MeCo/zero-cost-nas/foresight/pruners/measures/gradsign.py
HamsterMimi 993d55076e update
2023-05-14 10:57:08 +08:00

77 lines
2.4 KiB
Python

# Copyright 2021 Samsung Electronics Co., Ltd.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# =============================================================================
import torch
from torch import nn
import numpy as np
from . import measure
def get_flattened_metric(net, metric):
grad_list = []
for layer in net.modules():
if isinstance(layer, nn.Conv2d) or isinstance(layer, nn.Linear):
grad_list.append(metric(layer).flatten())
flattened_grad = np.concatenate(grad_list)
return flattened_grad
def get_grad_conflict(net, inputs, targets, loss_fn):
N = inputs.shape[0]
batch_grad = []
for i in range(N):
net.zero_grad()
outputs = net.forward(inputs[[i]])
loss = loss_fn(outputs, targets[[i]])
loss.backward()
flattened_grad = get_flattened_metric(net, lambda
l: l.weight.grad.data.clone().cpu().numpy() if l.weight.grad is not None else torch.zeros_like(
l.weight).clone().cpu().numpy())
batch_grad.append(flattened_grad)
batch_grad = np.stack(batch_grad)
direction_code = np.sign(batch_grad)
direction_code = abs(direction_code.sum(axis=0))
score = np.nansum(direction_code)
return score
def get_gradsign(input, target, net, device, loss_fn):
s = []
net = net.to(device)
x, target = input, target
# x2 = torch.clone(x)
# x2 = x2.to(device)
x, target = x.to(device), target.to(device)
s.append(get_grad_conflict(net=net, inputs=x, targets=target, loss_fn=loss_fn))
s = np.mean(s)
return s
@measure('gradsign', bn=True)
def compute_gradsign(net, inputs, targets, split_data=1, loss_fn=None):
device = inputs.device
# Compute gradients (but don't apply them)
net.zero_grad()
try:
gradsign = get_gradsign(inputs, targets, net, device, loss_fn)
except Exception as e:
print(e)
gradsign= np.nan
return gradsign