autodl-projects/xautodl/xlayers/super_dropout.py

84 lines
2.6 KiB
Python
Raw Normal View History

2021-05-12 14:32:50 +02:00
#####################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.03 #
#####################################################
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
2021-05-17 09:39:24 +02:00
from typing import Optional, Callable, Tuple
2021-05-12 14:32:50 +02:00
2021-05-19 07:00:33 +02:00
from xautodl import spaces
2021-05-12 14:32:50 +02:00
from .super_module import SuperModule
from .super_module import IntSpaceType
from .super_module import BoolSpaceType
class SuperDropout(SuperModule):
"""Applies a the dropout function element-wise."""
def __init__(self, p: float = 0.5, inplace: bool = False) -> None:
super(SuperDropout, self).__init__()
self._p = p
self._inplace = inplace
@property
def abstract_search_space(self):
return spaces.VirtualNode(id(self))
def forward_candidate(self, input: torch.Tensor) -> torch.Tensor:
return self.forward_raw(input)
def forward_raw(self, input: torch.Tensor) -> torch.Tensor:
return F.dropout(input, self._p, self.training, self._inplace)
def forward_with_container(self, input, container, prefix=[]):
return self.forward_raw(input)
def extra_repr(self) -> str:
xstr = "inplace=True" if self._inplace else ""
return "p={:}".format(self._p) + ", " + xstr
2021-05-17 09:39:24 +02:00
class SuperDrop(SuperModule):
"""Applies a the drop-path function element-wise."""
def __init__(self, p: float, dims: Tuple[int], recover: bool = True) -> None:
super(SuperDrop, self).__init__()
self._p = p
self._dims = dims
self._recover = recover
@property
def abstract_search_space(self):
return spaces.VirtualNode(id(self))
def forward_candidate(self, input: torch.Tensor) -> torch.Tensor:
return self.forward_raw(input)
def forward_raw(self, input: torch.Tensor) -> torch.Tensor:
if not self.training or self._p <= 0:
return input
keep_prob = 1 - self._p
shape = [input.shape[0]] + [
x if y == -1 else y for x, y in zip(input.shape[1:], self._dims)
]
random_tensor = keep_prob + torch.rand(
shape, dtype=input.dtype, device=input.device
)
random_tensor.floor_() # binarize
if self._recover:
return input.div(keep_prob) * random_tensor
else:
return input * random_tensor # as masks
def forward_with_container(self, input, container, prefix=[]):
return self.forward_raw(input)
def extra_repr(self) -> str:
return (
"p={:}".format(self._p)
+ ", dims={:}".format(self._dims)
+ ", recover={:}".format(self._recover)
)