diff --git a/configs/nas-benchmark/algos/weight-sharing.config b/configs/nas-benchmark/algos/weight-sharing.config index a58d727..18199c9 100644 --- a/configs/nas-benchmark/algos/weight-sharing.config +++ b/configs/nas-benchmark/algos/weight-sharing.config @@ -2,7 +2,7 @@ "scheduler": ["str", "cos"], "LR" : ["float", "0.025"], "eta_min" : ["float", "0.001"], - "epochs" : ["int", "150"], + "epochs" : ["int", "100"], "warmup" : ["int", "0"], "optim" : ["str", "SGD"], "decay" : ["float", "0.0005"], diff --git a/exps/algos-v2/search-cell.py b/exps/algos-v2/search-cell.py index 19c9f68..ab33fb6 100644 --- a/exps/algos-v2/search-cell.py +++ b/exps/algos-v2/search-cell.py @@ -12,6 +12,10 @@ # python ./exps/algos-v2/search-cell.py --dataset cifar10 --data_path $TORCH_HOME/cifar.python --algo gdas --rand_seed 1 # python ./exps/algos-v2/search-cell.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo gdas # python ./exps/algos-v2/search-cell.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo gdas +#### +# python ./exps/algos-v2/search-cell.py --dataset cifar10 --data_path $TORCH_HOME/cifar.python --algo setn --rand_seed 1 +# python ./exps/algos-v2/search-cell.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo setn +# python ./exps/algos-v2/search-cell.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo setn ###################################################################################### import os, sys, time, random, argparse import numpy as np @@ -252,6 +256,7 @@ def main(xargs): logger.log('model config : {:}'.format(model_config)) search_model = get_cell_based_tiny_net(model_config) search_model.set_algo(xargs.algo) + logger.log('{:}'.format(search_model)) w_optimizer, w_scheduler, criterion = get_optim_scheduler(search_model.weights, config) a_optimizer = torch.optim.Adam(search_model.alphas, lr=xargs.arch_learning_rate, betas=(0.5, 0.999), weight_decay=xargs.arch_weight_decay) @@ -396,6 +401,6 @@ if __name__ == '__main__': parser.add_argument('--rand_seed', type=int, help='manual seed') args = parser.parse_args() if args.rand_seed is None or args.rand_seed < 0: args.rand_seed = random.randint(1, 100000) - args.save_dir = os.path.join('{:}-{:}'.format(args.save_dir, args.search_space), args.dataset, args.algo) + args.save_dir = os.path.join('{:}-{:}'.format(args.save_dir, args.search_space), args.dataset, '{:}-{:}'.format(args.algo, args.drop_path_rate)) main(args)