63 lines
1.6 KiB
Python
63 lines
1.6 KiB
Python
|
import torch
|
||
|
import torch.nn.functional as F
|
||
|
import numpy as np
|
||
|
from scipy import interpolate
|
||
|
|
||
|
|
||
|
def bilinear_sampler(img, coords, mode='bilinear', mask=False):
|
||
|
""" Wrapper for grid_sample, uses pixel coordinates """
|
||
|
H, W = img.shape[-2:]
|
||
|
xgrid, ygrid = coords.split([1,1], dim=-1)
|
||
|
xgrid = 2*xgrid/(W-1) - 1
|
||
|
ygrid = 2*ygrid/(H-1) - 1
|
||
|
|
||
|
grid = torch.cat([xgrid, ygrid], dim=-1)
|
||
|
img = F.grid_sample(img, grid, align_corners=True)
|
||
|
|
||
|
if mask:
|
||
|
mask = (xgrid > -1) & (ygrid > -1) & (xgrid < 1) & (ygrid < 1)
|
||
|
return img, mask.float()
|
||
|
|
||
|
return img
|
||
|
|
||
|
def forward_interpolate(flow):
|
||
|
flow = flow.detach().cpu().numpy()
|
||
|
dx, dy = flow[0], flow[1]
|
||
|
|
||
|
ht, wd = dx.shape
|
||
|
x0, y0 = np.meshgrid(np.arange(wd), np.arange(ht))
|
||
|
|
||
|
x1 = x0 + dx
|
||
|
y1 = y0 + dy
|
||
|
|
||
|
x1 = x1.reshape(-1)
|
||
|
y1 = y1.reshape(-1)
|
||
|
dx = dx.reshape(-1)
|
||
|
dy = dy.reshape(-1)
|
||
|
|
||
|
valid = (x1 > 0) & (x1 < wd) & (y1 > 0) & (y1 < ht)
|
||
|
x1 = x1[valid]
|
||
|
y1 = y1[valid]
|
||
|
dx = dx[valid]
|
||
|
dy = dy[valid]
|
||
|
|
||
|
flow_x = interpolate.griddata(
|
||
|
(x1, y1), dx, (x0, y0), method='nearest')
|
||
|
|
||
|
flow_y = interpolate.griddata(
|
||
|
(x1, y1), dy, (x0, y0), method='nearest')
|
||
|
|
||
|
flow = np.stack([flow_x, flow_y], axis=0)
|
||
|
return torch.from_numpy(flow).float()
|
||
|
|
||
|
|
||
|
def coords_grid(batch, ht, wd):
|
||
|
coords = torch.meshgrid(torch.arange(ht), torch.arange(wd))
|
||
|
coords = torch.stack(coords[::-1], dim=0).float()
|
||
|
return coords[None].repeat(batch, 1, 1, 1)
|
||
|
|
||
|
|
||
|
def upflow8(flow, mode='bilinear'):
|
||
|
new_size = (8 * flow.shape[2], 8 * flow.shape[3])
|
||
|
return 8 * F.interpolate(flow, size=new_size, mode=mode, align_corners=True)
|