Update xmisc with yaml

This commit is contained in:
D-X-Y 2021-06-10 02:11:27 -07:00
parent aef5c7579b
commit 1a7440d2af
11 changed files with 259 additions and 76 deletions

View File

@ -32,7 +32,7 @@ jobs:
echo $PWD ; ls
python -m black ./exps -l 88 --check --diff --verbose
python -m black ./tests -l 88 --check --diff --verbose
python -m black ./xautodl/xlayers -l 88 --check --diff --verbose
python -m black ./xautodl/x* -l 88 --check --diff --verbose
python -m black ./xautodl/spaces -l 88 --check --diff --verbose
python -m black ./xautodl/trade_models -l 88 --check --diff --verbose
python -m black ./xautodl/procedures -l 88 --check --diff --verbose

View File

@ -0,0 +1,7 @@
class_or_func: CIFAR10
module_path: torchvision.datasets
args: []
kwargs:
train: False
download: True
transform: null

View File

@ -0,0 +1,7 @@
class_or_func: CIFAR10
module_path: torchvision.datasets
args: []
kwargs:
train: True
download: True
transform: null

View File

@ -1,35 +1,28 @@
#####################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.06 #
#####################################################
# python exps/basic/xmain.py --save_dir outputs/x #
#####################################################
import sys, time, torch, random, argparse
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
from copy import deepcopy
from pathlib import Path
from xautodl.datasets import get_datasets
from xautodl.config_utils import load_config, obtain_basic_args as obtain_args
from xautodl.procedures import (
prepare_seed,
prepare_logger,
save_checkpoint,
copy_checkpoint,
)
from xautodl.procedures import get_optim_scheduler, get_procedures
from xautodl.models import obtain_model
from xautodl.xmodels import obtain_model as obtain_xmodel
from xautodl.nas_infer_model import obtain_nas_infer_model
from xautodl.utils import get_model_infos
from xautodl.log_utils import AverageMeter, time_string, convert_secs2time
lib_dir = (Path(__file__).parent / ".." / "..").resolve()
print("LIB-DIR: {:}".format(lib_dir))
if str(lib_dir) not in sys.path:
sys.path.insert(0, str(lib_dir))
from xautodl.xmisc import nested_call_by_yaml
def main(args):
assert torch.cuda.is_available(), "CUDA is not available."
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
# torch.backends.cudnn.deterministic = True
# torch.set_num_threads(args.workers)
train_data = nested_call_by_yaml(args.train_data_config, args.data_path)
valid_data = nested_call_by_yaml(args.valid_data_config, args.data_path)
import pdb
pdb.set_trace()
prepare_seed(args.rand_seed)
logger = prepare_logger(args)
@ -290,5 +283,44 @@ def main(args):
if __name__ == "__main__":
args = obtain_args()
parser = argparse.ArgumentParser(
description="Train a model with a loss function.",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
parser.add_argument(
"--save_dir", type=str, help="Folder to save checkpoints and log."
)
parser.add_argument("--resume", type=str, help="Resume path.")
parser.add_argument("--init_model", type=str, help="The initialization model path.")
parser.add_argument("--model_config", type=str, help="The path to the model config")
parser.add_argument(
"--optim_config", type=str, help="The path to the optimizer config"
)
parser.add_argument(
"--train_data_config", type=str, help="The dataset config path."
)
parser.add_argument(
"--valid_data_config", type=str, help="The dataset config path."
)
parser.add_argument(
"--data_path", type=str, help="The path to the dataset."
)
parser.add_argument("--algorithm", type=str, help="The algorithm.")
# Optimization options
parser.add_argument("--batch_size", type=int, default=2, help="The batch size.")
parser.add_argument(
"--workers",
type=int,
default=8,
help="number of data loading workers (default: 8)",
)
# Random Seed
parser.add_argument("--rand_seed", type=int, default=-1, help="manual seed")
args = parser.parse_args()
if args.rand_seed is None or args.rand_seed < 0:
args.rand_seed = random.randint(1, 100000)
if args.save_dir is None:
raise ValueError("The save-path argument can not be None")
main(args)

View File

@ -0,0 +1,27 @@
#!/bin/bash
# bash ./scripts/experimental/train-vit.sh cifar10 -1
echo script name: $0
echo $# arguments
if [ "$#" -ne 2 ] ;then
echo "Input illegal number of parameters " $#
echo "Need 2 parameters for dataset and random-seed"
exit 1
fi
if [ "$TORCH_HOME" = "" ]; then
echo "Must set TORCH_HOME envoriment variable for data dir saving"
exit 1
else
echo "TORCH_HOME : $TORCH_HOME"
fi
dataset=$1
rseed=$2
save_dir=./outputs/${dataset}/vit-experimental
python --version
python ./exps/basic/xmain.py --save_dir ${save_dir} --rand_seed ${rseed} \
--train_data_config ./configs/data.yaml/${dataset}.train \
--valid_data_config ./configs/data.yaml/${dataset}.test \
--data_path $TORCH_HOME/cifar.python

View File

@ -3,63 +3,69 @@ import torch.nn as nn
class ImageNetHEAD(nn.Sequential):
def __init__(self, C, stride=2):
super(ImageNetHEAD, self).__init__()
self.add_module('conv1', nn.Conv2d(3, C // 2, kernel_size=3, stride=2, padding=1, bias=False))
self.add_module('bn1' , nn.BatchNorm2d(C // 2))
self.add_module('relu1', nn.ReLU(inplace=True))
self.add_module('conv2', nn.Conv2d(C // 2, C, kernel_size=3, stride=stride, padding=1, bias=False))
self.add_module('bn2' , nn.BatchNorm2d(C))
def __init__(self, C, stride=2):
super(ImageNetHEAD, self).__init__()
self.add_module(
"conv1",
nn.Conv2d(3, C // 2, kernel_size=3, stride=2, padding=1, bias=False),
)
self.add_module("bn1", nn.BatchNorm2d(C // 2))
self.add_module("relu1", nn.ReLU(inplace=True))
self.add_module(
"conv2",
nn.Conv2d(C // 2, C, kernel_size=3, stride=stride, padding=1, bias=False),
)
self.add_module("bn2", nn.BatchNorm2d(C))
class CifarHEAD(nn.Sequential):
def __init__(self, C):
super(CifarHEAD, self).__init__()
self.add_module('conv', nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False))
self.add_module('bn', nn.BatchNorm2d(C))
def __init__(self, C):
super(CifarHEAD, self).__init__()
self.add_module("conv", nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False))
self.add_module("bn", nn.BatchNorm2d(C))
class AuxiliaryHeadCIFAR(nn.Module):
def __init__(self, C, num_classes):
"""assuming input size 8x8"""
super(AuxiliaryHeadCIFAR, self).__init__()
self.features = nn.Sequential(
nn.ReLU(inplace=True),
nn.AvgPool2d(
5, stride=3, padding=0, count_include_pad=False
), # image size = 2 x 2
nn.Conv2d(C, 128, 1, bias=False),
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
nn.Conv2d(128, 768, 2, bias=False),
nn.BatchNorm2d(768),
nn.ReLU(inplace=True),
)
self.classifier = nn.Linear(768, num_classes)
def __init__(self, C, num_classes):
"""assuming input size 8x8"""
super(AuxiliaryHeadCIFAR, self).__init__()
self.features = nn.Sequential(
nn.ReLU(inplace=True),
nn.AvgPool2d(5, stride=3, padding=0, count_include_pad=False), # image size = 2 x 2
nn.Conv2d(C, 128, 1, bias=False),
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
nn.Conv2d(128, 768, 2, bias=False),
nn.BatchNorm2d(768),
nn.ReLU(inplace=True)
)
self.classifier = nn.Linear(768, num_classes)
def forward(self, x):
x = self.features(x)
x = self.classifier(x.view(x.size(0),-1))
return x
def forward(self, x):
x = self.features(x)
x = self.classifier(x.view(x.size(0), -1))
return x
class AuxiliaryHeadImageNet(nn.Module):
def __init__(self, C, num_classes):
"""assuming input size 14x14"""
super(AuxiliaryHeadImageNet, self).__init__()
self.features = nn.Sequential(
nn.ReLU(inplace=True),
nn.AvgPool2d(5, stride=2, padding=0, count_include_pad=False),
nn.Conv2d(C, 128, 1, bias=False),
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
nn.Conv2d(128, 768, 2, bias=False),
nn.BatchNorm2d(768),
nn.ReLU(inplace=True),
)
self.classifier = nn.Linear(768, num_classes)
def __init__(self, C, num_classes):
"""assuming input size 14x14"""
super(AuxiliaryHeadImageNet, self).__init__()
self.features = nn.Sequential(
nn.ReLU(inplace=True),
nn.AvgPool2d(5, stride=2, padding=0, count_include_pad=False),
nn.Conv2d(C, 128, 1, bias=False),
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
nn.Conv2d(128, 768, 2, bias=False),
nn.BatchNorm2d(768),
nn.ReLU(inplace=True)
)
self.classifier = nn.Linear(768, num_classes)
def forward(self, x):
x = self.features(x)
x = self.classifier(x.view(x.size(0),-1))
return x
def forward(self, x):
x = self.features(x)
x = self.classifier(x.view(x.size(0), -1))
return x

View File

@ -1,6 +1,8 @@
##################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
##################################################
######################################################################
# This folder is deprecated, which is re-organized in "xalgorithms". #
######################################################################
from .starts import prepare_seed
from .starts import prepare_logger
from .starts import get_machine_info

View File

@ -47,7 +47,7 @@ class SuperSelfAttention(SuperModule):
self.v_fc = SuperLinear(input_dim, input_dim, bias=qkv_bias)
self.attn_drop = SuperDrop(attn_drop or 0.0, [-1, -1, -1, -1], recover=True)
if proj_dim is None:
if proj_dim is not None:
self.proj = SuperLinear(input_dim, proj_dim)
self.proj_drop = SuperDropout(proj_drop or 0.0)
else:

View File

@ -0,0 +1,8 @@
#####################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.06 #
#####################################################
from .module_utils import call_by_dict
from .module_utils import call_by_yaml
from .module_utils import nested_call_by_dict
from .module_utils import nested_call_by_yaml
from .yaml_utils import load_yaml

View File

@ -0,0 +1,81 @@
#####################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.01 #
#####################################################
from typing import Union, Dict, Text, Any
import importlib
from .yaml_utils import load_yaml
CLS_FUNC_KEY = "class_or_func"
KEYS = (CLS_FUNC_KEY, "module_path", "args", "kwargs")
def has_key_words(xdict):
if not isinstance(xdict, dict):
return False
key_set = set(KEYS)
cur_set = set(xdict.keys())
return key_set.intersection(cur_set) == key_set
def get_module_by_module_path(module_path):
"""Load the module from the path."""
if module_path.endswith(".py"):
module_spec = importlib.util.spec_from_file_location("", module_path)
module = importlib.util.module_from_spec(module_spec)
module_spec.loader.exec_module(module)
else:
module = importlib.import_module(module_path)
return module
def call_by_dict(config: Dict[Text, Any], *args, **kwargs) -> object:
"""
get initialized instance with config
Parameters
----------
config : a dictionary, such as:
{
'cls_or_func': 'ClassName',
'args': list,
'kwargs': dict,
'model_path': a string indicating the path,
}
Returns
-------
object:
An initialized object based on the config info
"""
module = get_module_by_module_path(config["module_path"])
cls_or_func = getattr(module, config[CLS_FUNC_KEY])
args = tuple(list(config["args"]) + list(args))
kwargs = {**config["kwargs"], **kwargs}
return cls_or_func(*args, **kwargs)
def call_by_yaml(path, *args, **kwargs) -> object:
config = load_yaml(path)
return call_by_config(config, *args, **kwargs)
def nested_call_by_dict(config: Union[Dict[Text, Any], Any], *args, **kwargs) -> object:
"""Similar to `call_by_dict`, but differently, the args may contain another dict needs to be called."""
if not has_key_words(config):
return config
module = get_module_by_module_path(config["module_path"])
cls_or_func = getattr(module, config[CLS_FUNC_KEY])
args = tuple(list(config["args"]) + list(args))
kwargs = {**config["kwargs"], **kwargs}
# check whether there are nested special dict
new_args = [nested_call_by_dict(x) for x in args]
new_kwargs = {}
for key, x in kwargs.items():
new_kwargs[key] = nested_call_by_dict(x)
return cls_or_func(*new_args, **new_kwargs)
def nested_call_by_yaml(path, *args, **kwargs) -> object:
config = load_yaml(path)
return nested_call_by_dict(config, *args, **kwargs)

View File

@ -0,0 +1,13 @@
#####################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.06 #
#####################################################
import os
import yaml
def load_yaml(path):
if not os.path.isfile(path):
raise ValueError("{:} is not a file.".format(path))
with open(path, "r") as stream:
data = yaml.safe_load(stream)
return data