autodl-projects/xautodl/procedures/basic_main.py

155 lines
4.5 KiB
Python
Raw Normal View History

2019-11-15 07:15:07 +01:00
##################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
##################################################
2019-09-28 10:24:47 +02:00
import os, sys, time, torch
2021-04-11 15:45:20 +02:00
# modules in AutoDL
2021-05-19 09:19:20 +02:00
from xautodl.log_utils import AverageMeter, time_string
2021-04-11 15:45:20 +02:00
from .eval_funcs import obtain_accuracy
2019-09-28 10:24:47 +02:00
2021-03-19 16:57:23 +01:00
def basic_train(
xloader,
network,
criterion,
scheduler,
optimizer,
optim_config,
extra_info,
print_freq,
logger,
):
loss, acc1, acc5 = procedure(
2021-03-19 16:57:23 +01:00
xloader,
network,
criterion,
scheduler,
optimizer,
"train",
optim_config,
extra_info,
print_freq,
logger,
)
return loss, acc1, acc5
2019-09-28 10:24:47 +02:00
2021-03-19 16:57:23 +01:00
def basic_valid(
xloader, network, criterion, optim_config, extra_info, print_freq, logger
):
with torch.no_grad():
loss, acc1, acc5 = procedure(
2021-03-19 16:57:23 +01:00
xloader,
network,
criterion,
None,
None,
"valid",
None,
extra_info,
print_freq,
logger,
)
return loss, acc1, acc5
2019-09-28 10:24:47 +02:00
2021-03-19 16:57:23 +01:00
def procedure(
xloader,
network,
criterion,
scheduler,
optimizer,
mode,
config,
extra_info,
print_freq,
logger,
):
data_time, batch_time, losses, top1, top5 = (
AverageMeter(),
AverageMeter(),
AverageMeter(),
AverageMeter(),
AverageMeter(),
)
if mode == "train":
network.train()
elif mode == "valid":
network.eval()
else:
raise ValueError("The mode is not right : {:}".format(mode))
2019-09-28 10:24:47 +02:00
# logger.log('[{:5s}] config :: auxiliary={:}, message={:}'.format(mode, config.auxiliary if hasattr(config, 'auxiliary') else -1, network.module.get_message()))
logger.log(
2021-03-19 16:57:23 +01:00
"[{:5s}] config :: auxiliary={:}".format(
mode, config.auxiliary if hasattr(config, "auxiliary") else -1
)
)
end = time.time()
for i, (inputs, targets) in enumerate(xloader):
if mode == "train":
scheduler.update(None, 1.0 * i / len(xloader))
# measure data loading time
data_time.update(time.time() - end)
# calculate prediction and loss
targets = targets.cuda(non_blocking=True)
2019-09-28 10:24:47 +02:00
if mode == "train":
optimizer.zero_grad()
2019-09-28 10:24:47 +02:00
features, logits = network(inputs)
if isinstance(logits, list):
2021-03-19 16:57:23 +01:00
assert len(logits) == 2, "logits must has {:} items instead of {:}".format(
2, len(logits)
)
logits, logits_aux = logits
else:
logits, logits_aux = logits, None
loss = criterion(logits, targets)
if config is not None and hasattr(config, "auxiliary") and config.auxiliary > 0:
loss_aux = criterion(logits_aux, targets)
loss += config.auxiliary * loss_aux
2019-09-28 10:24:47 +02:00
if mode == "train":
loss.backward()
optimizer.step()
# record
prec1, prec5 = obtain_accuracy(logits.data, targets.data, topk=(1, 5))
losses.update(loss.item(), inputs.size(0))
top1.update(prec1.item(), inputs.size(0))
top5.update(prec5.item(), inputs.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
2019-09-28 10:24:47 +02:00
if i % print_freq == 0 or (i + 1) == len(xloader):
Sstr = (
" {:5s} ".format(mode.upper())
+ time_string()
+ " [{:}][{:03d}/{:03d}]".format(extra_info, i, len(xloader))
)
if scheduler is not None:
Sstr += " {:}".format(scheduler.get_min_info())
Tstr = "Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})".format(
batch_time=batch_time, data_time=data_time
)
Lstr = "Loss {loss.val:.3f} ({loss.avg:.3f}) Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})".format(
loss=losses, top1=top1, top5=top5
)
Istr = "Size={:}".format(list(inputs.size()))
logger.log(Sstr + " " + Tstr + " " + Lstr + " " + Istr)
2019-09-28 10:24:47 +02:00
logger.log(
" **{mode:5s}** Prec@1 {top1.avg:.2f} Prec@5 {top5.avg:.2f} Error@1 {error1:.2f} Error@5 {error5:.2f} Loss:{loss:.3f}".format(
2021-03-19 16:57:23 +01:00
mode=mode.upper(),
top1=top1,
top5=top5,
error1=100 - top1.avg,
error5=100 - top5.avg,
loss=losses.avg,
)
)
return losses.avg, top1.avg, top5.avg