added upsampling module
This commit is contained in:
78
core/raft.py
78
core/raft.py
@@ -3,11 +3,23 @@ import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from modules.update import BasicUpdateBlock, SmallUpdateBlock
|
||||
from modules.extractor import BasicEncoder, SmallEncoder
|
||||
from modules.corr import CorrBlock
|
||||
from update import BasicUpdateBlock, SmallUpdateBlock
|
||||
from extractor import BasicEncoder, SmallEncoder
|
||||
from corr import CorrBlock
|
||||
from utils.utils import bilinear_sampler, coords_grid, upflow8
|
||||
|
||||
try:
|
||||
autocast = torch.cuda.amp.autocast
|
||||
except:
|
||||
# dummy autocast for PyTorch < 1.6
|
||||
class autocast:
|
||||
def __init__(self, enabled):
|
||||
pass
|
||||
def __enter__(self):
|
||||
pass
|
||||
def __exit__(self, *args):
|
||||
pass
|
||||
|
||||
|
||||
class RAFT(nn.Module):
|
||||
def __init__(self, args):
|
||||
@@ -26,7 +38,7 @@ class RAFT(nn.Module):
|
||||
args.corr_levels = 4
|
||||
args.corr_radius = 4
|
||||
|
||||
if not hasattr(args, 'dropout'):
|
||||
if 'dropout' not in args._get_kwargs():
|
||||
args.dropout = 0
|
||||
|
||||
# feature network, context network, and update block
|
||||
@@ -40,6 +52,7 @@ class RAFT(nn.Module):
|
||||
self.cnet = BasicEncoder(output_dim=hdim+cdim, norm_fn='batch', dropout=args.dropout)
|
||||
self.update_block = BasicUpdateBlock(self.args, hidden_dim=hdim)
|
||||
|
||||
|
||||
def freeze_bn(self):
|
||||
for m in self.modules():
|
||||
if isinstance(m, nn.BatchNorm2d):
|
||||
@@ -54,46 +67,73 @@ class RAFT(nn.Module):
|
||||
# optical flow computed as difference: flow = coords1 - coords0
|
||||
return coords0, coords1
|
||||
|
||||
def forward(self, image1, image2, iters=12, flow_init=None, upsample=True):
|
||||
def upsample_flow(self, flow, mask):
|
||||
""" Upsample flow field [H/8, W/8, 2] -> [H, W, 2] using convex combination """
|
||||
N, _, H, W = flow.shape
|
||||
mask = mask.view(N, 1, 9, 8, 8, H, W)
|
||||
mask = torch.softmax(mask, dim=2)
|
||||
|
||||
up_flow = F.unfold(8 * flow, [3,3], padding=1)
|
||||
up_flow = up_flow.view(N, 2, 9, 1, 1, H, W)
|
||||
|
||||
up_flow = torch.sum(mask * up_flow, dim=2)
|
||||
up_flow = up_flow.permute(0, 1, 4, 2, 5, 3)
|
||||
return up_flow.reshape(N, 2, 8*H, 8*W)
|
||||
|
||||
|
||||
def forward(self, image1, image2, iters=12, flow_init=None, upsample=True, test_mode=False):
|
||||
""" Estimate optical flow between pair of frames """
|
||||
|
||||
image1 = 2 * (image1 / 255.0) - 1.0
|
||||
image2 = 2 * (image2 / 255.0) - 1.0
|
||||
|
||||
image1 = image1.contiguous()
|
||||
image2 = image2.contiguous()
|
||||
|
||||
hdim = self.hidden_dim
|
||||
cdim = self.context_dim
|
||||
|
||||
# run the feature network
|
||||
fmap1, fmap2 = self.fnet([image1, image2])
|
||||
with autocast(enabled=self.args.mixed_precision):
|
||||
fmap1, fmap2 = self.fnet([image1, image2])
|
||||
|
||||
fmap1 = fmap1.float()
|
||||
fmap2 = fmap2.float()
|
||||
corr_fn = CorrBlock(fmap1, fmap2, radius=self.args.corr_radius)
|
||||
|
||||
# run the context network
|
||||
cnet = self.cnet(image1)
|
||||
net, inp = torch.split(cnet, [hdim, cdim], dim=1)
|
||||
net, inp = torch.tanh(net), torch.relu(inp)
|
||||
with autocast(enabled=self.args.mixed_precision):
|
||||
cnet = self.cnet(image1)
|
||||
net, inp = torch.split(cnet, [hdim, cdim], dim=1)
|
||||
net = torch.tanh(net)
|
||||
inp = torch.relu(inp)
|
||||
|
||||
# if dropout is being used reset mask
|
||||
self.update_block.reset_mask(net, inp)
|
||||
coords0, coords1 = self.initialize_flow(image1)
|
||||
|
||||
if flow_init is not None:
|
||||
coords1 = coords1 + flow_init
|
||||
|
||||
flow_predictions = []
|
||||
for itr in range(iters):
|
||||
coords1 = coords1.detach()
|
||||
corr = corr_fn(coords1) # index correlation volume
|
||||
|
||||
flow = coords1 - coords0
|
||||
net, delta_flow = self.update_block(net, inp, corr, flow)
|
||||
with autocast(enabled=self.args.mixed_precision):
|
||||
net, up_mask, delta_flow = self.update_block(net, inp, corr, flow)
|
||||
|
||||
# F(t+1) = F(t) + \Delta(t)
|
||||
coords1 = coords1 + delta_flow
|
||||
|
||||
if upsample:
|
||||
|
||||
# upsample predictions
|
||||
if up_mask is None:
|
||||
flow_up = upflow8(coords1 - coords0)
|
||||
flow_predictions.append(flow_up)
|
||||
|
||||
else:
|
||||
flow_predictions.append(coords1 - coords0)
|
||||
flow_up = self.upsample_flow(coords1 - coords0, up_mask)
|
||||
|
||||
flow_predictions.append(flow_up)
|
||||
|
||||
if test_mode:
|
||||
return coords1 - coords0, flow_up
|
||||
|
||||
return flow_predictions
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user