111 lines
54 KiB
Plaintext
111 lines
54 KiB
Plaintext
|
{
|
||
|
"cells": [
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 1,
|
||
|
"id": "filled-multiple",
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"name": "stdout",
|
||
|
"output_type": "stream",
|
||
|
"text": [
|
||
|
"The root path: /Users/xuanyidong/Desktop/AutoDL-Projects\n",
|
||
|
"The library path: /Users/xuanyidong/Desktop/AutoDL-Projects/lib\n"
|
||
|
]
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"import os, sys\n",
|
||
|
"import torch\n",
|
||
|
"from pathlib import Path\n",
|
||
|
"import numpy as np\n",
|
||
|
"import matplotlib\n",
|
||
|
"import matplotlib.pyplot as plt\n",
|
||
|
"\n",
|
||
|
"\n",
|
||
|
"__file__ = os.path.dirname(os.path.realpath(\"__file__\"))\n",
|
||
|
"root_dir = (Path(__file__).parent / \"..\").resolve()\n",
|
||
|
"lib_dir = (root_dir / \"lib\").resolve()\n",
|
||
|
"print(\"The root path: {:}\".format(root_dir))\n",
|
||
|
"print(\"The library path: {:}\".format(lib_dir))\n",
|
||
|
"assert lib_dir.exists(), \"{:} does not exist\".format(lib_dir)\n",
|
||
|
"if str(lib_dir) not in sys.path:\n",
|
||
|
" sys.path.insert(0, str(lib_dir))\n",
|
||
|
"\n",
|
||
|
"from datasets import ComposedSinFunc"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 2,
|
||
|
"id": "consistent-transition",
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"name": "stdout",
|
||
|
"output_type": "stream",
|
||
|
"text": [
|
||
|
"ComposedSinFunc(QuadraticFunc(-12.00009536743164 * x^2 + 12.000093460083008 * x + 0.9998981952667236) * sin(QuarticFunc(6.998945236206055 * x^4 + -14.143538475036621 * x^3 + -16.54721450805664 * x^2 + 52.29801940917969 * x + 52.29801940917969)))\n"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"data": {
|
||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABIAAAAHSCAYAAACU1rABAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAACaPElEQVR4nOz9eXhbZ503/r+PLFmKHHmPFlvybseJY8dJ42Zr03RJ09KU0LIPhd88DMsApWWAMjAwz2/6zDwXw1PKQGkLU7ahA8zCdKV035I0W53dTuJFXmRbsuR93yTrfP8IJ3RJ0tiWdJ9z9H5dVy5ok5zzbqI4Om/d9+eWZFkGERERERERERHpl0F0ACIiIiIiIiIiii8WQEREREREREREOscCiIiIiIiIiIhI51gAERERERERERHpHAsgIiIiIiIiIiKdYwFERERERERERKRzRhE3zc3NlYuKikTcmoiIiIiIiIhIl44ePTogy/KKC32fkAKoqKgIR44cEXFrIiIiIiIiIiJdkiTJd7Hv4xYwIiIiIiIiIiKdYwFERERERERERKRzLICIiIiIiIiIiHSOBRARERERERERkc6xACIiIiIiIiIi0rmYFUCSJKVIknRckqRnYnVNIiIiIiIiIiJauliuALobwNkYXo+IiIiIiIiIiGIgJgWQJEluALcA+HksrkdERERERERERLETqxVAPwTwDQDRGF2PiIiIiIiIiIhiZMkFkCRJuwD0ybJ89D1+3OckSToiSdKR/v7+pd6WiIiIiIiIiIguUyxWAG0F8H5JkjoB/CeA6yRJ+s07f5Asy4/IsrxBluUNK1asiMFtiYiIiIiIiIjociy5AJJl+VuyLLtlWS4C8DEAr8qyfMeSkxERERERERERUUzE8hQwIiIiIiIiIiJSIWMsLybL8usAXo/lNYmIiIiIiIiIaGm4AoiIiIiIiIiISOdYABERERERERER6RwLICIiIiJKKtFoFNFoVHQMIiKihIrpDCAiIiK6tIGBAbz44ouw2WzIyspCVlYWsrOzkZWVBYvFIjoeke51dnbi4Ycfxvj4ODIyMs7/+XvrN+XfpaenQ5Ik0ZGJiIhiggUQERFRAj3xxBM4evQoAECW5bd9n9VqfdsDqN1ux/bt22EymUREJdKdU6dO4Wc/+xnS09Oxc+dODA8PY3h4GF1dXTh58iTC4fDbfrzBYEB1dTU+85nPIDU1VVBqIiKi2GABRERElCB9fX04evQobrzxRrz//e/H6OgohoaGzj+EKv9/aGgInZ2dmJiYwPT0NN7//veLjk6kefv27cNvf/tbFBQU4M4770R6evrbvl+WZUxOTr7tz2MoFMJrr72Gn/zkJ/jiF7/IMpaIiDSNBRAREVGCvPTSS0hJScH1118Po9GInJwc5OTkXPTHP/TQQ9izZw9uvvlmPngSLZIsy3jmmWfwzDPPoKqqCp///OdhNpvf9eMkScLy5cuxfPlyeDye8//e4/Hg17/+NX7605/iC1/4AoxGvn0mIiJt4hBoIiKiBBgdHcWBAwewZcsWZGRkXNbPueGGGzAxMYE333wzzumI9Gl+fh6PPvoonnnmGWzZsgVf+tKXLlj+XMqWLVtwxx13oLGxEY888gjm5+fjlJaIiCi+WAARERElwCuvvIL5+Xns2LHjsn9ORUUF3G43Xn755XfNCyKiS5udncVDDz2EAwcOYNeuXfjUpz6FlJSURV3r6quvxsc+9jGcPHkSP//5z3mCGBERaRILICIiojibnp7Gnj17cMUVV8But1/2z5MkCddffz0CgQCamprimJBIX8bGxnD//ffj7NmzuOOOO3Drrbcu+TSva6+9Fh/+8Idx7Ngx/PKXv2QJREREmsMCiIiIKM727NmDmZkZ3HTTTQv+uXV1dbDZbHjllVfikIxIf0KhEL73ve+ht7cXX/ziF3H11VfH7No33HADbr/9dtTX1+PXv/41V+YREZGmcIodERFRHIXDYbzyyiuoqqp622DZy2UymbB9+3b84Q9/QCgUgsPhiENKIn1ob2/Hgw8+CIPBgK997WsoKiqK+T127tyJ+fl5PPXUUzAajbjjjjuWvLqIiIgoEbgCiIiIKI4OHjyIsbGxRa3+UWzbtg1GoxGvvvpqDJMR6Utvby9+8IMfwGq14hvf+EZcyh/F+973Ptxyyy1444038B//8R9cCURERJrAAoiIiChOotEoXnjhBRQXF6O8vHzR10lPT8eVV16JAwcOYHJyMoYJifTjqaeegsFgwD333LOgWVuLdeutt2Lnzp3Ys2cPfv/737MEIiIi1WMBREREFCdHjx7FwMAAbrrppiVvEbn++usxNzeHN954I0bpiPTD5/Ph+PHj2LFjBzIyMhJyT0mScNttt+GGG27AK6+8gscffzwh9yUiIlosFkBERERxIMsynn/+eTidTqxdu3bJ13O73aisrMRrr72G+fn5GCQk0o+nnnoKaWlp2LFjR0LvK0kSPvShD+Gaa67Biy++iObm5oTen4iIaCFYABEREcXBmTNn0NPTg507d8ZsQOz111+P4eFhHD9+PCbXI9KD1tZWnD59GjfddBMsFkvC7y9JEj784Q8jOzsb//M//8OtYEREpFosgIiIiOLg+eefR1ZWFq688sqYXbO6uhp2ux0vv/xyzK5JpGWyLOPJJ59Eeno6tm/fLiyHyWTCBz7wAXR1deHNN98UloOIiOhSWAARERHFWHt7O1paWrBjxw4YjcaYXVeSJFx//fXo6OhAe3t7zK5LpFVnzpyB1+vFLbfcgtTUVKFZrrzyShQUFODJJ59EOBwWmoWIiOhCWAARERHF2PPPP4+0tDRcddVVMb/25s2bYbVa8corr8T82kRaoqz+ycnJicuftYVS5gENDQ3h1VdfFR2HiIjoXVgAERERxVBvby9OnjyJa6+9FmazOebXN5vNuOqqq3Ds2DEMDQ3F/PpEWnH8+HF0dXXh1ltvjelKu6VYuXIlampq8Oyzz2JiYkJ0HCIiordhAURERBRDL7zwAlJTU3HttdfG7R7KtV977bW43YNIzaLRKJ5++mm4XC5s3LhRdJy3uf322zE7O4tnnnlGdBQiIqK3YQFEREQUI0NDQzh8+DCuvvpqLF++PG73yc7Oxvr167Fv3z7Mzs7G7T5EavXmm2+it7cX73//+2EwqOvtrMvlwtVXX409e/agr69PdBwiIqLz1PU3JhERkYYpp3PdcMMNcb/X9ddfj+npaRw8eDDu9yJSk0gkgqeffhoFBQVYt26d6DgXdOutt8JkMuHxxx8XHYWIiOg8FkBEREQxMDExgX379mHjxo3Izs6O+/1KSkpQXFyMV155BbIsx/1+RGqxf/9+DA4OYvfu3ZAkSXScC0pPT8fOnTtx/PhxtLW1iY5DREQEgAUQERFRTLz++uuYm5vDzp07E3bP66+/Hn19fWhoaEjYPYlEmpubwx//+EeUlZWhqqpKdJxLuuGGG5CRkYH/+Z//YUlLRESqwAKIiIgoBk6dOoXy8nK4XK6E3XP9+vXIysrikfCUNF5//XWMjo7iAx/4gGpX/yjMZjN2796N9vZ2HDt2THQcIiIiFkBERERLNTMzg66uLlRUVCT0vikpKbj22mvR1NSEnp6ehN6bKNFmZmbw/PPPo6qqCuXl5aLjXJbNmzcjPz8fjz/+OCKRiOg4RESU5FgAERERLVF7eztkWRbyUHr11VfDZDJh3759Cb83USK9/PLLmJycxO7du0VHuWwGgwEf/OAHMTAwgD179oiOQ0RESY4FEBER0RK1trbCYDCgpKQk4fe2Wq2oqKhAc3Nzwu9NlCiTk5N46aWXsG7dOhQWFoqOsyBVVVVYtWoVnnnmGUxNTYmOQ0RESYwFEBER0RJ5vV54PB6YzWYh96+oqEBvby/Gx8eF3J8o3p5//nnMzs5qavXPW33oQx/C9PQ0nnvuOdFRiIgoibEAIiIiWoJIJIKOjg6hM0mUe3u9XmEZiOJlZGQEr732GjZu3JjQIeux5Ha7sXnzZrz66qsYGBgQHYeIiJIUCyAiIqIl8Pl8CIfDQgugwsJCmEwmtLa2Cst
|
||
|
"text/plain": [
|
||
|
"<Figure size 1440x576 with 1 Axes>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {
|
||
|
"needs_background": "light"
|
||
|
},
|
||
|
"output_type": "display_data"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"def visualize_q_func():\n",
|
||
|
"\n",
|
||
|
" dpi, width, height = 10, 200, 80\n",
|
||
|
" figsize = width / float(dpi), height / float(dpi)\n",
|
||
|
" LabelSize, LegendFontsize, font_gap = 40, 40, 5\n",
|
||
|
" \n",
|
||
|
" fig = plt.figure(figsize=figsize)\n",
|
||
|
" \n",
|
||
|
" func = ComposedSinFunc()\n",
|
||
|
" print(func)\n",
|
||
|
" xaxis, yaxis = [], []\n",
|
||
|
" timestamps = np.arange(0, 1.0, 0.01)\n",
|
||
|
" for idx, position in enumerate(timestamps):\n",
|
||
|
" xaxis.append(position)\n",
|
||
|
" yaxis.append(func(position))\n",
|
||
|
"\n",
|
||
|
" cur_ax = fig.add_subplot(1, 1, 1)\n",
|
||
|
" cur_ax.plot(xaxis, yaxis, color=\"k\", linestyle=\"-\", alpha=0.6, label=None)\n",
|
||
|
"\n",
|
||
|
"visualize_q_func()"
|
||
|
]
|
||
|
}
|
||
|
],
|
||
|
"metadata": {
|
||
|
"kernelspec": {
|
||
|
"display_name": "Python 3",
|
||
|
"language": "python",
|
||
|
"name": "python3"
|
||
|
},
|
||
|
"language_info": {
|
||
|
"codemirror_mode": {
|
||
|
"name": "ipython",
|
||
|
"version": 3
|
||
|
},
|
||
|
"file_extension": ".py",
|
||
|
"mimetype": "text/x-python",
|
||
|
"name": "python",
|
||
|
"nbconvert_exporter": "python",
|
||
|
"pygments_lexer": "ipython3",
|
||
|
"version": "3.8.8"
|
||
|
}
|
||
|
},
|
||
|
"nbformat": 4,
|
||
|
"nbformat_minor": 5
|
||
|
}
|