diff --git a/RAFT.png b/RAFT.png
new file mode 100644
index 0000000..a387fe2
Binary files /dev/null and b/RAFT.png differ
diff --git a/README.md b/README.md
index 4dc4038..a7c85af 100644
--- a/README.md
+++ b/README.md
@@ -4,6 +4,8 @@ This repository contains the source code for our paper:
[RAFT: Recurrent All Pairs Field Transforms for Optical Flow](https://arxiv.org/pdf/2003.12039.pdf)
Zachary Teed and Jia Deng
+
+
## Requirements
Our code was tested using PyTorch 1.3.1 and Python 3. The following additional packages need to be installed
@@ -84,11 +86,11 @@ python train.py --name=kitti_ft --image_size 288 896 --dataset=kitti --num_steps
You can evaluate a model on Sintel and KITTI by running
```Shell
-python evaluate.py --model=checkpoints/chairs+things.pth
+python evaluate.py --model=models/chairs+things.pth
```
or the small model by including the `small` flag
```Shell
-python evaluate.py --model=checkpoints/small.pth --small
+python evaluate.py --model=models/small.pth --small
```
diff --git a/core/modules/update.py b/core/modules/update.py
index d9133dd..a1f362c 100644
--- a/core/modules/update.py
+++ b/core/modules/update.py
@@ -133,8 +133,20 @@ class SmallUpdateBlock(nn.Module):
self.gru = ConvGRU(hidden_dim=hidden_dim, input_dim=82+64)
self.flow_head = FlowHead(hidden_dim, hidden_dim=128)
+ self.drop_inp = VariationalHidDropout(dropout=args.dropout)
+ self.drop_net = VariationalHidDropout(dropout=args.dropout)
+
+ def reset_mask(self, net, inp):
+ self.drop_inp.reset_mask(inp)
+ self.drop_net.reset_mask(net)
+
def forward(self, net, inp, corr, flow):
motion_features = self.encoder(flow, corr)
+
+ if self.training:
+ net = self.drop_net(net)
+ inp = self.drop_inp(inp)
+
inp = torch.cat([inp, motion_features], dim=1)
net = self.gru(net, inp)
delta_flow = self.flow_head(net)
@@ -157,12 +169,12 @@ class BasicUpdateBlock(nn.Module):
def forward(self, net, inp, corr, flow):
motion_features = self.encoder(flow, corr)
- inp = torch.cat([inp, motion_features], dim=1)
if self.training:
net = self.drop_net(net)
inp = self.drop_inp(inp)
-
+
+ inp = torch.cat([inp, motion_features], dim=1)
net = self.gru(net, inp)
delta_flow = self.flow_head(net)
diff --git a/core/raft.py b/core/raft.py
index 22a587d..e14a54a 100644
--- a/core/raft.py
+++ b/core/raft.py
@@ -26,7 +26,7 @@ class RAFT(nn.Module):
args.corr_levels = 4
args.corr_radius = 4
- if 'dropout' not in args._get_kwargs():
+ if not hasattr(args, 'dropout'):
args.dropout = 0
# feature network, context network, and update block
diff --git a/train.py b/train.py
index 2767acf..a6d75ad 100755
--- a/train.py
+++ b/train.py
@@ -21,7 +21,7 @@ import datasets
# exclude extremly large displacements
MAX_FLOW = 1000
-SUM_FREQ = 100
+SUM_FREQ = 200
VAL_FREQ = 5000
@@ -56,7 +56,7 @@ def sequence_loss(flow_preds, flow_gt, valid):
def fetch_dataloader(args):
- """ Create the data loader for the corresponding trainign set """
+ """ Create the data loader for the corresponding training set """
if args.dataset == 'chairs':
train_dataset = datasets.FlyingChairs(args, image_size=args.image_size)
@@ -86,7 +86,7 @@ def fetch_optimizer(args, model):
optimizer = optim.AdamW(model.parameters(), lr=args.lr, weight_decay=args.wdecay, eps=args.epsilon)
scheduler = optim.lr_scheduler.OneCycleLR(optimizer, args.lr, args.num_steps,
- pct_start=0.2, cycle_momentum=False, anneal_strategy='linear', final_div_factor=1.0)
+ pct_start=0.2, cycle_momentum=False, anneal_strategy='linear')
return optimizer, scheduler