145 lines
4.8 KiB
Python
145 lines
4.8 KiB
Python
import numpy as np
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
|
|
from update import BasicUpdateBlock, SmallUpdateBlock
|
|
from extractor import BasicEncoder, SmallEncoder
|
|
from corr import CorrBlock, AlternateCorrBlock
|
|
from utils.utils import bilinear_sampler, coords_grid, upflow8
|
|
|
|
try:
|
|
autocast = torch.cuda.amp.autocast
|
|
except:
|
|
# dummy autocast for PyTorch < 1.6
|
|
class autocast:
|
|
def __init__(self, enabled):
|
|
pass
|
|
def __enter__(self):
|
|
pass
|
|
def __exit__(self, *args):
|
|
pass
|
|
|
|
|
|
class RAFT(nn.Module):
|
|
def __init__(self, args):
|
|
super(RAFT, self).__init__()
|
|
self.args = args
|
|
|
|
if args.small:
|
|
self.hidden_dim = hdim = 96
|
|
self.context_dim = cdim = 64
|
|
args.corr_levels = 4
|
|
args.corr_radius = 3
|
|
|
|
else:
|
|
self.hidden_dim = hdim = 128
|
|
self.context_dim = cdim = 128
|
|
args.corr_levels = 4
|
|
args.corr_radius = 4
|
|
|
|
if 'dropout' not in self.args:
|
|
self.args.dropout = 0
|
|
|
|
if 'alternate_corr' not in self.args:
|
|
self.args.alternate_corr = False
|
|
|
|
# feature network, context network, and update block
|
|
if args.small:
|
|
self.fnet = SmallEncoder(output_dim=128, norm_fn='instance', dropout=args.dropout)
|
|
self.cnet = SmallEncoder(output_dim=hdim+cdim, norm_fn='none', dropout=args.dropout)
|
|
self.update_block = SmallUpdateBlock(self.args, hidden_dim=hdim)
|
|
|
|
else:
|
|
self.fnet = BasicEncoder(output_dim=256, norm_fn='instance', dropout=args.dropout)
|
|
self.cnet = BasicEncoder(output_dim=hdim+cdim, norm_fn='batch', dropout=args.dropout)
|
|
self.update_block = BasicUpdateBlock(self.args, hidden_dim=hdim)
|
|
|
|
def freeze_bn(self):
|
|
for m in self.modules():
|
|
if isinstance(m, nn.BatchNorm2d):
|
|
m.eval()
|
|
|
|
def initialize_flow(self, img):
|
|
""" Flow is represented as difference between two coordinate grids flow = coords1 - coords0"""
|
|
N, C, H, W = img.shape
|
|
coords0 = coords_grid(N, H//8, W//8, device=img.device)
|
|
coords1 = coords_grid(N, H//8, W//8, device=img.device)
|
|
|
|
# optical flow computed as difference: flow = coords1 - coords0
|
|
return coords0, coords1
|
|
|
|
def upsample_flow(self, flow, mask):
|
|
""" Upsample flow field [H/8, W/8, 2] -> [H, W, 2] using convex combination """
|
|
N, _, H, W = flow.shape
|
|
mask = mask.view(N, 1, 9, 8, 8, H, W)
|
|
mask = torch.softmax(mask, dim=2)
|
|
|
|
up_flow = F.unfold(8 * flow, [3,3], padding=1)
|
|
up_flow = up_flow.view(N, 2, 9, 1, 1, H, W)
|
|
|
|
up_flow = torch.sum(mask * up_flow, dim=2)
|
|
up_flow = up_flow.permute(0, 1, 4, 2, 5, 3)
|
|
return up_flow.reshape(N, 2, 8*H, 8*W)
|
|
|
|
|
|
def forward(self, image1, image2, iters=12, flow_init=None, upsample=True, test_mode=False):
|
|
""" Estimate optical flow between pair of frames """
|
|
|
|
image1 = 2 * (image1 / 255.0) - 1.0
|
|
image2 = 2 * (image2 / 255.0) - 1.0
|
|
|
|
image1 = image1.contiguous()
|
|
image2 = image2.contiguous()
|
|
|
|
hdim = self.hidden_dim
|
|
cdim = self.context_dim
|
|
|
|
# run the feature network
|
|
with autocast(enabled=self.args.mixed_precision):
|
|
fmap1, fmap2 = self.fnet([image1, image2])
|
|
|
|
fmap1 = fmap1.float()
|
|
fmap2 = fmap2.float()
|
|
if self.args.alternate_corr:
|
|
corr_fn = AlternateCorrBlock(fmap1, fmap2, radius=self.args.corr_radius)
|
|
else:
|
|
corr_fn = CorrBlock(fmap1, fmap2, radius=self.args.corr_radius)
|
|
|
|
# run the context network
|
|
with autocast(enabled=self.args.mixed_precision):
|
|
cnet = self.cnet(image1)
|
|
net, inp = torch.split(cnet, [hdim, cdim], dim=1)
|
|
net = torch.tanh(net)
|
|
inp = torch.relu(inp)
|
|
|
|
coords0, coords1 = self.initialize_flow(image1)
|
|
|
|
if flow_init is not None:
|
|
coords1 = coords1 + flow_init
|
|
|
|
flow_predictions = []
|
|
for itr in range(iters):
|
|
coords1 = coords1.detach()
|
|
corr = corr_fn(coords1) # index correlation volume
|
|
|
|
flow = coords1 - coords0
|
|
with autocast(enabled=self.args.mixed_precision):
|
|
net, up_mask, delta_flow = self.update_block(net, inp, corr, flow)
|
|
|
|
# F(t+1) = F(t) + \Delta(t)
|
|
coords1 = coords1 + delta_flow
|
|
|
|
# upsample predictions
|
|
if up_mask is None:
|
|
flow_up = upflow8(coords1 - coords0)
|
|
else:
|
|
flow_up = self.upsample_flow(coords1 - coords0, up_mask)
|
|
|
|
flow_predictions.append(flow_up)
|
|
|
|
if test_mode:
|
|
return coords1 - coords0, flow_up
|
|
|
|
return flow_predictions
|