autodl-projects/xautodl/models/cell_searchs/search_cells.py

268 lines
9.6 KiB
Python
Raw Permalink Normal View History

2019-11-15 07:15:07 +01:00
##################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
##################################################
2019-11-05 13:35:28 +01:00
import math, random, torch
import warnings
import torch.nn as nn
import torch.nn.functional as F
from copy import deepcopy
from ..cell_operations import OPS
# This module is used for NAS-Bench-201, represents a small search space with a complete DAG
class NAS201SearchCell(nn.Module):
2021-05-12 10:28:05 +02:00
def __init__(
self,
C_in,
C_out,
stride,
max_nodes,
op_names,
affine=False,
track_running_stats=True,
):
super(NAS201SearchCell, self).__init__()
self.op_names = deepcopy(op_names)
self.edges = nn.ModuleDict()
self.max_nodes = max_nodes
self.in_dim = C_in
self.out_dim = C_out
for i in range(1, max_nodes):
for j in range(i):
node_str = "{:}<-{:}".format(i, j)
if j == 0:
xlists = [
OPS[op_name](C_in, C_out, stride, affine, track_running_stats)
for op_name in op_names
]
else:
xlists = [
OPS[op_name](C_in, C_out, 1, affine, track_running_stats)
for op_name in op_names
]
self.edges[node_str] = nn.ModuleList(xlists)
self.edge_keys = sorted(list(self.edges.keys()))
self.edge2index = {key: i for i, key in enumerate(self.edge_keys)}
self.num_edges = len(self.edges)
def extra_repr(self):
string = "info :: {max_nodes} nodes, inC={in_dim}, outC={out_dim}".format(
**self.__dict__
)
return string
def forward(self, inputs, weightss):
nodes = [inputs]
for i in range(1, self.max_nodes):
inter_nodes = []
for j in range(i):
node_str = "{:}<-{:}".format(i, j)
weights = weightss[self.edge2index[node_str]]
inter_nodes.append(
sum(
layer(nodes[j]) * w
for layer, w in zip(self.edges[node_str], weights)
)
)
nodes.append(sum(inter_nodes))
return nodes[-1]
# GDAS
def forward_gdas(self, inputs, hardwts, index):
nodes = [inputs]
for i in range(1, self.max_nodes):
inter_nodes = []
for j in range(i):
node_str = "{:}<-{:}".format(i, j)
weights = hardwts[self.edge2index[node_str]]
argmaxs = index[self.edge2index[node_str]].item()
weigsum = sum(
weights[_ie] * edge(nodes[j]) if _ie == argmaxs else weights[_ie]
for _ie, edge in enumerate(self.edges[node_str])
)
inter_nodes.append(weigsum)
nodes.append(sum(inter_nodes))
return nodes[-1]
2022-03-21 07:12:12 +01:00
# GDAS Variant: https://github.com/D-X-Y/AutoDL-Projects/issues/119
def forward_gdas_v1(self, inputs, hardwts, index):
nodes = [inputs]
for i in range(1, self.max_nodes):
inter_nodes = []
for j in range(i):
node_str = "{:}<-{:}".format(i, j)
weights = hardwts[self.edge2index[node_str]]
argmaxs = index[self.edge2index[node_str]].item()
weigsum = weights[argmaxs] * self.edges[node_str](nodes[j])
inter_nodes.append(weigsum)
nodes.append(sum(inter_nodes))
return nodes[-1]
2021-05-12 10:28:05 +02:00
# joint
def forward_joint(self, inputs, weightss):
nodes = [inputs]
for i in range(1, self.max_nodes):
inter_nodes = []
for j in range(i):
node_str = "{:}<-{:}".format(i, j)
weights = weightss[self.edge2index[node_str]]
# aggregation = sum( layer(nodes[j]) * w for layer, w in zip(self.edges[node_str], weights) ) / weights.numel()
aggregation = sum(
layer(nodes[j]) * w
for layer, w in zip(self.edges[node_str], weights)
)
inter_nodes.append(aggregation)
nodes.append(sum(inter_nodes))
return nodes[-1]
# uniform random sampling per iteration, SETN
def forward_urs(self, inputs):
nodes = [inputs]
for i in range(1, self.max_nodes):
while True: # to avoid select zero for all ops
sops, has_non_zero = [], False
for j in range(i):
node_str = "{:}<-{:}".format(i, j)
candidates = self.edges[node_str]
select_op = random.choice(candidates)
sops.append(select_op)
if not hasattr(select_op, "is_zero") or select_op.is_zero is False:
has_non_zero = True
if has_non_zero:
break
inter_nodes = []
for j, select_op in enumerate(sops):
inter_nodes.append(select_op(nodes[j]))
nodes.append(sum(inter_nodes))
return nodes[-1]
# select the argmax
def forward_select(self, inputs, weightss):
nodes = [inputs]
for i in range(1, self.max_nodes):
inter_nodes = []
for j in range(i):
node_str = "{:}<-{:}".format(i, j)
weights = weightss[self.edge2index[node_str]]
inter_nodes.append(
self.edges[node_str][weights.argmax().item()](nodes[j])
)
# inter_nodes.append( sum( layer(nodes[j]) * w for layer, w in zip(self.edges[node_str], weights) ) )
nodes.append(sum(inter_nodes))
return nodes[-1]
# forward with a specific structure
def forward_dynamic(self, inputs, structure):
nodes = [inputs]
for i in range(1, self.max_nodes):
cur_op_node = structure.nodes[i - 1]
inter_nodes = []
for op_name, j in cur_op_node:
node_str = "{:}<-{:}".format(i, j)
op_index = self.op_names.index(op_name)
inter_nodes.append(self.edges[node_str][op_index](nodes[j]))
nodes.append(sum(inter_nodes))
return nodes[-1]
2020-01-11 15:42:17 +01:00
2022-03-21 07:12:12 +01:00
# Learning Transferable Architectures for Scalable Image Recognition, CVPR 2018
2020-01-11 15:42:17 +01:00
class MixedOp(nn.Module):
2021-05-12 10:28:05 +02:00
def __init__(self, space, C, stride, affine, track_running_stats):
super(MixedOp, self).__init__()
self._ops = nn.ModuleList()
for primitive in space:
op = OPS[primitive](C, C, stride, affine, track_running_stats)
self._ops.append(op)
2020-01-11 15:42:17 +01:00
2021-05-12 10:28:05 +02:00
def forward_gdas(self, x, weights, index):
return self._ops[index](x) * weights[index]
2020-01-11 15:42:17 +01:00
2021-05-12 10:28:05 +02:00
def forward_darts(self, x, weights):
return sum(w * op(x) for w, op in zip(weights, self._ops))
2020-01-11 15:42:17 +01:00
class NASNetSearchCell(nn.Module):
2021-05-12 10:28:05 +02:00
def __init__(
self,
space,
steps,
multiplier,
C_prev_prev,
C_prev,
C,
reduction,
reduction_prev,
affine,
track_running_stats,
):
super(NASNetSearchCell, self).__init__()
self.reduction = reduction
self.op_names = deepcopy(space)
if reduction_prev:
self.preprocess0 = OPS["skip_connect"](
C_prev_prev, C, 2, affine, track_running_stats
)
else:
self.preprocess0 = OPS["nor_conv_1x1"](
C_prev_prev, C, 1, affine, track_running_stats
)
self.preprocess1 = OPS["nor_conv_1x1"](
C_prev, C, 1, affine, track_running_stats
)
self._steps = steps
self._multiplier = multiplier
self._ops = nn.ModuleList()
self.edges = nn.ModuleDict()
for i in range(self._steps):
for j in range(2 + i):
node_str = "{:}<-{:}".format(
i, j
) # indicate the edge from node-(j) to node-(i+2)
stride = 2 if reduction and j < 2 else 1
op = MixedOp(space, C, stride, affine, track_running_stats)
self.edges[node_str] = op
self.edge_keys = sorted(list(self.edges.keys()))
self.edge2index = {key: i for i, key in enumerate(self.edge_keys)}
self.num_edges = len(self.edges)
@property
def multiplier(self):
return self._multiplier
def forward_gdas(self, s0, s1, weightss, indexs):
s0 = self.preprocess0(s0)
s1 = self.preprocess1(s1)
states = [s0, s1]
for i in range(self._steps):
clist = []
for j, h in enumerate(states):
node_str = "{:}<-{:}".format(i, j)
op = self.edges[node_str]
weights = weightss[self.edge2index[node_str]]
index = indexs[self.edge2index[node_str]].item()
clist.append(op.forward_gdas(h, weights, index))
states.append(sum(clist))
return torch.cat(states[-self._multiplier :], dim=1)
def forward_darts(self, s0, s1, weightss):
s0 = self.preprocess0(s0)
s1 = self.preprocess1(s1)
states = [s0, s1]
for i in range(self._steps):
clist = []
for j, h in enumerate(states):
node_str = "{:}<-{:}".format(i, j)
op = self.edges[node_str]
weights = weightss[self.edge2index[node_str]]
clist.append(op.forward_darts(h, weights))
states.append(sum(clist))
return torch.cat(states[-self._multiplier :], dim=1)