autodl-projects/exps/NATS-Bench/draw-fig6.py

226 lines
8.4 KiB
Python
Raw Permalink Normal View History

2020-11-26 07:56:31 +01:00
###############################################################
2021-01-25 14:48:14 +01:00
# NATS-Bench (arxiv.org/pdf/2009.00437.pdf), IEEE TPAMI 2021 #
2020-11-26 07:56:31 +01:00
# The code to draw Figure 6 in our paper. #
###############################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.06 #
###############################################################
# Usage: python exps/NATS-Bench/draw-fig6.py --search_space tss
# Usage: python exps/NATS-Bench/draw-fig6.py --search_space sss
###############################################################
import os, gc, sys, time, torch, argparse
import numpy as np
from typing import List, Text, Dict, Any
from shutil import copyfile
from collections import defaultdict, OrderedDict
2021-03-17 10:25:58 +01:00
from copy import deepcopy
2020-11-26 07:56:31 +01:00
from pathlib import Path
import matplotlib
import seaborn as sns
2021-03-17 10:25:58 +01:00
matplotlib.use("agg")
2020-11-26 07:56:31 +01:00
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
from xautodl.config_utils import dict2config, load_config
from xautodl.log_utils import time_string
2020-11-26 07:56:31 +01:00
from nats_bench import create
2021-03-17 10:25:58 +01:00
def fetch_data(root_dir="./output/search", search_space="tss", dataset=None):
ss_dir = "{:}-{:}".format(root_dir, search_space)
alg2name, alg2path = OrderedDict(), OrderedDict()
alg2name["REA"] = "R-EA-SS3"
alg2name["REINFORCE"] = "REINFORCE-0.01"
alg2name["RANDOM"] = "RANDOM"
alg2name["BOHB"] = "BOHB"
for alg, name in alg2name.items():
alg2path[alg] = os.path.join(ss_dir, dataset, name, "results.pth")
assert os.path.isfile(alg2path[alg]), "invalid path : {:}".format(alg2path[alg])
alg2data = OrderedDict()
for alg, path in alg2path.items():
data = torch.load(path)
for index, info in data.items():
2021-03-18 09:02:55 +01:00
info["time_w_arch"] = [
(x, y) for x, y in zip(info["all_total_times"], info["all_archs"])
]
2021-03-17 10:25:58 +01:00
for j, arch in enumerate(info["all_archs"]):
assert arch != -1, "invalid arch from {:} {:} {:} ({:}, {:})".format(
alg, search_space, dataset, index, j
)
alg2data[alg] = data
return alg2data
2020-11-26 07:56:31 +01:00
def query_performance(api, data, dataset, ticket):
2021-03-17 10:25:58 +01:00
results, is_size_space = [], api.search_space_name == "size"
for i, info in data.items():
time_w_arch = sorted(info["time_w_arch"], key=lambda x: abs(x[0] - ticket))
time_a, arch_a = time_w_arch[0]
time_b, arch_b = time_w_arch[1]
2021-03-18 09:02:55 +01:00
info_a = api.get_more_info(
arch_a, dataset=dataset, hp=90 if is_size_space else 200, is_random=False
)
info_b = api.get_more_info(
arch_b, dataset=dataset, hp=90 if is_size_space else 200, is_random=False
)
2021-03-17 10:25:58 +01:00
accuracy_a, accuracy_b = info_a["test-accuracy"], info_b["test-accuracy"]
2021-03-18 09:02:55 +01:00
interplate = (time_b - ticket) / (time_b - time_a) * accuracy_a + (
ticket - time_a
) / (time_b - time_a) * accuracy_b
2021-03-17 10:25:58 +01:00
results.append(interplate)
# return sum(results) / len(results)
return np.mean(results), np.std(results)
def show_valid_test(api, data, dataset):
2021-03-17 10:25:58 +01:00
valid_accs, test_accs, is_size_space = [], [], api.search_space_name == "size"
for i, info in data.items():
time, arch = info["time_w_arch"][-1]
if dataset == "cifar10":
2021-03-18 09:02:55 +01:00
xinfo = api.get_more_info(
arch, dataset=dataset, hp=90 if is_size_space else 200, is_random=False
)
2021-03-17 10:25:58 +01:00
test_accs.append(xinfo["test-accuracy"])
2021-03-18 09:02:55 +01:00
xinfo = api.get_more_info(
arch,
dataset="cifar10-valid",
hp=90 if is_size_space else 200,
is_random=False,
)
2021-03-17 10:25:58 +01:00
valid_accs.append(xinfo["valid-accuracy"])
else:
2021-03-18 09:02:55 +01:00
xinfo = api.get_more_info(
arch, dataset=dataset, hp=90 if is_size_space else 200, is_random=False
)
2021-03-17 10:25:58 +01:00
valid_accs.append(xinfo["valid-accuracy"])
test_accs.append(xinfo["test-accuracy"])
valid_str = "{:.2f}$\pm${:.2f}".format(np.mean(valid_accs), np.std(valid_accs))
test_str = "{:.2f}$\pm${:.2f}".format(np.mean(test_accs), np.std(test_accs))
return valid_str, test_str
y_min_s = {
("cifar10", "tss"): 90,
("cifar10", "sss"): 92,
("cifar100", "tss"): 65,
("cifar100", "sss"): 65,
("ImageNet16-120", "tss"): 36,
("ImageNet16-120", "sss"): 40,
}
y_max_s = {
("cifar10", "tss"): 94.3,
("cifar10", "sss"): 93.3,
("cifar100", "tss"): 72.5,
("cifar100", "sss"): 70.5,
("ImageNet16-120", "tss"): 46,
("ImageNet16-120", "sss"): 46,
}
x_axis_s = {
("cifar10", "tss"): 200,
("cifar10", "sss"): 200,
("cifar100", "tss"): 400,
("cifar100", "sss"): 400,
("ImageNet16-120", "tss"): 1200,
("ImageNet16-120", "sss"): 600,
}
2021-03-18 09:02:55 +01:00
name2label = {
"cifar10": "CIFAR-10",
"cifar100": "CIFAR-100",
"ImageNet16-120": "ImageNet-16-120",
}
2020-11-26 07:56:31 +01:00
2020-11-26 19:15:09 +01:00
def visualize_curve(api, vis_save_dir, search_space):
2021-03-17 10:25:58 +01:00
vis_save_dir = vis_save_dir.resolve()
vis_save_dir.mkdir(parents=True, exist_ok=True)
dpi, width, height = 250, 5200, 1400
figsize = width / float(dpi), height / float(dpi)
LabelSize, LegendFontsize = 16, 16
def sub_plot_fn(ax, dataset):
xdataset, max_time = dataset.split("-T")
alg2data = fetch_data(search_space=search_space, dataset=dataset)
alg2accuracies = OrderedDict()
total_tickets = 150
2021-03-18 09:02:55 +01:00
time_tickets = [
float(i) / total_tickets * int(max_time) for i in range(total_tickets)
]
2021-03-17 10:25:58 +01:00
colors = ["b", "g", "c", "m", "y"]
ax.set_xlim(0, x_axis_s[(xdataset, search_space)])
2021-03-18 09:02:55 +01:00
ax.set_ylim(
y_min_s[(xdataset, search_space)], y_max_s[(xdataset, search_space)]
)
2021-03-17 10:25:58 +01:00
for idx, (alg, data) in enumerate(alg2data.items()):
accuracies = []
for ticket in time_tickets:
accuracy, accuracy_std = query_performance(api, data, xdataset, ticket)
accuracies.append(accuracy)
valid_str, test_str = show_valid_test(api, data, xdataset)
# print('{:} plot alg : {:10s}, final accuracy = {:.2f}$\pm${:.2f}'.format(time_string(), alg, accuracy, accuracy_std))
print(
2021-03-18 09:02:55 +01:00
"{:} plot alg : {:10s} | validation = {:} | test = {:}".format(
time_string(), alg, valid_str, test_str
)
2021-03-17 10:25:58 +01:00
)
alg2accuracies[alg] = accuracies
2021-03-18 09:02:55 +01:00
ax.plot(
[x / 100 for x in time_tickets],
accuracies,
c=colors[idx],
label="{:}".format(alg),
)
2021-03-17 10:25:58 +01:00
ax.set_xlabel("Estimated wall-clock time (1e2 seconds)", fontsize=LabelSize)
2021-03-18 09:02:55 +01:00
ax.set_ylabel(
"Test accuracy on {:}".format(name2label[xdataset]), fontsize=LabelSize
)
ax.set_title(
"Searching results on {:}".format(name2label[xdataset]),
fontsize=LabelSize + 4,
)
2021-03-17 10:25:58 +01:00
ax.legend(loc=4, fontsize=LegendFontsize)
fig, axs = plt.subplots(1, 3, figsize=figsize)
# datasets = ['cifar10', 'cifar100', 'ImageNet16-120']
if search_space == "tss":
datasets = ["cifar10-T20000", "cifar100-T40000", "ImageNet16-120-T120000"]
elif search_space == "sss":
datasets = ["cifar10-T20000", "cifar100-T40000", "ImageNet16-120-T60000"]
else:
raise ValueError("Unknown search space: {:}".format(search_space))
for dataset, ax in zip(datasets, axs):
sub_plot_fn(ax, dataset)
print("sub-plot {:} on {:} done.".format(dataset, search_space))
save_path = (vis_save_dir / "{:}-curve.png".format(search_space)).resolve()
fig.savefig(save_path, dpi=dpi, bbox_inches="tight", format="png")
print("{:} save into {:}".format(time_string(), save_path))
plt.close("all")
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="NATS-Bench: Benchmarking NAS Algorithms for Architecture Topology and Size",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
parser.add_argument(
2021-03-18 09:02:55 +01:00
"--save_dir",
type=str,
default="output/vis-nas-bench/nas-algos",
help="Folder to save checkpoints and log.",
)
parser.add_argument(
"--search_space",
type=str,
choices=["tss", "sss"],
help="Choose the search space.",
2021-03-17 10:25:58 +01:00
)
args = parser.parse_args()
save_dir = Path(args.save_dir)
api = create(None, args.search_space, fast_mode=True, verbose=False)
visualize_curve(api, save_dir, args.search_space)