Refine Transformer
This commit is contained in:
parent
9136f33684
commit
11f313288a
@ -4,7 +4,7 @@ import torch.nn.functional as F
|
||||
|
||||
from xautodl.xlayers import super_core
|
||||
from xautodl.xlayers import trunc_normal_
|
||||
from xautodl.models.xcore import get_model
|
||||
from xautodl.xmodels.xcore import get_model
|
||||
|
||||
|
||||
class MetaModelV1(super_core.SuperModule):
|
||||
|
@ -8,6 +8,9 @@
|
||||
import os, sys, time, torch
|
||||
import pickle
|
||||
import tempfile
|
||||
from pathlib import Path
|
||||
|
||||
root_dir = (Path(__file__).parent / ".." / "..").resolve()
|
||||
|
||||
from xautodl.trade_models.quant_transformer import QuantTransformer
|
||||
|
||||
@ -17,7 +20,7 @@ def test_create():
|
||||
if not torch.cuda.is_available():
|
||||
return
|
||||
quant_model = QuantTransformer(GPU=0)
|
||||
temp_dir = lib_dir / ".." / "tests" / ".pytest_cache"
|
||||
temp_dir = root_dir / "tests" / ".pytest_cache"
|
||||
temp_dir.mkdir(parents=True, exist_ok=True)
|
||||
temp_file = temp_dir / "quant-model.pkl"
|
||||
with temp_file.open("wb") as f:
|
||||
@ -30,7 +33,7 @@ def test_create():
|
||||
|
||||
|
||||
def test_load():
|
||||
temp_file = lib_dir / ".." / "tests" / ".pytest_cache" / "quant-model.pkl"
|
||||
temp_file = root_dir / "tests" / ".pytest_cache" / "quant-model.pkl"
|
||||
with temp_file.open("rb") as f:
|
||||
model = pickle.load(f)
|
||||
print(model.model)
|
||||
|
@ -21,10 +21,10 @@ import torch.nn.functional as F
|
||||
import torch.optim as optim
|
||||
import torch.utils.data as th_data
|
||||
|
||||
from log_utils import AverageMeter
|
||||
from utils import count_parameters
|
||||
from xautodl.xmisc import AverageMeter
|
||||
from xautodl.xmisc import count_parameters
|
||||
|
||||
from xlayers import super_core
|
||||
from xautodl.xlayers import super_core
|
||||
from .transformers import DEFAULT_NET_CONFIG
|
||||
from .transformers import get_transformer
|
||||
|
||||
|
@ -13,7 +13,7 @@ import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from xautodl import spaces
|
||||
from xautodl.xlayers import trunc_normal_
|
||||
from xautodl.xlayers import weight_init
|
||||
from xautodl.xlayers import super_core
|
||||
|
||||
|
||||
@ -104,7 +104,7 @@ class SuperTransformer(super_core.SuperModule):
|
||||
self.head = super_core.SuperSequential(
|
||||
super_core.SuperLayerNorm1D(embed_dim), super_core.SuperLinear(embed_dim, 1)
|
||||
)
|
||||
trunc_normal_(self.cls_token, std=0.02)
|
||||
weight_init.trunc_normal_(self.cls_token, std=0.02)
|
||||
self.apply(self._init_weights)
|
||||
|
||||
@property
|
||||
@ -136,11 +136,11 @@ class SuperTransformer(super_core.SuperModule):
|
||||
|
||||
def _init_weights(self, m):
|
||||
if isinstance(m, nn.Linear):
|
||||
trunc_normal_(m.weight, std=0.02)
|
||||
weight_init.trunc_normal_(m.weight, std=0.02)
|
||||
if isinstance(m, nn.Linear) and m.bias is not None:
|
||||
nn.init.constant_(m.bias, 0)
|
||||
elif isinstance(m, super_core.SuperLinear):
|
||||
trunc_normal_(m._super_weight, std=0.02)
|
||||
weight_init.trunc_normal_(m._super_weight, std=0.02)
|
||||
if m._super_bias is not None:
|
||||
nn.init.constant_(m._super_bias, 0)
|
||||
elif isinstance(m, super_core.SuperLayerNorm1D):
|
||||
|
@ -4,5 +4,4 @@
|
||||
# This file is expected to be self-contained, expect
|
||||
# for importing from spaces to include search space.
|
||||
#####################################################
|
||||
from .weight_init import trunc_normal_
|
||||
from .super_core import *
|
||||
|
@ -1,8 +1,12 @@
|
||||
# Borrowed from https://github.com/rwightman/pytorch-image-models
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import math
|
||||
import warnings
|
||||
|
||||
# setup for xlayers
|
||||
from . import super_core
|
||||
|
||||
|
||||
def _no_grad_trunc_normal_(tensor, mean, std, a, b):
|
||||
# Cut & paste from PyTorch official master until it's in a few official releases - RW
|
||||
@ -64,3 +68,17 @@ def trunc_normal_(tensor, mean=0.0, std=1.0, a=-2.0, b=2.0):
|
||||
return [_no_grad_trunc_normal_(x, mean, std, a, b) for x in tensor]
|
||||
else:
|
||||
return _no_grad_trunc_normal_(tensor, mean, std, a, b)
|
||||
|
||||
|
||||
def init_transformer(m):
|
||||
if isinstance(m, nn.Linear):
|
||||
trunc_normal_(m.weight, std=0.02)
|
||||
if isinstance(m, nn.Linear) and m.bias is not None:
|
||||
nn.init.constant_(m.bias, 0)
|
||||
elif isinstance(m, super_core.SuperLinear):
|
||||
trunc_normal_(m._super_weight, std=0.02)
|
||||
if m._super_bias is not None:
|
||||
nn.init.constant_(m._super_bias, 0)
|
||||
elif isinstance(m, super_core.SuperLayerNorm1D):
|
||||
nn.init.constant_(m.weight, 1.0)
|
||||
nn.init.constant_(m.bias, 0)
|
||||
|
@ -4,4 +4,4 @@
|
||||
# The models in this folder is written with xlayers #
|
||||
#####################################################
|
||||
|
||||
from .transformers import get_transformer
|
||||
from .core import *
|
||||
|
@ -15,7 +15,7 @@ from xautodl.xlayers.super_core import super_name2activation
|
||||
|
||||
|
||||
def get_model(config: Dict[Text, Any], **kwargs):
|
||||
model_type = config.get("model_type", "simple_mlp")
|
||||
model_type = config.get("model_type", "simple_mlp").lower()
|
||||
if model_type == "simple_mlp":
|
||||
act_cls = super_name2activation[kwargs["act_cls"]]
|
||||
norm_cls = super_name2norm[kwargs["norm_cls"]]
|
||||
@ -60,6 +60,8 @@ def get_model(config: Dict[Text, Any], **kwargs):
|
||||
last_dim = hidden_dim
|
||||
sub_layers.append(SuperLinear(last_dim, kwargs["output_dim"]))
|
||||
model = SuperSequential(*sub_layers)
|
||||
elif model_type == "quant_transformer":
|
||||
raise NotImplementedError
|
||||
else:
|
||||
raise TypeError("Unkonwn model type: {:}".format(model_type))
|
||||
return model
|
@ -20,20 +20,6 @@ def pair(t):
|
||||
return t if isinstance(t, tuple) else (t, t)
|
||||
|
||||
|
||||
def _init_weights(m):
|
||||
if isinstance(m, nn.Linear):
|
||||
weight_init.trunc_normal_(m.weight, std=0.02)
|
||||
if isinstance(m, nn.Linear) and m.bias is not None:
|
||||
nn.init.constant_(m.bias, 0)
|
||||
elif isinstance(m, xlayers.SuperLinear):
|
||||
weight_init.trunc_normal_(m._super_weight, std=0.02)
|
||||
if m._super_bias is not None:
|
||||
nn.init.constant_(m._super_bias, 0)
|
||||
elif isinstance(m, xlayers.SuperLayerNorm1D):
|
||||
nn.init.constant_(m.weight, 1.0)
|
||||
nn.init.constant_(m.bias, 0)
|
||||
|
||||
|
||||
name2config = {
|
||||
"vit-cifar10-p4-d4-h4-c32": dict(
|
||||
type="vit",
|
||||
@ -155,7 +141,7 @@ class SuperViT(xlayers.SuperModule):
|
||||
)
|
||||
|
||||
weight_init.trunc_normal_(self.cls_token, std=0.02)
|
||||
self.apply(_init_weights)
|
||||
self.apply(weight_init.init_transformer)
|
||||
|
||||
@property
|
||||
def abstract_search_space(self):
|
||||
|
124
xautodl/xmodels/transformers_quantum.py
Normal file
124
xautodl/xmodels/transformers_quantum.py
Normal file
@ -0,0 +1,124 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.06 #
|
||||
#####################################################
|
||||
# Vision Transformer: arxiv.org/pdf/2010.11929.pdf #
|
||||
#####################################################
|
||||
import copy, math
|
||||
from functools import partial
|
||||
from typing import Optional, Text, List
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from xautodl import spaces
|
||||
from xautodl import xlayers
|
||||
from xautodl.xlayers import weight_init
|
||||
|
||||
|
||||
class SuperQuaT(xlayers.SuperModule):
|
||||
"""The super transformer for transformer."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
image_size,
|
||||
patch_size,
|
||||
num_classes,
|
||||
dim,
|
||||
depth,
|
||||
heads,
|
||||
mlp_multiplier=4,
|
||||
channels=3,
|
||||
dropout=0.0,
|
||||
att_dropout=0.0,
|
||||
):
|
||||
super(SuperQuaT, self).__init__()
|
||||
image_height, image_width = pair(image_size)
|
||||
patch_height, patch_width = pair(patch_size)
|
||||
|
||||
if image_height % patch_height != 0 or image_width % patch_width != 0:
|
||||
raise ValueError("Image dimensions must be divisible by the patch size.")
|
||||
|
||||
num_patches = (image_height // patch_height) * (image_width // patch_width)
|
||||
patch_dim = channels * patch_height * patch_width
|
||||
self.to_patch_embedding = xlayers.SuperSequential(
|
||||
xlayers.SuperReArrange(
|
||||
"b c (h p1) (w p2) -> b (h w) (p1 p2 c)",
|
||||
p1=patch_height,
|
||||
p2=patch_width,
|
||||
),
|
||||
xlayers.SuperLinear(patch_dim, dim),
|
||||
)
|
||||
|
||||
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim))
|
||||
self.cls_token = nn.Parameter(torch.randn(1, 1, dim))
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
|
||||
# build the transformer encode layers
|
||||
layers = []
|
||||
for ilayer in range(depth):
|
||||
layers.append(
|
||||
xlayers.SuperTransformerEncoderLayer(
|
||||
dim,
|
||||
heads,
|
||||
False,
|
||||
mlp_multiplier,
|
||||
dropout=dropout,
|
||||
att_dropout=att_dropout,
|
||||
)
|
||||
)
|
||||
self.backbone = xlayers.SuperSequential(*layers)
|
||||
self.cls_head = xlayers.SuperSequential(
|
||||
xlayers.SuperLayerNorm1D(dim), xlayers.SuperLinear(dim, num_classes)
|
||||
)
|
||||
|
||||
weight_init.trunc_normal_(self.cls_token, std=0.02)
|
||||
self.apply(_init_weights)
|
||||
|
||||
@property
|
||||
def abstract_search_space(self):
|
||||
raise NotImplementedError
|
||||
|
||||
def apply_candidate(self, abstract_child: spaces.VirtualNode):
|
||||
super(SuperQuaT, self).apply_candidate(abstract_child)
|
||||
raise NotImplementedError
|
||||
|
||||
def forward_candidate(self, input: torch.Tensor) -> torch.Tensor:
|
||||
raise NotImplementedError
|
||||
|
||||
def forward_raw(self, input: torch.Tensor) -> torch.Tensor:
|
||||
tensors = self.to_patch_embedding(input)
|
||||
batch, seq, _ = tensors.shape
|
||||
|
||||
cls_tokens = self.cls_token.expand(batch, -1, -1)
|
||||
feats = torch.cat((cls_tokens, tensors), dim=1)
|
||||
feats = feats + self.pos_embedding[:, : seq + 1, :]
|
||||
feats = self.dropout(feats)
|
||||
|
||||
feats = self.backbone(feats)
|
||||
|
||||
x = feats[:, 0] # the features for cls-token
|
||||
|
||||
return self.cls_head(x)
|
||||
|
||||
|
||||
def get_transformer(config):
|
||||
if isinstance(config, str) and config.lower() in name2config:
|
||||
config = name2config[config.lower()]
|
||||
if not isinstance(config, dict):
|
||||
raise ValueError("Invalid Configuration: {:}".format(config))
|
||||
model_type = config.get("type", "vit").lower()
|
||||
if model_type == "vit":
|
||||
model = SuperQuaT(
|
||||
image_size=config.get("image_size"),
|
||||
patch_size=config.get("patch_size"),
|
||||
num_classes=config.get("num_classes"),
|
||||
dim=config.get("dim"),
|
||||
depth=config.get("depth"),
|
||||
heads=config.get("heads"),
|
||||
dropout=config.get("dropout"),
|
||||
att_dropout=config.get("att_dropout"),
|
||||
)
|
||||
else:
|
||||
raise ValueError("Unknown model type: {:}".format(model_type))
|
||||
return model
|
Loading…
Reference in New Issue
Block a user