181 lines
6.8 KiB
Python
181 lines
6.8 KiB
Python
import torch
|
|
import torch.nn as nn
|
|
from torch.autograd import Variable
|
|
|
|
OPS = {
|
|
'noise': lambda C, stride, affine: NoiseOp(stride, 0., 1.),
|
|
'none': lambda C, stride, affine: Zero(stride),
|
|
'avg_pool_3x3': lambda C, stride, affine: nn.AvgPool2d(3, stride=stride, padding=1, count_include_pad=False),
|
|
'max_pool_3x3' : lambda C, stride, affine: nn.MaxPool2d(3, stride=stride, padding=1),
|
|
'skip_connect': lambda C, stride, affine: Identity() if stride == 1 else FactorizedReduce(C, C, affine=affine),
|
|
'sep_conv_3x3': lambda C, stride, affine: SepConv(C, C, 3, stride, 1, affine=affine),
|
|
'sep_conv_5x5': lambda C, stride, affine: SepConv(C, C, 5, stride, 2, affine=affine),
|
|
'sep_conv_7x7': lambda C, stride, affine: SepConv(C, C, 7, stride, 3, affine=affine),
|
|
'dil_conv_3x3': lambda C, stride, affine: DilConv(C, C, 3, stride, 2, 2, affine=affine),
|
|
'dil_conv_5x5': lambda C, stride, affine: DilConv(C, C, 5, stride, 4, 2, affine=affine),
|
|
'conv_7x1_1x7': lambda C, stride, affine: nn.Sequential(
|
|
nn.ReLU(inplace=False),
|
|
nn.Conv2d(C, C, (1, 7), stride=(1, stride), padding=(0, 3), bias=False),
|
|
nn.Conv2d(C, C, (7, 1), stride=(stride, 1), padding=(3, 0), bias=False),
|
|
nn.BatchNorm2d(C, affine=affine)
|
|
),
|
|
'sep_conv_3x3_skip': lambda C, stride, affine: SepConvSkip(C, C, 3, stride, 1, affine=affine),
|
|
'sep_conv_5x5_skip': lambda C, stride, affine: SepConvSkip(C, C, 5, stride, 2, affine=affine),
|
|
'dil_conv_3x3_skip': lambda C, stride, affine: DilConvSkip(C, C, 3, stride, 2, 2, affine=affine),
|
|
'dil_conv_5x5_skip': lambda C, stride, affine: DilConvSkip(C, C, 5, stride, 4, 2, affine=affine),
|
|
}
|
|
|
|
|
|
class NoiseOp(nn.Module):
|
|
def __init__(self, stride, mean, std):
|
|
super(NoiseOp, self).__init__()
|
|
self.stride = stride
|
|
self.mean = mean
|
|
self.std = std
|
|
|
|
def forward(self, x, block_input=False):
|
|
if block_input:
|
|
x = x*0
|
|
if self.stride != 1:
|
|
x_new = x[:,:,::self.stride,::self.stride]
|
|
else:
|
|
x_new = x
|
|
noise = Variable(x_new.data.new(x_new.size()).normal_(self.mean, self.std))
|
|
|
|
return noise
|
|
|
|
|
|
class ReLUConvBN(nn.Module):
|
|
|
|
def __init__(self, C_in, C_out, kernel_size, stride, padding, affine=True):
|
|
super(ReLUConvBN, self).__init__()
|
|
self.op = nn.Sequential(
|
|
nn.ReLU(inplace=False),
|
|
nn.Conv2d(C_in, C_out, kernel_size, stride=stride, padding=padding, bias=False),
|
|
nn.BatchNorm2d(C_out, affine=affine)
|
|
)
|
|
|
|
def forward(self, x, block_input=False):
|
|
if block_input:
|
|
x = x*0
|
|
return self.op(x)
|
|
|
|
|
|
class DilConv(nn.Module):
|
|
|
|
def __init__(self, C_in, C_out, kernel_size, stride, padding, dilation, affine=True):
|
|
super(DilConv, self).__init__()
|
|
self.op = nn.Sequential(
|
|
nn.ReLU(inplace=False),
|
|
nn.Conv2d(C_in, C_in, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation,
|
|
groups=C_in, bias=False),
|
|
nn.Conv2d(C_in, C_out, kernel_size=1, padding=0, bias=False),
|
|
nn.BatchNorm2d(C_out, affine=affine),
|
|
)
|
|
|
|
def forward(self, x, block_input=False):
|
|
if block_input:
|
|
x = x*0
|
|
return self.op(x)
|
|
|
|
|
|
class SepConv(nn.Module):
|
|
def __init__(self, C_in, C_out, kernel_size, stride, padding, affine=True):
|
|
super(SepConv, self).__init__()
|
|
self.op = nn.Sequential(
|
|
nn.ReLU(inplace=False),
|
|
nn.Conv2d(C_in, C_in, kernel_size=kernel_size, stride=stride, padding=padding, groups=C_in, bias=False),
|
|
nn.Conv2d(C_in, C_in, kernel_size=1, padding=0, bias=False),
|
|
nn.BatchNorm2d(C_in, affine=affine),
|
|
nn.ReLU(inplace=False),
|
|
nn.Conv2d(C_in, C_in, kernel_size=kernel_size, stride=1, padding=padding, groups=C_in, bias=False),
|
|
nn.Conv2d(C_in, C_out, kernel_size=1, padding=0, bias=False),
|
|
nn.BatchNorm2d(C_out, affine=affine),
|
|
)
|
|
|
|
def forward(self, x, block_input=False):
|
|
if block_input:
|
|
x = x*0
|
|
return self.op(x)
|
|
|
|
|
|
class Identity(nn.Module):
|
|
|
|
def __init__(self):
|
|
super(Identity, self).__init__()
|
|
|
|
def forward(self, x, block_input=False):
|
|
if block_input:
|
|
x = x*0
|
|
return x
|
|
|
|
|
|
class Zero(nn.Module):
|
|
|
|
def __init__(self, stride):
|
|
super(Zero, self).__init__()
|
|
self.stride = stride
|
|
|
|
def forward(self, x, block_input=False):
|
|
if block_input:
|
|
x = x*0
|
|
if self.stride == 1:
|
|
return x.mul(0.)
|
|
return x[:, :, ::self.stride, ::self.stride].mul(0.)
|
|
|
|
|
|
class FactorizedReduce(nn.Module):
|
|
|
|
def __init__(self, C_in, C_out, affine=True):
|
|
super(FactorizedReduce, self).__init__()
|
|
assert C_out % 2 == 0
|
|
self.relu = nn.ReLU(inplace=False)
|
|
self.conv_1 = nn.Conv2d(C_in, C_out // 2, 1, stride=2, padding=0, bias=False)
|
|
self.conv_2 = nn.Conv2d(C_in, C_out // 2, 1, stride=2, padding=0, bias=False)
|
|
self.bn = nn.BatchNorm2d(C_out, affine=affine)
|
|
|
|
def forward(self, x, block_input=False):
|
|
if block_input:
|
|
x = x*0
|
|
x = self.relu(x)
|
|
out = torch.cat([self.conv_1(x), self.conv_2(x[:, :, 1:, 1:])], dim=1)
|
|
out = self.bn(out)
|
|
return out
|
|
|
|
|
|
#### operations with skip
|
|
class DilConvSkip(nn.Module):
|
|
def __init__(self, C_in, C_out, kernel_size, stride, padding, dilation, affine=True):
|
|
super(DilConvSkip, self).__init__()
|
|
self.op = nn.Sequential(
|
|
nn.ReLU(inplace=False),
|
|
nn.Conv2d(C_in, C_in, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation,
|
|
groups=C_in, bias=False),
|
|
nn.Conv2d(C_in, C_out, kernel_size=1, padding=0, bias=False),
|
|
nn.BatchNorm2d(C_out, affine=affine),
|
|
)
|
|
|
|
def forward(self, x, block_input=False):
|
|
if block_input:
|
|
x = x*0
|
|
return self.op(x) + x
|
|
|
|
|
|
class SepConvSkip(nn.Module):
|
|
def __init__(self, C_in, C_out, kernel_size, stride, padding, affine=True):
|
|
super(SepConvSkip, self).__init__()
|
|
self.op = nn.Sequential(
|
|
nn.ReLU(inplace=False),
|
|
nn.Conv2d(C_in, C_in, kernel_size=kernel_size, stride=stride, padding=padding, groups=C_in, bias=False),
|
|
nn.Conv2d(C_in, C_in, kernel_size=1, padding=0, bias=False),
|
|
nn.BatchNorm2d(C_in, affine=affine),
|
|
nn.ReLU(inplace=False),
|
|
nn.Conv2d(C_in, C_in, kernel_size=kernel_size, stride=1, padding=padding, groups=C_in, bias=False),
|
|
nn.Conv2d(C_in, C_out, kernel_size=1, padding=0, bias=False),
|
|
nn.BatchNorm2d(C_out, affine=affine),
|
|
)
|
|
|
|
def forward(self, x, block_input=False):
|
|
if block_input:
|
|
x = x*0
|
|
return self.op(x) + x |