MeCo/sota/cnn/hdf5.py
HamsterMimi 189df25fd3 upload
2023-05-04 13:09:03 +08:00

41 lines
1.3 KiB
Python

import h5py
import numpy as np
from PIL import Image
import torch
from torch.utils.data import Dataset, DataLoader
class H5Dataset(Dataset):
def __init__(self, h5_path, transform=None):
self.h5_path = h5_path
self.h5_file = None
self.length = len(h5py.File(h5_path, 'r'))
self.transform = transform
def __getitem__(self, index):
#loading in getitem allows us to use multiple processes for data loading
#because hdf5 files aren't pickelable so can't transfer them across processes
# https://discuss.pytorch.org/t/hdf5-a-data-format-for-pytorch/40379
# https://discuss.pytorch.org/t/dataloader-when-num-worker-0-there-is-bug/25643/16
# TODO possible look at __getstate__ and __setstate__ as a more elegant solution
if self.h5_file is None:
self.h5_file = h5py.File(self.h5_path, 'r', libver="latest", swmr=True)
record = self.h5_file[str(index)]
if self.transform:
x = Image.fromarray(record['data'][()])
x = self.transform(x)
else:
x = torch.from_numpy(record['data'][()])
y = record['target'][()]
y = torch.from_numpy(np.asarray(y))
return (x,y)
def __len__(self):
return self.length