RAFT/demo.py

90 lines
2.5 KiB
Python
Raw Normal View History

2020-03-27 04:19:08 +01:00
import sys
sys.path.append('core')
import argparse
import os
import cv2
import numpy as np
import torch
import torch.nn.functional as F
from PIL import Image
import datasets
from utils import flow_viz
from raft import RAFT
DEVICE = 'cuda'
def pad8(img):
"""pad image such that dimensions are divisible by 8"""
ht, wd = img.shape[2:]
pad_ht = (((ht // 8) + 1) * 8 - ht) % 8
pad_wd = (((wd // 8) + 1) * 8 - wd) % 8
pad_ht1 = [pad_ht//2, pad_ht-pad_ht//2]
pad_wd1 = [pad_wd//2, pad_wd-pad_wd//2]
img = F.pad(img, pad_wd1 + pad_ht1, mode='replicate')
return img
def load_image(imfile):
img = np.array(Image.open(imfile)).astype(np.uint8)[..., :3]
img = torch.from_numpy(img).permute(2, 0, 1).float()
return pad8(img[None]).to(DEVICE)
def display(image1, image2, flow):
image1 = image1.permute(1, 2, 0).cpu().numpy() / 255.0
image2 = image2.permute(1, 2, 0).cpu().numpy() / 255.0
flow = flow.permute(1, 2, 0).cpu().numpy()
flow_image = flow_viz.flow_to_image(flow)
flow_image = cv2.resize(flow_image, (image1.shape[1], image1.shape[0]))
cv2.imshow('image1', image1[..., ::-1])
cv2.imshow('image2', image2[..., ::-1])
cv2.imshow('flow', flow_image[..., ::-1])
cv2.waitKey()
def demo(args):
model = RAFT(args)
model = torch.nn.DataParallel(model)
model.load_state_dict(torch.load(args.model))
model.to(DEVICE)
model.eval()
with torch.no_grad():
# sintel images
image1 = load_image('images/sintel_0.png')
image2 = load_image('images/sintel_1.png')
flow_predictions = model(image1, image2, iters=args.iters, upsample=False)
display(image1[0], image2[0], flow_predictions[-1][0])
# kitti images
image1 = load_image('images/kitti_0.png')
image2 = load_image('images/kitti_1.png')
flow_predictions = model(image1, image2, iters=16)
display(image1[0], image2[0], flow_predictions[-1][0])
# davis images
image1 = load_image('images/davis_0.jpg')
image2 = load_image('images/davis_1.jpg')
flow_predictions = model(image1, image2, iters=16)
display(image1[0], image2[0], flow_predictions[-1][0])
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--model', help="restore checkpoint")
parser.add_argument('--small', action='store_true', help='use small model')
parser.add_argument('--iters', type=int, default=12)
args = parser.parse_args()
demo(args)