diff --git a/.gitignore b/.gitignore index 7c47a90..2525cce 100755 --- a/.gitignore +++ b/.gitignore @@ -103,3 +103,7 @@ main_main.py scripts-nas/.nfs00* */.nfs00* *.DS_Store + +# logs and snapshots +output +logs diff --git a/exps-cnn/train_utils_imagenet.py b/exps-cnn/train_utils_imagenet.py index d0c8928..edcbaac 100644 --- a/exps-cnn/train_utils_imagenet.py +++ b/exps-cnn/train_utils_imagenet.py @@ -108,11 +108,11 @@ def main_procedure_imagenet(config, data_path, args, genotype, init_channels, la for epoch in range(start_epoch, config.epochs): scheduler.step() - need_time = convert_secs2time(epoch_time.val * (config.epochs-epoch), True) - print_log("\n==>>{:s} [Epoch={:03d}/{:03d}] {:s} LR={:6.4f} ~ {:6.4f}, Batch={:d}".format(time_string(), epoch, config.epochs, need_time, min(scheduler.get_lr()), max(scheduler.get_lr()), config.batch_size), log) - basemodel.update_drop_path(config.drop_path_prob * epoch / config.epochs) + need_time = convert_secs2time(epoch_time.val * (config.epochs-epoch), True) + print_log("\n==>>{:s} [Epoch={:03d}/{:03d}] {:s} LR={:6.4f} ~ {:6.4f}, Batch={:d}, Drop-Path-Prob={:}".format(time_string(), epoch, config.epochs, need_time, min(scheduler.get_lr()), max(scheduler.get_lr()), config.batch_size, basemodel.get_drop_path()), log) + train_acc1, train_acc5, train_los = _train(train_queue, model, criterion_smooth, optimizer, 'train', epoch, config, args.print_freq, log) with torch.no_grad(): diff --git a/lib/datasets/get_dataset_with_transform.py b/lib/datasets/get_dataset_with_transform.py index 4e5e0b6..600f57b 100644 --- a/lib/datasets/get_dataset_with_transform.py +++ b/lib/datasets/get_dataset_with_transform.py @@ -60,14 +60,14 @@ def get_datasets(name, root, cutout): else: raise TypeError("Unknow dataset : {:}".format(name)) if name == 'cifar10': - train_data = dset.CIFAR10(root, train=True , transform=train_transform, download=True) - test_data = dset.CIFAR10(root, train=False, transform=test_transform , download=True) + train_data = dset.CIFAR10 (root, train=True , transform=train_transform, download=True) + test_data = dset.CIFAR10 (root, train=False, transform=test_transform , download=True) elif name == 'cifar100': train_data = dset.CIFAR100(root, train=True , transform=train_transform, download=True) test_data = dset.CIFAR100(root, train=False, transform=test_transform , download=True) elif name == 'imagenet-1k' or name == 'imagenet-100': train_data = dset.ImageFolder(osp.join(root, 'train'), train_transform) - test_data = dset.ImageFolder(osp.join(root, 'val'), train_transform) + test_data = dset.ImageFolder(osp.join(root, 'val'), test_transform) else: raise TypeError("Unknow dataset : {:}".format(name)) class_num = Dataset2Class[name] diff --git a/lib/nas/ImageNet.py b/lib/nas/ImageNet.py index 5977ffd..8e91755 100644 --- a/lib/nas/ImageNet.py +++ b/lib/nas/ImageNet.py @@ -80,6 +80,9 @@ class NetworkImageNet(nn.Module): def update_drop_path(self, drop_path_prob): self.drop_path_prob = drop_path_prob + def get_drop_path(self): + return self.drop_path_prob + def auxiliary_param(self): if self.auxiliary_head is None: return [] else: return list( self.auxiliary_head.parameters() )