diff --git a/README.md b/README.md
index 8f4a81b..1673f77 100644
--- a/README.md
+++ b/README.md
@@ -32,6 +32,7 @@ Evaluate a trained CNN model
```
CUDA_VISIBLE_DEVICES=0 python ./exps-cnn/evaluate.py --data_path $TORCH_HOME/cifar.python --checkpoint ${checkpoint-path}
CUDA_VISIBLE_DEVICES=0 python ./exps-cnn/evaluate.py --data_path $TORCH_HOME/ILSVRC2012 --checkpoint ${checkpoint-path}
+CUDA_VISIBLE_DEVICES=0 python ./exps-cnn/evaluate.py --data_path $TORCH_HOME/ILSVRC2012 --checkpoint GDAS-V1-C50-N14-ImageNet.pth
```
Train the searched RNN
@@ -48,10 +49,11 @@ CUDA_VISIBLE_DEVICES=0 bash ./scripts-rnn/train-WT2.sh GDAS
Some training logs can be found in `./data/logs/`, and some pre-trained models can be found in [Google Driver](https://drive.google.com/open?id=1Ofhc49xC1PLIX4O708gJZ1ugzz4td_RJ).
### Experimental Results
-
+
Figure 2. Top-1 and top-5 errors on ImageNet.
### Citation
+If you find that this project (GDAS) helps your research, please cite the paper:
```
@inproceedings{dong2019search,
title={Searching for A Robust Neural Architecture in Four GPU Hours},