MeCo/sota/cnn/init_projection.py
HamsterMimi 5a1dc89756 update
2023-05-04 13:41:59 +08:00

321 lines
12 KiB
Python

import sys
sys.path.insert(0, '../../')
import numpy as np
import torch
import logging
import torch.utils
from copy import deepcopy
from foresight.pruners import *
torch.set_printoptions(precision=4, sci_mode=False)
def sample_op(model, input, target, args, cell_type, selected_eid=None):
''' operation '''
#### macros
num_edges, num_ops = model.num_edges, model.num_ops
candidate_flags = model.candidate_flags[cell_type]
proj_crit = args.proj_crit[cell_type]
#### select an edge
if selected_eid is None:
remain_eids = torch.nonzero(candidate_flags).cpu().numpy().T[0]
selected_eid = np.random.choice(remain_eids, size=1)[0]
logging.info('selected edge: %d %s', selected_eid, cell_type)
select_opid = np.random.choice(np.array(range(num_ops)), size=1)[0]
return selected_eid, select_opid
def project_op(model, input, target, args, cell_type, proj_queue=None, selected_eid=None):
''' operation '''
#### macros
num_edges, num_ops = model.num_edges, model.num_ops
candidate_flags = model.candidate_flags[cell_type]
proj_crit = args.proj_crit[cell_type]
#### select an edge
if selected_eid is None:
remain_eids = torch.nonzero(candidate_flags).cpu().numpy().T[0]
# print(num_edges, num_ops, remain_eids)
if args.edge_decision == "random":
selected_eid = np.random.choice(remain_eids, size=1)[0]
logging.info('selected edge: %d %s', selected_eid, cell_type)
elif args.edge_decision == 'reverse':
selected_eid = remain_eids[-1]
logging.info('selected edge: %d %s', selected_eid, cell_type)
else:
selected_eid = remain_eids[0]
logging.info('selected node: %d %s', selected_eid, cell_type)
#### select the best operation
if proj_crit == 'jacob':
crit_idx = 3
compare = lambda x, y: x < y
else:
crit_idx = 0
compare = lambda x, y: x < y
if args.dataset == 'cifar100':
n_classes = 100
elif args.dataset == 'imagenet16-120':
n_classes = 120
else:
n_classes = 10
best_opid = 0
crit_extrema = None
crit_list = []
op_ids = []
for opid in range(num_ops):
## projection
weights = model.get_projected_weights(cell_type)
proj_mask = torch.ones_like(weights[selected_eid])
proj_mask[opid] = 0
weights[selected_eid] = weights[selected_eid] * proj_mask
# ## proj evaluation
# with torch.no_grad():
# valid_stats = Jocab_Score(model, cell_type, input, target, weights=weights)
# crit = valid_stats
# crit_list.append(crit)
# if crit_extrema is None or compare(crit, crit_extrema):
# crit_extrema = crit
# best_opid = opid
## proj evaluation
if proj_crit == 'jacob':
crit = Jocab_Score(model,cell_type, input, target, weights=weights)
else:
cache_weight = model.proj_weights[cell_type][selected_eid]
cache_flag = model.candidate_flags[cell_type][selected_eid]
for idx in range(num_ops):
if idx == opid:
model.proj_weights[cell_type][selected_eid][opid] = 0
else:
model.proj_weights[cell_type][selected_eid][idx] = 1.0 / num_ops
model.candidate_flags[cell_type][selected_eid] = False
# print(model.get_projected_weights())
measures = predictive.find_measures(model,
proj_queue,
('random', 1, n_classes),
torch.device("cuda"),
measure_names=[proj_crit])
# print(measures)
for idx in range(num_ops):
model.proj_weights[cell_type][selected_eid][idx] = 0
model.candidate_flags[cell_type][selected_eid] = cache_flag
crit = measures[proj_crit]
crit_list.append(crit)
op_ids.append(opid)
best_opid = op_ids[np.nanargmin(crit_list)]
#### project
logging.info('best opid: %d', best_opid)
logging.info(crit_list)
return selected_eid, best_opid
def project_global_op(model, input, target, args, infer, cell_type, selected_eid=None):
''' operation '''
#### macros
num_edges, num_ops = model.num_edges, model.num_ops
candidate_flags = model.candidate_flags[cell_type]
proj_crit = args.proj_crit[cell_type]
remain_eids = torch.nonzero(candidate_flags).cpu().numpy().T[0]
#### select the best operation
if proj_crit == 'jacob':
crit_idx = 3
compare = lambda x, y: x < y
best_opid = 0
crit_extrema = None
best_eid = None
for eid in remain_eids:
for opid in range(num_ops):
## projection
weights = model.get_projected_weights(cell_type)
proj_mask = torch.ones_like(weights[eid])
proj_mask[opid] = 0
weights[eid] = weights[eid] * proj_mask
## proj evaluation
#weights_dict = {cell_type:weights}
with torch.no_grad():
valid_stats = Jocab_Score(model, cell_type, input, target, weights=weights)
crit = valid_stats
if crit_extrema is None or compare(crit, crit_extrema):
crit_extrema = crit
best_opid = opid
best_eid = eid
#### project
logging.info('best opid: %d', best_opid)
#logging.info(crit_list)
return best_eid, best_opid
def sample_edge(model, input, target, args, cell_type, selected_eid=None):
''' topology '''
#### macros
candidate_flags = model.candidate_flags_edge[cell_type]
proj_crit = args.proj_crit[cell_type]
#### select an node
remain_nids = torch.nonzero(candidate_flags).cpu().numpy().T[0]
selected_nid = np.random.choice(remain_nids, size=1)[0]
logging.info('selected node: %d %s', selected_nid, cell_type)
eids = deepcopy(model.nid2eids[selected_nid])
while len(eids) > 2:
elected_eid = np.random.choice(eids, size=1)[0]
eids.remove(elected_eid)
return selected_nid, eids
def project_edge(model, input, target, args, cell_type):
''' topology '''
#### macros
candidate_flags = model.candidate_flags_edge[cell_type]
proj_crit = args.proj_crit[cell_type]
#### select an node
remain_nids = torch.nonzero(candidate_flags).cpu().numpy().T[0]
if args.edge_decision == "random":
selected_nid = np.random.choice(remain_nids, size=1)[0]
logging.info('selected node: %d %s', selected_nid, cell_type)
elif args.edge_decision == 'reverse':
selected_nid = remain_nids[-1]
logging.info('selected node: %d %s', selected_nid, cell_type)
else:
selected_nid = np.random.choice(remain_nids, size=1)[0]
logging.info('selected node: %d %s', selected_nid, cell_type)
#### select top2 edges
if proj_crit == 'jacob':
crit_idx = 3
compare = lambda x, y: x < y
else:
crit_idx = 3
compare = lambda x, y: x < y
eids = deepcopy(model.nid2eids[selected_nid])
crit_list = []
while len(eids) > 2:
eid_todel = None
crit_extrema = None
for eid in eids:
weights = model.get_projected_weights(cell_type)
weights[eid].data.fill_(0)
## proj evaluation
with torch.no_grad():
valid_stats = Jocab_Score(model, cell_type, input, target, weights=weights)
crit = valid_stats
crit_list.append(crit)
if crit_extrema is None or not compare(crit, crit_extrema): # find out bad edges
crit_extrema = crit
eid_todel = eid
eids.remove(eid_todel)
#### project
logging.info('top2 edges: (%d, %d)', eids[0], eids[1])
#logging.info(crit_list)
return selected_nid, eids
def pt_project(train_queue, model, args):
model.eval()
#### macros
num_projs = model.num_edges + len(model.nid2eids.keys())
args.proj_crit = {'normal':args.proj_crit_normal, 'reduce':args.proj_crit_reduce}
proj_queue = train_queue
epoch = 0
for step, (input, target) in enumerate(proj_queue):
if epoch < model.num_edges:
logging.info('project op')
if args.edge_decision == 'global_op_greedy':
selected_eid_normal, best_opid_normal = project_global_op(model, input, target, args, cell_type='normal')
elif args.edge_decision == 'sample':
selected_eid_normal, best_opid_normal = sample_op(model, input, target, args, cell_type='normal')
else:
selected_eid_normal, best_opid_normal = project_op(model, input, target, args, proj_queue=proj_queue, cell_type='normal')
model.project_op(selected_eid_normal, best_opid_normal, cell_type='normal')
if args.edge_decision == 'global_op_greedy':
selected_eid_reduce, best_opid_reduce = project_global_op(model, input, target, args, cell_type='reduce')
elif args.edge_decision == 'sample':
selected_eid_reduce, best_opid_reduce = sample_op(model, input, target, args, cell_type='reduce')
else:
selected_eid_reduce, best_opid_reduce = project_op(model, input, target, args, proj_queue=proj_queue, cell_type='reduce')
model.project_op(selected_eid_reduce, best_opid_reduce, cell_type='reduce')
else:
logging.info('project edge')
if args.edge_decision == 'sample':
selected_nid_normal, eids_normal = sample_edge(model, input, target, args, cell_type='normal')
model.project_edge(selected_nid_normal, eids_normal, cell_type='normal')
selected_nid_reduce, eids_reduce = sample_edge(model, input, target, args, cell_type='reduce')
model.project_edge(selected_nid_reduce, eids_reduce, cell_type='reduce')
else:
selected_nid_normal, eids_normal = project_edge(model, input, target, args, cell_type='normal')
model.project_edge(selected_nid_normal, eids_normal, cell_type='normal')
selected_nid_reduce, eids_reduce = project_edge(model, input, target, args, cell_type='reduce')
model.project_edge(selected_nid_reduce, eids_reduce, cell_type='reduce')
epoch+=1
if epoch == num_projs:
break
return
def Jocab_Score(ori_model, cell_type, input, target, weights=None):
model = deepcopy(ori_model)
model.eval()
if cell_type == 'reduce':
model.proj_weights['reduce'] = weights
model.proj_weights['normal'] = model.get_projected_weights('normal')
else:
model.proj_weights['normal'] = weights
model.proj_weights['reduce'] = model.get_projected_weights('reduce')
batch_size = input.shape[0]
model.K = torch.zeros(batch_size, batch_size).cuda()
def counting_forward_hook(module, inp, out):
try:
if isinstance(inp, tuple):
inp = inp[0]
inp = inp.view(inp.size(0), -1)
x = (inp > 0).float()
K = x @ x.t()
K2 = (1.-x) @ (1.-x.t())
model.K = model.K + K + K2
except:
pass
for name, module in model.named_modules():
if 'ReLU' in str(type(module)):
module.register_forward_hook(counting_forward_hook)
input = input.cuda()
model(input, using_proj=True)
score = hooklogdet(model.K.cpu().numpy())
del model
return score
def hooklogdet(K, labels=None):
s, ld = np.linalg.slogdet(K)
return ld