RAFT/train.py

211 lines
6.7 KiB
Python
Raw Normal View History

2020-03-27 04:19:08 +01:00
from __future__ import print_function, division
import sys
sys.path.append('core')
import argparse
import os
import cv2
import time
import numpy as np
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.utils.data import DataLoader
from raft import RAFT
from evaluate import validate_sintel, validate_kitti
import datasets
# exclude extremly large displacements
MAX_FLOW = 1000
SUM_FREQ = 1000
VAL_FREQ = 5000
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
def sequence_loss(flow_preds, flow_gt, valid):
""" Loss function defined over sequence of flow predictions """
n_predictions = len(flow_preds)
flow_loss = 0.0
# exlude invalid pixels and extremely large diplacements
valid = (valid >= 0.5) & (flow_gt.abs().sum(dim=1) < MAX_FLOW)
for i in range(n_predictions):
i_weight = 0.8**(n_predictions - i - 1)
i_loss = (flow_preds[i] - flow_gt).abs()
flow_loss += i_weight * (valid[:, None] * i_loss).mean()
epe = torch.sum((flow_preds[-1] - flow_gt)**2, dim=1).sqrt()
epe = epe.view(-1)[valid.view(-1)]
metrics = {
'epe': epe.mean().item(),
'1px': (epe < 1).float().mean().item(),
'3px': (epe < 3).float().mean().item(),
'5px': (epe < 5).float().mean().item(),
}
return flow_loss, metrics
def fetch_dataloader(args):
""" Create the data loader for the corresponding trainign set """
if args.dataset == 'chairs':
train_dataset = datasets.FlyingChairs(args, image_size=args.image_size)
elif args.dataset == 'things':
clean_dataset = datasets.SceneFlow(args, image_size=args.image_size, dstype='frames_cleanpass')
final_dataset = datasets.SceneFlow(args, image_size=args.image_size, dstype='frames_finalpass')
train_dataset = clean_dataset + final_dataset
elif args.dataset == 'sintel':
clean_dataset = datasets.MpiSintel(args, image_size=args.image_size, dstype='clean')
final_dataset = datasets.MpiSintel(args, image_size=args.image_size, dstype='final')
train_dataset = clean_dataset + final_dataset
elif args.dataset == 'kitti':
train_dataset = datasets.KITTI(args, image_size=args.image_size, is_val=False)
gpuargs = {'num_workers': 4, 'drop_last' : True}
train_loader = DataLoader(train_dataset, batch_size=args.batch_size,
pin_memory=True, shuffle=True, **gpuargs)
print('Training with %d image pairs' % len(train_dataset))
return train_loader
def fetch_optimizer(args, model):
""" Create the optimizer and learning rate scheduler """
optimizer = optim.AdamW(model.parameters(), lr=args.lr, weight_decay=args.wdecay, eps=args.epsilon)
scheduler = optim.lr_scheduler.OneCycleLR(optimizer, args.lr, args.num_steps,
pct_start=0.2, cycle_momentum=False, anneal_strategy='linear', final_div_factor=0.05)
return optimizer, scheduler
class Logger:
def __init__(self, model, scheduler):
self.model = model
self.scheduler = scheduler
self.total_steps = 0
self.running_loss = {}
def _print_training_status(self):
metrics_data = [self.running_loss[k]/SUM_FREQ for k in sorted(self.running_loss.keys())]
training_str = "[{:6d}, {:10.7f}] ".format(self.total_steps+1, self.scheduler.get_lr()[0])
metrics_str = ("{:10.4f}, "*len(metrics_data)).format(*metrics_data)
# print the training status
print(training_str + metrics_str)
for key in self.running_loss:
self.running_loss[key] = 0.0
def push(self, metrics):
self.total_steps += 1
for key in metrics:
if key not in self.running_loss:
self.running_loss[key] = 0.0
self.running_loss[key] += metrics[key]
if self.total_steps % SUM_FREQ == SUM_FREQ-1:
self._print_training_status()
self.running_loss = {}
def train(args):
model = RAFT(args)
model = nn.DataParallel(model)
print("Parameter Count: %d" % count_parameters(model))
if args.restore_ckpt is not None:
model.load_state_dict(torch.load(args.restore_ckpt))
model.cuda()
model.train()
if 'chairs' not in args.dataset:
model.module.freeze_bn()
train_loader = fetch_dataloader(args)
optimizer, scheduler = fetch_optimizer(args, model)
total_steps = 0
logger = Logger(model, scheduler)
should_keep_training = True
while should_keep_training:
for i_batch, data_blob in enumerate(train_loader):
image1, image2, flow, valid = [x.cuda() for x in data_blob]
optimizer.zero_grad()
flow_predictions = model(image1, image2, iters=args.iters)
loss, metrics = sequence_loss(flow_predictions, flow, valid)
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip)
optimizer.step()
scheduler.step()
total_steps += 1
logger.push(metrics)
if total_steps % VAL_FREQ == VAL_FREQ-1:
PATH = 'checkpoints/%d_%s.pth' % (total_steps+1, args.name)
torch.save(model.state_dict(), PATH)
if total_steps == args.num_steps:
should_keep_training = False
break
PATH = 'checkpoints/%s.pth' % args.name
torch.save(model.state_dict(), PATH)
return PATH
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--name', default='bla', help="name your experiment")
parser.add_argument('--dataset', help="which dataset to use for training")
parser.add_argument('--restore_ckpt', help="restore checkpoint")
parser.add_argument('--small', action='store_true', help='use small model')
parser.add_argument('--lr', type=float, default=0.00002)
parser.add_argument('--num_steps', type=int, default=100000)
parser.add_argument('--batch_size', type=int, default=6)
parser.add_argument('--image_size', type=int, nargs='+', default=[384, 512])
parser.add_argument('--iters', type=int, default=12)
parser.add_argument('--wdecay', type=float, default=.00005)
parser.add_argument('--epsilon', type=float, default=1e-8)
parser.add_argument('--clip', type=float, default=1.0)
parser.add_argument('--dropout', type=float, default=0.0)
args = parser.parse_args()
torch.manual_seed(1234)
np.random.seed(1234)
if not os.path.isdir('checkpoints'):
os.mkdir('checkpoints')
# scale learning rate and batch size by number of GPUs
num_gpus = torch.cuda.device_count()
args.batch_size = args.batch_size * num_gpus
args.lr = args.lr * num_gpus
train(args)