diff --git a/README.md b/README.md index 83786a5..ef13f5c 100644 --- a/README.md +++ b/README.md @@ -20,6 +20,8 @@ In this paper, we proposed a differentiable searching strategy for transformable +### Usage + Use `bash ./scripts/prepare.sh` to prepare data splits for `CIFAR-10`, `CIFARR-100`, and `ILSVRC2012`. If you do not have `ILSVRC2012` data, pleasee comment L12 in `./scripts/prepare.sh`. @@ -43,8 +45,11 @@ args: `cifar10` indicates the dataset name, `ResNet56` indicates the basemodel n ## One-Shot Neural Architecture Search via Self-Evaluated Template Network +Highlight: we equip one-shot NAS with an architecture sampler and train network weights using uniformly sampling. + +### Usage Train the searched SETN-searched CNN on CIFAR-10, CIFAR-100, and ImageNet. ``` CUDA_VISIBLE_DEVICES=0 bash ./scripts/nas-infer-train.sh cifar10 SETN 96 -1 @@ -57,10 +62,13 @@ Searching codes come soon! ## [Searching for A Robust Neural Architecture in Four GPU Hours](http://openaccess.thecvf.com/content_CVPR_2019/papers/Dong_Searching_for_a_Robust_Neural_Architecture_in_Four_GPU_Hours_CVPR_2019_paper.pdf) +We proposed a gradient-based searching algorithm using differentiable architecture sampling (improving DARTS with Gumbel-softmax sampling). + The old version is located at [`others/GDAS`](https://github.com/D-X-Y/NAS-Projects/tree/master/others/GDAS) and a paddlepaddle implementation is locate at [`others/paddlepaddle`](https://github.com/D-X-Y/NAS-Projects/tree/master/others/paddlepaddle). +### Usage Train the searched GDAS-searched CNN on CIFAR-10, CIFAR-100, and ImageNet. ``` CUDA_VISIBLE_DEVICES=0 bash ./scripts/nas-infer-train.sh cifar10 GDAS_V1 96 -1