# RAFT This repository contains the source code for our paper: [RAFT: Recurrent All Pairs Field Transforms for Optical Flow](https://arxiv.org/pdf/2003.12039.pdf)
Zachary Teed and Jia Deng
## Requirements Our code was tested using PyTorch 1.3.1 and Python 3. The following additional packages need to be installed ```Shell pip install Pillow pip install scipy pip install opencv-python ``` ## Demos Pretrained models can be downloaded by running ```Shell ./scripts/download_models.sh ``` You can run the demos using one of the available models. ```Shell python demo.py --model=models/chairs+things.pth ``` or using the small (1M parameter) model ```Shell python demo.py --model=models/small.pth --small ``` Running the demos will display the two images and a vizualization of the optical flow estimate. After the images display, press any key to continue. ## Training To train RAFT, you will need to download the required datasets. The first stage of training requires the [FlyingChairs](https://lmb.informatik.uni-freiburg.de/resources/datasets/FlyingChairs.en.html#flyingchairs) and [FlyingThings3D](https://lmb.informatik.uni-freiburg.de/resources/datasets/SceneFlowDatasets.en.html) datasets. Finetuning and evaluation require the [Sintel](http://sintel.is.tue.mpg.de/) and [KITTI](http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php?benchmark=flow) datasets. We organize the directory structure as follows. By default `datasets.py` will search for the datasets in these locations ```Shell ├── datasets │ ├── Sintel | | ├── test | | ├── training │ ├── KITTI | | ├── testing | | ├── training | | ├── devkit │ ├── FlyingChairs_release | | ├── data │ ├── FlyingThings3D | | ├── frames_cleanpass | | ├── frames_finalpass | | ├── optical_flow ``` We used the following training schedule in our paper (note: we use 2 GPUs for training) ```Shell python train.py --name=chairs --image_size 368 496 --dataset=chairs --num_steps=100000 --lr=0.0002 --batch_size=6 ``` Next, finetune on the FlyingThings dataset ```Shell python train.py --name=things --image_size 368 768 --dataset=things --num_steps=60000 --lr=0.00005 --batch_size=3 --restore_ckpt=checkpoints/chairs.pth ``` You can perform dataset specific finetuning ### Sintel ```Shell python train.py --name=sintel_ft --image_size 368 768 --dataset=sintel --num_steps=60000 --lr=0.00005 --batch_size=4 --restore_ckpt=checkpoints/things.pth ``` ### KITTI ```Shell python train.py --name=kitti_ft --image_size 288 896 --dataset=kitti --num_steps=40000 --lr=0.0001 --batch_size=4 --restore_ckpt=checkpoints/things.pth ``` ## Evaluation You can evaluate a model on Sintel and KITTI by running ```Shell python evaluate.py --model=checkpoints/chairs+things.pth ``` or the small model by including the `small` flag ```Shell python evaluate.py --model=checkpoints/small.pth --small ```