) meco = np.nan, None return meco