update scripts-cluster
This commit is contained in:
parent
280c9f3099
commit
4bac459bf9
1
.gitignore
vendored
1
.gitignore
vendored
@ -102,3 +102,4 @@ main_main.py
|
||||
# Device
|
||||
scripts-nas/.nfs00*
|
||||
*/.nfs00*
|
||||
*.DS_Store
|
||||
|
26
README.md
26
README.md
@ -1,17 +1,16 @@
|
||||
# GDAS
|
||||
By Xuanyi Dong and Yi Yang
|
||||
# Searching for A Robust Neural Architecture in Four GPU Hours
|
||||
|
||||
University of Technology Sydney
|
||||
We propose A Gradient-based neural architecture search approach using Differentiable Architecture Sampler (GDAS).
|
||||
|
||||
Requirements
|
||||
- PyTorch 1.0
|
||||
## Requirements
|
||||
- PyTorch 1.0.1
|
||||
- Python 3.6
|
||||
- opencv
|
||||
```
|
||||
conda install pytorch torchvision cuda100 -c pytorch
|
||||
```
|
||||
|
||||
## Algorithm
|
||||
## Usages
|
||||
|
||||
Train the searched CNN on CIFAR
|
||||
```
|
||||
@ -26,6 +25,11 @@ CUDA_VISIBLE_DEVICES=0 bash ./scripts-cnn/train-imagenet.sh GDAS_F1 52 14
|
||||
CUDA_VISIBLE_DEVICES=0 bash ./scripts-cnn/train-imagenet.sh GDAS_V1 50 14
|
||||
```
|
||||
|
||||
Evaluate a trained CNN model
|
||||
```
|
||||
CUDA_VISIBLE_DEVICES=0 python ./exps-cnn/evaluate.py --data_path $TORCH_HOME/cifar.python --checkpoint ${checkpoint-path}
|
||||
CUDA_VISIBLE_DEVICES=0 python ./exps-cnn/evaluate.py --data_path $TORCH_HOME/ILSVRC2012 --checkpoint ${checkpoint-path}
|
||||
```
|
||||
|
||||
Train the searched RNN
|
||||
```
|
||||
@ -36,3 +40,13 @@ CUDA_VISIBLE_DEVICES=0 bash ./scripts-rnn/train-WT2.sh DARTS_V1
|
||||
CUDA_VISIBLE_DEVICES=0 bash ./scripts-rnn/train-WT2.sh DARTS_V2
|
||||
CUDA_VISIBLE_DEVICES=0 bash ./scripts-rnn/train-WT2.sh GDAS
|
||||
```
|
||||
|
||||
## Citation
|
||||
```
|
||||
@inproceedings{dong2019search,
|
||||
title={Searching for A Robust Neural Architecture in Four GPU Hours},
|
||||
author={Dong, Xuanyi and Yang, Yi},
|
||||
booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
|
||||
year={2019}
|
||||
}
|
||||
```
|
||||
|
49
exps-cnn/evaluate.py
Normal file
49
exps-cnn/evaluate.py
Normal file
@ -0,0 +1,49 @@
|
||||
import os, sys, time, glob, random, argparse
|
||||
import numpy as np
|
||||
from copy import deepcopy
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
import torchvision.datasets as dset
|
||||
import torch.backends.cudnn as cudnn
|
||||
import torchvision.transforms as transforms
|
||||
from pathlib import Path
|
||||
lib_dir = (Path(__file__).parent / '..' / 'lib').resolve()
|
||||
if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir))
|
||||
from utils import AverageMeter, time_string, convert_secs2time
|
||||
from utils import print_log, obtain_accuracy
|
||||
from utils import Cutout, count_parameters_in_MB
|
||||
from nas import model_types as models
|
||||
from train_utils import main_procedure
|
||||
from train_utils_imagenet import main_procedure_imagenet
|
||||
from scheduler import load_config
|
||||
|
||||
|
||||
parser = argparse.ArgumentParser("Evaluate-CNN")
|
||||
parser.add_argument('--data_path', type=str, help='Path to dataset.')
|
||||
parser.add_argument('--checkpoint', type=str, help='Choose between Cifar10/100 and ImageNet.')
|
||||
args = parser.parse_args()
|
||||
|
||||
assert torch.cuda.is_available(), 'torch.cuda is not available'
|
||||
|
||||
|
||||
def main():
|
||||
|
||||
assert os.path.isdir( args.data_path ), 'invalid data-path : {:}'.format(args.data_path)
|
||||
assert os.path.isfile( args.checkpoint ), 'invalid checkpoint : {:}'.format(args.checkpoint)
|
||||
|
||||
checkpoint = torch.load( args.checkpoint )
|
||||
xargs = checkpoint['args']
|
||||
config = load_config(xargs.model_config)
|
||||
genotype = models[xargs.arch]
|
||||
|
||||
# clear GPU cache
|
||||
torch.cuda.empty_cache()
|
||||
if xargs.dataset == 'imagenet':
|
||||
main_procedure_imagenet(config, args.data_path, xargs, genotype, xargs.init_channels, xargs.layers, checkpoint['state_dict'], None)
|
||||
else:
|
||||
main_procedure(config, xargs.dataset, args.data_path, xargs, genotype, xargs.init_channels, xargs.layers, checkpoint['state_dict'], None)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
@ -19,7 +19,7 @@ from train_utils_imagenet import main_procedure_imagenet
|
||||
from scheduler import load_config
|
||||
|
||||
|
||||
parser = argparse.ArgumentParser("cifar")
|
||||
parser = argparse.ArgumentParser("Train-CNN")
|
||||
parser.add_argument('--data_path', type=str, help='Path to dataset')
|
||||
parser.add_argument('--dataset', type=str, choices=['imagenet', 'cifar10', 'cifar100'], help='Choose between Cifar10/100 and ImageNet.')
|
||||
parser.add_argument('--arch', type=str, choices=models.keys(), help='the searched model.')
|
||||
@ -38,6 +38,7 @@ args = parser.parse_args()
|
||||
|
||||
assert torch.cuda.is_available(), 'torch.cuda is not available'
|
||||
|
||||
|
||||
if args.manualSeed is None:
|
||||
args.manualSeed = random.randint(1, 10000)
|
||||
random.seed(args.manualSeed)
|
||||
@ -72,9 +73,9 @@ def main():
|
||||
# clear GPU cache
|
||||
torch.cuda.empty_cache()
|
||||
if args.dataset == 'imagenet':
|
||||
main_procedure_imagenet(config, args.data_path, args, genotype, args.init_channels, args.layers, log)
|
||||
main_procedure_imagenet(config, args.data_path, args, genotype, args.init_channels, args.layers, None, log)
|
||||
else:
|
||||
main_procedure(config, args.dataset, args.data_path, args, genotype, args.init_channels, args.layers, log)
|
||||
main_procedure(config, args.dataset, args.data_path, args, genotype, args.init_channels, args.layers, None, log)
|
||||
log.close()
|
||||
|
||||
|
||||
|
@ -2,7 +2,7 @@ import os, sys, time
|
||||
from copy import deepcopy
|
||||
import torch
|
||||
import torchvision.transforms as transforms
|
||||
|
||||
from shutil import copyfile
|
||||
|
||||
from utils import print_log, obtain_accuracy, AverageMeter
|
||||
from utils import time_string, convert_secs2time
|
||||
@ -11,6 +11,7 @@ from utils import Cutout
|
||||
from nas import NetworkCIFAR as Network
|
||||
from datasets import get_datasets
|
||||
|
||||
|
||||
def obtain_best(accuracies):
|
||||
if len(accuracies) == 0: return (0, 0)
|
||||
tops = [value for key, value in accuracies.items()]
|
||||
@ -18,7 +19,7 @@ def obtain_best(accuracies):
|
||||
return s2b[-1]
|
||||
|
||||
|
||||
def main_procedure(config, dataset, data_path, args, genotype, init_channels, layers, log):
|
||||
def main_procedure(config, dataset, data_path, args, genotype, init_channels, layers, pure_evaluate, log):
|
||||
|
||||
train_data, test_data, class_num = get_datasets(dataset, data_path, config.cutout)
|
||||
|
||||
@ -57,10 +58,17 @@ def main_procedure(config, dataset, data_path, args, genotype, init_channels, la
|
||||
else:
|
||||
raise ValueError('Can not find the schedular type : {:}'.format(config.type))
|
||||
|
||||
checkpoint_path = os.path.join(args.save_path, 'checkpoint-{:}-model.pth'.format(dataset))
|
||||
if os.path.isfile(checkpoint_path):
|
||||
checkpoint = torch.load( checkpoint_path )
|
||||
|
||||
checkpoint_path = os.path.join(args.save_path, 'checkpoint-{:}-model.pth'.format(dataset))
|
||||
checkpoint_best = os.path.join(args.save_path, 'checkpoint-{:}-best.pth'.format(dataset))
|
||||
if pure_evaluate:
|
||||
print_log('-'*20 + 'Pure Evaluation' + '-'*20, log)
|
||||
basemodel.load_state_dict( pure_evaluate )
|
||||
with torch.no_grad():
|
||||
valid_acc1, valid_acc5, valid_los = _train(test_loader, model, criterion, optimizer, 'test', -1, config, args.print_freq, log)
|
||||
return (valid_acc1, valid_acc5)
|
||||
elif os.path.isfile(checkpoint_path):
|
||||
checkpoint = torch.load( checkpoint_path )
|
||||
start_epoch = checkpoint['epoch']
|
||||
basemodel.load_state_dict(checkpoint['state_dict'])
|
||||
optimizer.load_state_dict(checkpoint['optimizer'])
|
||||
@ -96,12 +104,14 @@ def main_procedure(config, dataset, data_path, args, genotype, init_channels, la
|
||||
'accuracies': accuracies},
|
||||
checkpoint_path)
|
||||
best_acc = obtain_best( accuracies )
|
||||
if accuracies[epoch] == best_acc: copyfile(checkpoint_path, checkpoint_best)
|
||||
print_log('----> Best Accuracy : Acc@1={:.2f}, Acc@5={:.2f}, Error@1={:.2f}, Error@5={:.2f}'.format(best_acc[0], best_acc[1], 100-best_acc[0], 100-best_acc[1]), log)
|
||||
print_log('----> Save into {:}'.format(checkpoint_path), log)
|
||||
|
||||
# measure elapsed time
|
||||
epoch_time.update(time.time() - start_time)
|
||||
start_time = time.time()
|
||||
return obtain_best( accuracies )
|
||||
|
||||
|
||||
def _train(xloader, model, criterion, optimizer, mode, epoch, config, print_freq, log):
|
||||
|
@ -3,7 +3,7 @@ from copy import deepcopy
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torchvision.transforms as transforms
|
||||
|
||||
from shutil import copyfile
|
||||
|
||||
from utils import print_log, obtain_accuracy, AverageMeter
|
||||
from utils import time_string, convert_secs2time
|
||||
@ -37,7 +37,7 @@ class CrossEntropyLabelSmooth(nn.Module):
|
||||
return loss
|
||||
|
||||
|
||||
def main_procedure_imagenet(config, data_path, args, genotype, init_channels, layers, log):
|
||||
def main_procedure_imagenet(config, data_path, args, genotype, init_channels, layers, pure_evaluate, log):
|
||||
|
||||
# training data and testing data
|
||||
train_data, valid_data, class_num = get_datasets('imagenet-1k', data_path, -1)
|
||||
@ -48,8 +48,6 @@ def main_procedure_imagenet(config, data_path, args, genotype, init_channels, la
|
||||
valid_queue = torch.utils.data.DataLoader(
|
||||
valid_data, batch_size=config.batch_size, shuffle=False, pin_memory=True, num_workers=args.workers)
|
||||
|
||||
class_num = 1000
|
||||
|
||||
print_log('-------------------------------------- main-procedure', log)
|
||||
print_log('config : {:}'.format(config), log)
|
||||
print_log('genotype : {:}'.format(genotype), log)
|
||||
@ -84,9 +82,16 @@ def main_procedure_imagenet(config, data_path, args, genotype, init_channels, la
|
||||
|
||||
|
||||
checkpoint_path = os.path.join(args.save_path, 'checkpoint-imagenet-model.pth')
|
||||
if os.path.isfile(checkpoint_path):
|
||||
checkpoint = torch.load( checkpoint_path )
|
||||
checkpoint_best = os.path.join(args.save_path, 'checkpoint-imagenet-best.pth')
|
||||
|
||||
if pure_evaluate:
|
||||
print_log('-'*20 + 'Pure Evaluation' + '-'*20, log)
|
||||
basemodel.load_state_dict( pure_evaluate )
|
||||
with torch.no_grad():
|
||||
valid_acc1, valid_acc5, valid_los = _train(valid_queue, model, criterion, None, 'test' , -1, config, args.print_freq, log)
|
||||
return (valid_acc1, valid_acc5)
|
||||
elif os.path.isfile(checkpoint_path):
|
||||
checkpoint = torch.load( checkpoint_path )
|
||||
start_epoch = checkpoint['epoch']
|
||||
basemodel.load_state_dict(checkpoint['state_dict'])
|
||||
optimizer.load_state_dict(checkpoint['optimizer'])
|
||||
@ -122,12 +127,14 @@ def main_procedure_imagenet(config, data_path, args, genotype, init_channels, la
|
||||
'accuracies': accuracies},
|
||||
checkpoint_path)
|
||||
best_acc = obtain_best( accuracies )
|
||||
if accuracies[epoch] == best_acc: copyfile(checkpoint_path, checkpoint_best)
|
||||
print_log('----> Best Accuracy : Acc@1={:.2f}, Acc@5={:.2f}, Error@1={:.2f}, Error@5={:.2f}'.format(best_acc[0], best_acc[1], 100-best_acc[0], 100-best_acc[1]), log)
|
||||
print_log('----> Save into {:}'.format(checkpoint_path), log)
|
||||
|
||||
# measure elapsed time
|
||||
epoch_time.update(time.time() - start_time)
|
||||
start_time = time.time()
|
||||
return obtain_best( accuracies )
|
||||
|
||||
|
||||
def _train(xloader, model, criterion, optimizer, mode, epoch, config, print_freq, log):
|
||||
|
@ -7,6 +7,7 @@ import torchvision.transforms as transforms
|
||||
from utils import Cutout
|
||||
from .TieredImageNet import TieredImageNet
|
||||
|
||||
|
||||
Dataset2Class = {'cifar10' : 10,
|
||||
'cifar100': 100,
|
||||
'tiered' : -1,
|
||||
@ -59,11 +60,11 @@ def get_datasets(name, root, cutout):
|
||||
else: raise TypeError("Unknow dataset : {:}".format(name))
|
||||
|
||||
if name == 'cifar10':
|
||||
train_data = dset.CIFAR10(root, train=True, transform=train_transform, download=True)
|
||||
test_data = dset.CIFAR10(root, train=True, transform=test_transform , download=True)
|
||||
train_data = dset.CIFAR10(root, train=True , transform=train_transform, download=True)
|
||||
test_data = dset.CIFAR10(root, train=False, transform=test_transform , download=True)
|
||||
elif name == 'cifar100':
|
||||
train_data = dset.CIFAR100(root, train=True, transform=train_transform, download=True)
|
||||
test_data = dset.CIFAR100(root, train=True, transform=test_transform , download=True)
|
||||
train_data = dset.CIFAR100(root, train=True , transform=train_transform, download=True)
|
||||
test_data = dset.CIFAR100(root, train=False, transform=test_transform , download=True)
|
||||
elif name == 'imagenet-1k' or name == 'imagenet-100':
|
||||
train_data = dset.ImageFolder(osp.join(root, 'train'), train_transform)
|
||||
test_data = dset.ImageFolder(osp.join(root, 'val'), train_transform)
|
||||
|
@ -1,12 +1,5 @@
|
||||
from .model_search import Network
|
||||
from .model_search_v1 import NetworkV1
|
||||
from .model_search_f1 import NetworkF1
|
||||
# acceleration model
|
||||
from .model_search_f1_acc2 import NetworkFACC1
|
||||
from .model_search_acc2 import NetworkACC2
|
||||
from .model_search_v3 import NetworkV3
|
||||
from .model_search_v4 import NetworkV4
|
||||
from .model_search_v5 import NetworkV5
|
||||
from .CifarNet import NetworkCIFAR
|
||||
from .ImageNet import NetworkImageNet
|
||||
|
||||
|
@ -128,7 +128,7 @@ class Transition(nn.Module):
|
||||
|
||||
self.ops2 = nn.ModuleList(
|
||||
[nn.Sequential(
|
||||
nn.MaxPool2d(3, stride=1, padding=1),
|
||||
nn.MaxPool2d(3, stride=2, padding=1),
|
||||
nn.BatchNorm2d(C, affine=True)),
|
||||
nn.Sequential(
|
||||
nn.MaxPool2d(3, stride=2, padding=1),
|
||||
@ -144,7 +144,8 @@ class Transition(nn.Module):
|
||||
if self.training and drop_prob > 0.:
|
||||
X0, X1 = drop_path(X0, drop_prob), drop_path(X1, drop_prob)
|
||||
|
||||
X2 = self.ops2[0] (X0+X1)
|
||||
#X2 = self.ops2[0] (X0+X1)
|
||||
X2 = self.ops2[0] (s0)
|
||||
X3 = self.ops2[1] (s1)
|
||||
if self.training and drop_prob > 0.:
|
||||
X2, X3 = drop_path(X2, drop_prob), drop_path(X3, drop_prob)
|
||||
|
@ -1,180 +0,0 @@
|
||||
# gumbel softmax
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from torch.nn.parameter import Parameter
|
||||
|
||||
from .operations import OPS, FactorizedReduce, ReLUConvBN
|
||||
from .genotypes import PRIMITIVES, Genotype
|
||||
|
||||
|
||||
class MixedOp(nn.Module):
|
||||
|
||||
def __init__(self, C, stride):
|
||||
super(MixedOp, self).__init__()
|
||||
self._ops = nn.ModuleList()
|
||||
for primitive in PRIMITIVES:
|
||||
op = OPS[primitive](C, stride, False)
|
||||
self._ops.append(op)
|
||||
|
||||
def forward(self, x, weights, cpu_weights):
|
||||
use_sum = sum([abs(_) > 1e-10 for _ in cpu_weights])
|
||||
if use_sum > 3:
|
||||
return sum(w * op(x) for w, op in zip(weights, self._ops))
|
||||
else:
|
||||
clist = []
|
||||
for j, cpu_weight in enumerate(cpu_weights):
|
||||
if abs(cpu_weight) > 1e-10:
|
||||
clist.append( weights[j] * self._ops[j](x) )
|
||||
assert len(clist) > 0, 'invalid length : {:}'.format(cpu_weights)
|
||||
return sum(clist)
|
||||
|
||||
|
||||
class Cell(nn.Module):
|
||||
|
||||
def __init__(self, steps, multiplier, C_prev_prev, C_prev, C, reduction, reduction_prev):
|
||||
super(Cell, self).__init__()
|
||||
self.reduction = reduction
|
||||
|
||||
if reduction_prev:
|
||||
self.preprocess0 = FactorizedReduce(C_prev_prev, C, affine=False)
|
||||
else:
|
||||
self.preprocess0 = ReLUConvBN(C_prev_prev, C, 1, 1, 0, affine=False)
|
||||
self.preprocess1 = ReLUConvBN(C_prev, C, 1, 1, 0, affine=False)
|
||||
self._steps = steps
|
||||
self._multiplier = multiplier
|
||||
|
||||
self._ops = nn.ModuleList()
|
||||
for i in range(self._steps):
|
||||
for j in range(2+i):
|
||||
stride = 2 if reduction and j < 2 else 1
|
||||
op = MixedOp(C, stride)
|
||||
self._ops.append(op)
|
||||
|
||||
def forward(self, s0, s1, weights):
|
||||
s0 = self.preprocess0(s0)
|
||||
s1 = self.preprocess1(s1)
|
||||
|
||||
cpu_weights = weights.tolist()
|
||||
states = [s0, s1]
|
||||
offset = 0
|
||||
for i in range(self._steps):
|
||||
clist = []
|
||||
for j, h in enumerate(states):
|
||||
x = self._ops[offset+j](h, weights[offset+j], cpu_weights[offset+j])
|
||||
clist.append( x )
|
||||
s = sum(clist)
|
||||
offset += len(states)
|
||||
states.append(s)
|
||||
|
||||
return torch.cat(states[-self._multiplier:], dim=1)
|
||||
|
||||
|
||||
class NetworkACC2(nn.Module):
|
||||
|
||||
def __init__(self, C, num_classes, layers, steps=4, multiplier=4, stem_multiplier=3):
|
||||
super(NetworkACC2, self).__init__()
|
||||
self._C = C
|
||||
self._num_classes = num_classes
|
||||
self._layers = layers
|
||||
self._steps = steps
|
||||
self._multiplier = multiplier
|
||||
|
||||
C_curr = stem_multiplier*C
|
||||
self.stem = nn.Sequential(
|
||||
nn.Conv2d(3, C_curr, 3, padding=1, bias=False),
|
||||
nn.BatchNorm2d(C_curr)
|
||||
)
|
||||
|
||||
C_prev_prev, C_prev, C_curr = C_curr, C_curr, C
|
||||
reduction_prev, cells = False, []
|
||||
for i in range(layers):
|
||||
if i in [layers//3, 2*layers//3]:
|
||||
C_curr *= 2
|
||||
reduction = True
|
||||
else:
|
||||
reduction = False
|
||||
cell = Cell(steps, multiplier, C_prev_prev, C_prev, C_curr, reduction, reduction_prev)
|
||||
reduction_prev = reduction
|
||||
cells.append( cell )
|
||||
C_prev_prev, C_prev = C_prev, multiplier*C_curr
|
||||
self.cells = nn.ModuleList(cells)
|
||||
|
||||
self.global_pooling = nn.AdaptiveAvgPool2d(1)
|
||||
self.classifier = nn.Linear(C_prev, num_classes)
|
||||
self.tau = 5
|
||||
self.use_gumbel = True
|
||||
|
||||
# initialize architecture parameters
|
||||
k = sum(1 for i in range(self._steps) for n in range(2+i))
|
||||
num_ops = len(PRIMITIVES)
|
||||
|
||||
self.alphas_normal = Parameter(torch.Tensor(k, num_ops))
|
||||
self.alphas_reduce = Parameter(torch.Tensor(k, num_ops))
|
||||
nn.init.normal_(self.alphas_normal, 0, 0.001)
|
||||
nn.init.normal_(self.alphas_reduce, 0, 0.001)
|
||||
|
||||
def set_gumbel(self, use_gumbel):
|
||||
self.use_gumbel = use_gumbel
|
||||
|
||||
def set_tau(self, tau):
|
||||
self.tau = tau
|
||||
|
||||
def get_tau(self):
|
||||
return self.tau
|
||||
|
||||
def arch_parameters(self):
|
||||
return [self.alphas_normal, self.alphas_reduce]
|
||||
|
||||
def base_parameters(self):
|
||||
lists = list(self.stem.parameters()) + list(self.cells.parameters())
|
||||
lists += list(self.global_pooling.parameters())
|
||||
lists += list(self.classifier.parameters())
|
||||
return lists
|
||||
|
||||
def forward(self, inputs):
|
||||
batch, C, H, W = inputs.size()
|
||||
s0 = s1 = self.stem(inputs)
|
||||
for i, cell in enumerate(self.cells):
|
||||
if cell.reduction:
|
||||
if self.use_gumbel : weights = F.gumbel_softmax(self.alphas_reduce, self.tau, True)
|
||||
else : weights = F.softmax(self.alphas_reduce, dim=-1)
|
||||
else:
|
||||
if self.use_gumbel : weights = F.gumbel_softmax(self.alphas_normal, self.tau, True)
|
||||
else : weights = F.softmax(self.alphas_normal, dim=-1)
|
||||
|
||||
s0, s1 = s1, cell(s0, s1, weights)
|
||||
out = self.global_pooling(s1)
|
||||
out = out.view(batch, -1)
|
||||
logits = self.classifier(out)
|
||||
return logits
|
||||
|
||||
def genotype(self):
|
||||
|
||||
def _parse(weights):
|
||||
gene, n, start = [], 2, 0
|
||||
for i in range(self._steps):
|
||||
end = start + n
|
||||
W = weights[start:end].copy()
|
||||
edges = sorted(range(i + 2), key=lambda x: -max(W[x][k] for k in range(len(W[x])) if k != PRIMITIVES.index('none')))[:2]
|
||||
for j in edges:
|
||||
k_best = None
|
||||
for k in range(len(W[j])):
|
||||
if k != PRIMITIVES.index('none'):
|
||||
if k_best is None or W[j][k] > W[j][k_best]:
|
||||
k_best = k
|
||||
gene.append((PRIMITIVES[k_best], j, float(W[j][k_best])))
|
||||
start = end
|
||||
n += 1
|
||||
return gene
|
||||
|
||||
with torch.no_grad():
|
||||
gene_normal = _parse(F.softmax(self.alphas_normal, dim=-1).cpu().numpy())
|
||||
gene_reduce = _parse(F.softmax(self.alphas_reduce, dim=-1).cpu().numpy())
|
||||
|
||||
concat = range(2+self._steps-self._multiplier, self._steps+2)
|
||||
genotype = Genotype(
|
||||
normal=gene_normal, normal_concat=concat,
|
||||
reduce=gene_reduce, reduce_concat=concat
|
||||
)
|
||||
return genotype
|
@ -1,167 +0,0 @@
|
||||
# share parameters
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from torch.nn.parameter import Parameter
|
||||
|
||||
from .operations import OPS, FactorizedReduce, ReLUConvBN
|
||||
from .construct_utils import Transition
|
||||
from .genotypes import PRIMITIVES, Genotype
|
||||
|
||||
|
||||
class MixedOp(nn.Module):
|
||||
|
||||
def __init__(self, C, stride):
|
||||
super(MixedOp, self).__init__()
|
||||
self._ops = nn.ModuleList()
|
||||
for primitive in PRIMITIVES:
|
||||
op = OPS[primitive](C, stride, False)
|
||||
self._ops.append(op)
|
||||
|
||||
def forward(self, x, weights):
|
||||
return sum(w * op(x) for w, op in zip(weights, self._ops))
|
||||
|
||||
|
||||
class Cell(nn.Module):
|
||||
|
||||
def __init__(self, steps, multiplier, C_prev_prev, C_prev, C, reduction, reduction_prev):
|
||||
super(Cell, self).__init__()
|
||||
self.reduction = reduction
|
||||
|
||||
if reduction_prev:
|
||||
self.preprocess0 = FactorizedReduce(C_prev_prev, C, affine=False)
|
||||
else:
|
||||
self.preprocess0 = ReLUConvBN(C_prev_prev, C, 1, 1, 0, affine=False)
|
||||
self.preprocess1 = ReLUConvBN(C_prev, C, 1, 1, 0, affine=False)
|
||||
self._steps = steps
|
||||
self._multiplier = multiplier
|
||||
|
||||
self._ops = nn.ModuleList()
|
||||
for i in range(self._steps):
|
||||
for j in range(2+i):
|
||||
stride = 2 if reduction and j < 2 else 1
|
||||
op = MixedOp(C, stride)
|
||||
self._ops.append(op)
|
||||
|
||||
def forward(self, s0, s1, weights):
|
||||
s0 = self.preprocess0(s0)
|
||||
s1 = self.preprocess1(s1)
|
||||
|
||||
states = [s0, s1]
|
||||
offset = 0
|
||||
for i in range(self._steps):
|
||||
clist = []
|
||||
for j, h in enumerate(states):
|
||||
x = self._ops[offset+j](h, weights[offset+j])
|
||||
clist.append( x )
|
||||
s = sum(clist)
|
||||
offset += len(states)
|
||||
states.append(s)
|
||||
|
||||
return torch.cat(states[-self._multiplier:], dim=1)
|
||||
|
||||
|
||||
class NetworkF1(nn.Module):
|
||||
|
||||
def __init__(self, C, num_classes, layers, steps=4, multiplier=4, stem_multiplier=3):
|
||||
super(NetworkF1, self).__init__()
|
||||
self._C = C
|
||||
self._num_classes = num_classes
|
||||
self._layers = layers
|
||||
self._steps = steps
|
||||
self._multiplier = multiplier
|
||||
|
||||
C_curr = stem_multiplier*C
|
||||
self.stem = nn.Sequential(
|
||||
nn.Conv2d(3, C_curr, 3, padding=1, bias=False),
|
||||
nn.BatchNorm2d(C_curr)
|
||||
)
|
||||
|
||||
C_prev_prev, C_prev, C_curr = C_curr, C_curr, C
|
||||
reduction_prev, cells = False, []
|
||||
for i in range(layers):
|
||||
if i in [layers//3, 2*layers//3]:
|
||||
C_curr *= 2
|
||||
reduction = True
|
||||
else:
|
||||
reduction = False
|
||||
if reduction:
|
||||
cell = Transition(C_prev_prev, C_prev, C_curr, reduction_prev, multiplier)
|
||||
else:
|
||||
cell = Cell(steps, multiplier, C_prev_prev, C_prev, C_curr, reduction, reduction_prev)
|
||||
reduction_prev = reduction
|
||||
cells.append( cell )
|
||||
C_prev_prev, C_prev = C_prev, multiplier*C_curr
|
||||
self.cells = nn.ModuleList(cells)
|
||||
|
||||
self.global_pooling = nn.AdaptiveAvgPool2d(1)
|
||||
self.classifier = nn.Linear(C_prev, num_classes)
|
||||
|
||||
# initialize architecture parameters
|
||||
k = sum(1 for i in range(self._steps) for n in range(2+i))
|
||||
num_ops = len(PRIMITIVES)
|
||||
|
||||
self.alphas_normal = Parameter(torch.Tensor(k, num_ops))
|
||||
#self.alphas_reduce = Parameter(torch.Tensor(k, num_ops))
|
||||
nn.init.normal_(self.alphas_normal, 0, 0.001)
|
||||
#nn.init.normal_(self.alphas_reduce, 0, 0.001)
|
||||
|
||||
def set_tau(self, tau):
|
||||
return -1
|
||||
|
||||
def get_tau(self):
|
||||
return -1
|
||||
|
||||
def arch_parameters(self):
|
||||
return [self.alphas_normal]
|
||||
|
||||
def base_parameters(self):
|
||||
lists = list(self.stem.parameters()) + list(self.cells.parameters())
|
||||
lists += list(self.global_pooling.parameters())
|
||||
lists += list(self.classifier.parameters())
|
||||
return lists
|
||||
|
||||
def forward(self, inputs):
|
||||
batch, C, H, W = inputs.size()
|
||||
s0 = s1 = self.stem(inputs)
|
||||
for i, cell in enumerate(self.cells):
|
||||
if cell.reduction:
|
||||
s0, s1 = s1, cell(s0, s1)
|
||||
else:
|
||||
weights = F.softmax(self.alphas_normal, dim=-1)
|
||||
s0, s1 = s1, cell(s0, s1, weights)
|
||||
#print('{:} : s0 : {:}, s1 : {:}'.format(i, s0.size(), s1.size()))
|
||||
out = self.global_pooling(s1)
|
||||
out = out.view(batch, -1)
|
||||
logits = self.classifier(out)
|
||||
return logits
|
||||
|
||||
def genotype(self):
|
||||
|
||||
def _parse(weights):
|
||||
gene, n, start = [], 2, 0
|
||||
for i in range(self._steps):
|
||||
end = start + n
|
||||
W = weights[start:end].copy()
|
||||
edges = sorted(range(i + 2), key=lambda x: -max(W[x][k] for k in range(len(W[x])) if k != PRIMITIVES.index('none')))[:2]
|
||||
for j in edges:
|
||||
k_best = None
|
||||
for k in range(len(W[j])):
|
||||
if k != PRIMITIVES.index('none'):
|
||||
if k_best is None or W[j][k] > W[j][k_best]:
|
||||
k_best = k
|
||||
gene.append((PRIMITIVES[k_best], j, float(W[j][k_best])))
|
||||
start = end
|
||||
n += 1
|
||||
return gene
|
||||
|
||||
with torch.no_grad():
|
||||
gene_normal = _parse(F.softmax(self.alphas_normal, dim=-1).cpu().numpy())
|
||||
#gene_reduce = _parse(F.softmax(self.alphas_normal, dim=-1).cpu().numpy())
|
||||
|
||||
concat = range(2+self._steps-self._multiplier, self._steps+2)
|
||||
genotype = Genotype(
|
||||
normal=gene_normal, normal_concat=concat,
|
||||
reduce=None , reduce_concat=concat
|
||||
)
|
||||
return genotype
|
@ -1,183 +0,0 @@
|
||||
# share parameters
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from torch.nn.parameter import Parameter
|
||||
|
||||
from .operations import OPS, FactorizedReduce, ReLUConvBN
|
||||
from .construct_utils import Transition
|
||||
from .genotypes import PRIMITIVES, Genotype
|
||||
|
||||
|
||||
class MixedOp(nn.Module):
|
||||
|
||||
def __init__(self, C, stride):
|
||||
super(MixedOp, self).__init__()
|
||||
self._ops = nn.ModuleList()
|
||||
for primitive in PRIMITIVES:
|
||||
op = OPS[primitive](C, stride, False)
|
||||
self._ops.append(op)
|
||||
|
||||
def forward(self, x, weights, cpu_weights):
|
||||
use_sum = sum([abs(_) > 1e-10 for _ in cpu_weights])
|
||||
if use_sum > 3:
|
||||
return sum(w * op(x) for w, op in zip(weights, self._ops))
|
||||
else:
|
||||
clist = []
|
||||
for j, cpu_weight in enumerate(cpu_weights):
|
||||
if abs(cpu_weight) > 1e-10:
|
||||
clist.append( weights[j] * self._ops[j](x) )
|
||||
assert len(clist) > 0, 'invalid length : {:}'.format(cpu_weights)
|
||||
return sum(clist)
|
||||
|
||||
|
||||
class Cell(nn.Module):
|
||||
|
||||
def __init__(self, steps, multiplier, C_prev_prev, C_prev, C, reduction, reduction_prev):
|
||||
super(Cell, self).__init__()
|
||||
self.reduction = reduction
|
||||
|
||||
if reduction_prev:
|
||||
self.preprocess0 = FactorizedReduce(C_prev_prev, C, affine=False)
|
||||
else:
|
||||
self.preprocess0 = ReLUConvBN(C_prev_prev, C, 1, 1, 0, affine=False)
|
||||
self.preprocess1 = ReLUConvBN(C_prev, C, 1, 1, 0, affine=False)
|
||||
self._steps = steps
|
||||
self._multiplier = multiplier
|
||||
|
||||
self._ops = nn.ModuleList()
|
||||
for i in range(self._steps):
|
||||
for j in range(2+i):
|
||||
stride = 2 if reduction and j < 2 else 1
|
||||
op = MixedOp(C, stride)
|
||||
self._ops.append(op)
|
||||
|
||||
def forward(self, s0, s1, weights):
|
||||
s0 = self.preprocess0(s0)
|
||||
s1 = self.preprocess1(s1)
|
||||
|
||||
cpu_weights = weights.tolist()
|
||||
states = [s0, s1]
|
||||
offset = 0
|
||||
for i in range(self._steps):
|
||||
clist = []
|
||||
for j, h in enumerate(states):
|
||||
x = self._ops[offset+j](h, weights[offset+j], cpu_weights[offset+j])
|
||||
clist.append( x )
|
||||
s = sum(clist)
|
||||
offset += len(states)
|
||||
states.append(s)
|
||||
|
||||
return torch.cat(states[-self._multiplier:], dim=1)
|
||||
|
||||
|
||||
class NetworkFACC1(nn.Module):
|
||||
|
||||
def __init__(self, C, num_classes, layers, steps=4, multiplier=4, stem_multiplier=3):
|
||||
super(NetworkFACC1, self).__init__()
|
||||
self._C = C
|
||||
self._num_classes = num_classes
|
||||
self._layers = layers
|
||||
self._steps = steps
|
||||
self._multiplier = multiplier
|
||||
self.tau = 5
|
||||
self.use_gumbel = True
|
||||
|
||||
C_curr = stem_multiplier*C
|
||||
self.stem = nn.Sequential(
|
||||
nn.Conv2d(3, C_curr, 3, padding=1, bias=False),
|
||||
nn.BatchNorm2d(C_curr)
|
||||
)
|
||||
|
||||
C_prev_prev, C_prev, C_curr = C_curr, C_curr, C
|
||||
reduction_prev, cells = False, []
|
||||
for i in range(layers):
|
||||
if i in [layers//3, 2*layers//3]:
|
||||
C_curr *= 2
|
||||
reduction = True
|
||||
else:
|
||||
reduction = False
|
||||
if reduction:
|
||||
cell = Transition(C_prev_prev, C_prev, C_curr, reduction_prev, multiplier)
|
||||
else:
|
||||
cell = Cell(steps, multiplier, C_prev_prev, C_prev, C_curr, reduction, reduction_prev)
|
||||
reduction_prev = reduction
|
||||
cells.append( cell )
|
||||
C_prev_prev, C_prev = C_prev, multiplier*C_curr
|
||||
self.cells = nn.ModuleList(cells)
|
||||
|
||||
self.global_pooling = nn.AdaptiveAvgPool2d(1)
|
||||
self.classifier = nn.Linear(C_prev, num_classes)
|
||||
|
||||
# initialize architecture parameters
|
||||
k = sum(1 for i in range(self._steps) for n in range(2+i))
|
||||
num_ops = len(PRIMITIVES)
|
||||
|
||||
self.alphas_normal = Parameter(torch.Tensor(k, num_ops))
|
||||
#self.alphas_reduce = Parameter(torch.Tensor(k, num_ops))
|
||||
nn.init.normal_(self.alphas_normal, 0, 0.001)
|
||||
#nn.init.normal_(self.alphas_reduce, 0, 0.001)
|
||||
|
||||
def set_gumbel(self, use_gumbel):
|
||||
self.use_gumbel = use_gumbel
|
||||
|
||||
def set_tau(self, tau):
|
||||
self.tau = tau
|
||||
|
||||
def get_tau(self):
|
||||
return self.tau
|
||||
|
||||
def arch_parameters(self):
|
||||
return [self.alphas_normal]
|
||||
|
||||
def base_parameters(self):
|
||||
lists = list(self.stem.parameters()) + list(self.cells.parameters())
|
||||
lists += list(self.global_pooling.parameters())
|
||||
lists += list(self.classifier.parameters())
|
||||
return lists
|
||||
|
||||
def forward(self, inputs):
|
||||
batch, C, H, W = inputs.size()
|
||||
s0 = s1 = self.stem(inputs)
|
||||
for i, cell in enumerate(self.cells):
|
||||
if cell.reduction:
|
||||
s0, s1 = s1, cell(s0, s1)
|
||||
else:
|
||||
if self.use_gumbel : weights = F.gumbel_softmax(self.alphas_normal, self.tau, True)
|
||||
else : weights = F.softmax(self.alphas_normal, dim=-1)
|
||||
s0, s1 = s1, cell(s0, s1, weights)
|
||||
#print('{:} : s0 : {:}, s1 : {:}'.format(i, s0.size(), s1.size()))
|
||||
out = self.global_pooling(s1)
|
||||
out = out.view(batch, -1)
|
||||
logits = self.classifier(out)
|
||||
return logits
|
||||
|
||||
def genotype(self):
|
||||
|
||||
def _parse(weights):
|
||||
gene, n, start = [], 2, 0
|
||||
for i in range(self._steps):
|
||||
end = start + n
|
||||
W = weights[start:end].copy()
|
||||
edges = sorted(range(i + 2), key=lambda x: -max(W[x][k] for k in range(len(W[x])) if k != PRIMITIVES.index('none')))[:2]
|
||||
for j in edges:
|
||||
k_best = None
|
||||
for k in range(len(W[j])):
|
||||
if k != PRIMITIVES.index('none'):
|
||||
if k_best is None or W[j][k] > W[j][k_best]:
|
||||
k_best = k
|
||||
gene.append((PRIMITIVES[k_best], j, float(W[j][k_best])))
|
||||
start = end
|
||||
n += 1
|
||||
return gene
|
||||
|
||||
with torch.no_grad():
|
||||
gene_normal = _parse(F.softmax(self.alphas_normal, dim=-1).cpu().numpy())
|
||||
#gene_reduce = _parse(F.softmax(self.alphas_normal, dim=-1).cpu().numpy())
|
||||
|
||||
concat = range(2+self._steps-self._multiplier, self._steps+2)
|
||||
genotype = Genotype(
|
||||
normal=gene_normal, normal_concat=concat,
|
||||
reduce=None , reduce_concat=concat
|
||||
)
|
||||
return genotype
|
@ -1,161 +0,0 @@
|
||||
# share parameters
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from torch.nn.parameter import Parameter
|
||||
from .operations import OPS, FactorizedReduce, ReLUConvBN
|
||||
from .genotypes import PRIMITIVES, Genotype
|
||||
|
||||
|
||||
class MixedOp(nn.Module):
|
||||
|
||||
def __init__(self, C, stride):
|
||||
super(MixedOp, self).__init__()
|
||||
self._ops = nn.ModuleList()
|
||||
for primitive in PRIMITIVES:
|
||||
op = OPS[primitive](C, stride, False)
|
||||
self._ops.append(op)
|
||||
|
||||
def forward(self, x, weights):
|
||||
return sum(w * op(x) for w, op in zip(weights, self._ops))
|
||||
|
||||
|
||||
class Cell(nn.Module):
|
||||
|
||||
def __init__(self, steps, multiplier, C_prev_prev, C_prev, C, reduction, reduction_prev):
|
||||
super(Cell, self).__init__()
|
||||
self.reduction = reduction
|
||||
|
||||
if reduction_prev:
|
||||
self.preprocess0 = FactorizedReduce(C_prev_prev, C, affine=False)
|
||||
else:
|
||||
self.preprocess0 = ReLUConvBN(C_prev_prev, C, 1, 1, 0, affine=False)
|
||||
self.preprocess1 = ReLUConvBN(C_prev, C, 1, 1, 0, affine=False)
|
||||
self._steps = steps
|
||||
self._multiplier = multiplier
|
||||
|
||||
self._ops = nn.ModuleList()
|
||||
for i in range(self._steps):
|
||||
for j in range(2+i):
|
||||
stride = 2 if reduction and j < 2 else 1
|
||||
op = MixedOp(C, stride)
|
||||
self._ops.append(op)
|
||||
|
||||
def forward(self, s0, s1, weights):
|
||||
s0 = self.preprocess0(s0)
|
||||
s1 = self.preprocess1(s1)
|
||||
|
||||
states = [s0, s1]
|
||||
offset = 0
|
||||
for i in range(self._steps):
|
||||
clist = []
|
||||
for j, h in enumerate(states):
|
||||
x = self._ops[offset+j](h, weights[offset+j])
|
||||
clist.append( x )
|
||||
s = sum(clist)
|
||||
offset += len(states)
|
||||
states.append(s)
|
||||
|
||||
return torch.cat(states[-self._multiplier:], dim=1)
|
||||
|
||||
|
||||
class NetworkV1(nn.Module):
|
||||
|
||||
def __init__(self, C, num_classes, layers, steps=4, multiplier=4, stem_multiplier=3):
|
||||
super(NetworkV1, self).__init__()
|
||||
self._C = C
|
||||
self._num_classes = num_classes
|
||||
self._layers = layers
|
||||
self._steps = steps
|
||||
self._multiplier = multiplier
|
||||
|
||||
C_curr = stem_multiplier*C
|
||||
self.stem = nn.Sequential(
|
||||
nn.Conv2d(3, C_curr, 3, padding=1, bias=False),
|
||||
nn.BatchNorm2d(C_curr)
|
||||
)
|
||||
|
||||
C_prev_prev, C_prev, C_curr = C_curr, C_curr, C
|
||||
reduction_prev, cells = False, []
|
||||
for i in range(layers):
|
||||
if i in [layers//3, 2*layers//3]:
|
||||
C_curr *= 2
|
||||
reduction = True
|
||||
else:
|
||||
reduction = False
|
||||
cell = Cell(steps, multiplier, C_prev_prev, C_prev, C_curr, reduction, reduction_prev)
|
||||
reduction_prev = reduction
|
||||
cells.append( cell )
|
||||
C_prev_prev, C_prev = C_prev, multiplier*C_curr
|
||||
self.cells = nn.ModuleList(cells)
|
||||
|
||||
self.global_pooling = nn.AdaptiveAvgPool2d(1)
|
||||
self.classifier = nn.Linear(C_prev, num_classes)
|
||||
|
||||
# initialize architecture parameters
|
||||
k = sum(1 for i in range(self._steps) for n in range(2+i))
|
||||
num_ops = len(PRIMITIVES)
|
||||
|
||||
self.alphas_normal = Parameter(torch.Tensor(k, num_ops))
|
||||
#self.alphas_reduce = Parameter(torch.Tensor(k, num_ops))
|
||||
nn.init.normal_(self.alphas_normal, 0, 0.001)
|
||||
#nn.init.normal_(self.alphas_reduce, 0, 0.001)
|
||||
|
||||
def set_tau(self, tau):
|
||||
return -1
|
||||
|
||||
def get_tau(self):
|
||||
return -1
|
||||
|
||||
def arch_parameters(self):
|
||||
return [self.alphas_normal]
|
||||
|
||||
def base_parameters(self):
|
||||
lists = list(self.stem.parameters()) + list(self.cells.parameters())
|
||||
lists += list(self.global_pooling.parameters())
|
||||
lists += list(self.classifier.parameters())
|
||||
return lists
|
||||
|
||||
def forward(self, inputs):
|
||||
batch, C, H, W = inputs.size()
|
||||
s0 = s1 = self.stem(inputs)
|
||||
for i, cell in enumerate(self.cells):
|
||||
if cell.reduction:
|
||||
weights = F.softmax(self.alphas_normal, dim=-1)
|
||||
else:
|
||||
weights = F.softmax(self.alphas_normal, dim=-1)
|
||||
s0, s1 = s1, cell(s0, s1, weights)
|
||||
out = self.global_pooling(s1)
|
||||
out = out.view(batch, -1)
|
||||
logits = self.classifier(out)
|
||||
return logits
|
||||
|
||||
def genotype(self):
|
||||
|
||||
def _parse(weights):
|
||||
gene, n, start = [], 2, 0
|
||||
for i in range(self._steps):
|
||||
end = start + n
|
||||
W = weights[start:end].copy()
|
||||
edges = sorted(range(i + 2), key=lambda x: -max(W[x][k] for k in range(len(W[x])) if k != PRIMITIVES.index('none')))[:2]
|
||||
for j in edges:
|
||||
k_best = None
|
||||
for k in range(len(W[j])):
|
||||
if k != PRIMITIVES.index('none'):
|
||||
if k_best is None or W[j][k] > W[j][k_best]:
|
||||
k_best = k
|
||||
gene.append((PRIMITIVES[k_best], j, float(W[j][k_best])))
|
||||
start = end
|
||||
n += 1
|
||||
return gene
|
||||
|
||||
with torch.no_grad():
|
||||
gene_normal = _parse(F.softmax(self.alphas_normal, dim=-1).cpu().numpy())
|
||||
gene_reduce = _parse(F.softmax(self.alphas_normal, dim=-1).cpu().numpy())
|
||||
|
||||
concat = range(2+self._steps-self._multiplier, self._steps+2)
|
||||
genotype = Genotype(
|
||||
normal=gene_normal, normal_concat=concat,
|
||||
reduce=gene_reduce, reduce_concat=concat
|
||||
)
|
||||
return genotype
|
@ -1,171 +0,0 @@
|
||||
# random selection
|
||||
import torch
|
||||
import random
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from torch.nn.parameter import Parameter
|
||||
from .operations import OPS, FactorizedReduce, ReLUConvBN
|
||||
from .genotypes import PRIMITIVES, Genotype
|
||||
from .construct_utils import random_select, all_select
|
||||
|
||||
|
||||
|
||||
class MixedOp(nn.Module):
|
||||
|
||||
def __init__(self, C, stride):
|
||||
super(MixedOp, self).__init__()
|
||||
self._ops = nn.ModuleList()
|
||||
for primitive in PRIMITIVES:
|
||||
op = OPS[primitive](C, stride, False)
|
||||
self._ops.append(op)
|
||||
|
||||
def forward(self, x, weights, cpu_weights):
|
||||
return sum(w * op(x) for w, op in zip(weights, self._ops))
|
||||
|
||||
|
||||
class Cell(nn.Module):
|
||||
|
||||
def __init__(self, steps, multiplier, C_prev_prev, C_prev, C, reduction, reduction_prev):
|
||||
super(Cell, self).__init__()
|
||||
self.reduction = reduction
|
||||
|
||||
if reduction_prev:
|
||||
self.preprocess0 = FactorizedReduce(C_prev_prev, C, affine=False)
|
||||
else:
|
||||
self.preprocess0 = ReLUConvBN(C_prev_prev, C, 1, 1, 0, affine=False)
|
||||
self.preprocess1 = ReLUConvBN(C_prev, C, 1, 1, 0, affine=False)
|
||||
self._steps = steps
|
||||
self._multiplier = multiplier
|
||||
|
||||
self._ops = nn.ModuleList()
|
||||
for i in range(self._steps):
|
||||
for j in range(2+i):
|
||||
stride = 2 if reduction and j < 2 else 1
|
||||
op = MixedOp(C, stride)
|
||||
self._ops.append(op)
|
||||
|
||||
def forward(self, s0, s1, weights):
|
||||
s0 = self.preprocess0(s0)
|
||||
s1 = self.preprocess1(s1)
|
||||
|
||||
cpu_weights = weights.tolist()
|
||||
states = [s0, s1]
|
||||
offset = 0
|
||||
for i in range(self._steps):
|
||||
clist = []
|
||||
if i == 0:
|
||||
indicator = all_select( len(states) )
|
||||
else:
|
||||
indicator = random_select( len(states), 0.5 )
|
||||
for j, h in enumerate(states):
|
||||
if indicator[j] == 0: continue
|
||||
x = self._ops[offset+j](h, weights[offset+j], cpu_weights[offset+j])
|
||||
clist.append( x )
|
||||
s = sum(clist) / sum(indicator)
|
||||
offset += len(states)
|
||||
states.append(s)
|
||||
|
||||
return torch.cat(states[-self._multiplier:], dim=1)
|
||||
|
||||
|
||||
class NetworkV3(nn.Module):
|
||||
|
||||
def __init__(self, C, num_classes, layers, steps=4, multiplier=4, stem_multiplier=3):
|
||||
super(NetworkV3, self).__init__()
|
||||
self._C = C
|
||||
self._num_classes = num_classes
|
||||
self._layers = layers
|
||||
self._steps = steps
|
||||
self._multiplier = multiplier
|
||||
|
||||
C_curr = stem_multiplier*C
|
||||
self.stem = nn.Sequential(
|
||||
nn.Conv2d(3, C_curr, 3, padding=1, bias=False),
|
||||
nn.BatchNorm2d(C_curr)
|
||||
)
|
||||
|
||||
C_prev_prev, C_prev, C_curr = C_curr, C_curr, C
|
||||
reduction_prev, cells = False, []
|
||||
for i in range(layers):
|
||||
if i in [layers//3, 2*layers//3]:
|
||||
C_curr *= 2
|
||||
reduction = True
|
||||
else:
|
||||
reduction = False
|
||||
cell = Cell(steps, multiplier, C_prev_prev, C_prev, C_curr, reduction, reduction_prev)
|
||||
reduction_prev = reduction
|
||||
cells.append( cell )
|
||||
C_prev_prev, C_prev = C_prev, multiplier*C_curr
|
||||
self.cells = nn.ModuleList(cells)
|
||||
|
||||
self.global_pooling = nn.AdaptiveAvgPool2d(1)
|
||||
self.classifier = nn.Linear(C_prev, num_classes)
|
||||
self.tau = 5
|
||||
|
||||
# initialize architecture parameters
|
||||
k = sum(1 for i in range(self._steps) for n in range(2+i))
|
||||
num_ops = len(PRIMITIVES)
|
||||
|
||||
self.alphas_normal = Parameter(torch.Tensor(k, num_ops))
|
||||
self.alphas_reduce = Parameter(torch.Tensor(k, num_ops))
|
||||
nn.init.normal_(self.alphas_normal, 0, 0.001)
|
||||
nn.init.normal_(self.alphas_reduce, 0, 0.001)
|
||||
|
||||
def set_tau(self, tau):
|
||||
self.tau = tau
|
||||
|
||||
def get_tau(self):
|
||||
return self.tau
|
||||
|
||||
def arch_parameters(self):
|
||||
return [self.alphas_normal, self.alphas_reduce]
|
||||
|
||||
def base_parameters(self):
|
||||
lists = list(self.stem.parameters()) + list(self.cells.parameters())
|
||||
lists += list(self.global_pooling.parameters())
|
||||
lists += list(self.classifier.parameters())
|
||||
return lists
|
||||
|
||||
def forward(self, inputs):
|
||||
batch, C, H, W = inputs.size()
|
||||
s0 = s1 = self.stem(inputs)
|
||||
for i, cell in enumerate(self.cells):
|
||||
if cell.reduction:
|
||||
weights = F.softmax(self.alphas_reduce, dim=-1)
|
||||
else:
|
||||
weights = F.softmax(self.alphas_reduce, dim=-1)
|
||||
s0, s1 = s1, cell(s0, s1, weights)
|
||||
out = self.global_pooling(s1)
|
||||
out = out.view(batch, -1)
|
||||
logits = self.classifier(out)
|
||||
return logits
|
||||
|
||||
def genotype(self):
|
||||
|
||||
def _parse(weights):
|
||||
gene, n, start = [], 2, 0
|
||||
for i in range(self._steps):
|
||||
end = start + n
|
||||
W = weights[start:end].copy()
|
||||
edges = sorted(range(i + 2), key=lambda x: -max(W[x][k] for k in range(len(W[x])) if k != PRIMITIVES.index('none')))[:2]
|
||||
for j in edges:
|
||||
k_best = None
|
||||
for k in range(len(W[j])):
|
||||
if k != PRIMITIVES.index('none'):
|
||||
if k_best is None or W[j][k] > W[j][k_best]:
|
||||
k_best = k
|
||||
gene.append((PRIMITIVES[k_best], j, float(W[j][k_best])))
|
||||
start = end
|
||||
n += 1
|
||||
return gene
|
||||
|
||||
with torch.no_grad():
|
||||
gene_normal = _parse(F.softmax(self.alphas_normal, dim=-1).cpu().numpy())
|
||||
gene_reduce = _parse(F.softmax(self.alphas_reduce, dim=-1).cpu().numpy())
|
||||
|
||||
concat = range(2+self._steps-self._multiplier, self._steps+2)
|
||||
genotype = Genotype(
|
||||
normal=gene_normal, normal_concat=concat,
|
||||
reduce=gene_reduce, reduce_concat=concat
|
||||
)
|
||||
return genotype
|
@ -1,176 +0,0 @@
|
||||
# random selection
|
||||
import torch
|
||||
import random
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from torch.nn.parameter import Parameter
|
||||
from .operations import OPS, FactorizedReduce, ReLUConvBN
|
||||
from .genotypes import PRIMITIVES, Genotype
|
||||
from .construct_utils import random_select, all_select
|
||||
|
||||
|
||||
class MixedOp(nn.Module):
|
||||
|
||||
def __init__(self, C, stride):
|
||||
super(MixedOp, self).__init__()
|
||||
self._ops = nn.ModuleList()
|
||||
for primitive in PRIMITIVES:
|
||||
op = OPS[primitive](C, stride, False)
|
||||
self._ops.append(op)
|
||||
|
||||
def forward(self, x, weights, cpu_weights):
|
||||
indicators = random_select( len(cpu_weights), 0.5 )
|
||||
clist, ws = [], []
|
||||
for w, indicator, op in zip(weights, indicators, self._ops):
|
||||
if indicator:
|
||||
clist.append( w * op(x) )
|
||||
ws.append( w )
|
||||
return sum(clist) / sum(ws)
|
||||
|
||||
|
||||
class Cell(nn.Module):
|
||||
|
||||
def __init__(self, steps, multiplier, C_prev_prev, C_prev, C, reduction, reduction_prev):
|
||||
super(Cell, self).__init__()
|
||||
self.reduction = reduction
|
||||
|
||||
if reduction_prev:
|
||||
self.preprocess0 = FactorizedReduce(C_prev_prev, C, affine=False)
|
||||
else:
|
||||
self.preprocess0 = ReLUConvBN(C_prev_prev, C, 1, 1, 0, affine=False)
|
||||
self.preprocess1 = ReLUConvBN(C_prev, C, 1, 1, 0, affine=False)
|
||||
self._steps = steps
|
||||
self._multiplier = multiplier
|
||||
|
||||
self._ops = nn.ModuleList()
|
||||
for i in range(self._steps):
|
||||
for j in range(2+i):
|
||||
stride = 2 if reduction and j < 2 else 1
|
||||
op = MixedOp(C, stride)
|
||||
self._ops.append(op)
|
||||
|
||||
def forward(self, s0, s1, weights):
|
||||
s0 = self.preprocess0(s0)
|
||||
s1 = self.preprocess1(s1)
|
||||
|
||||
cpu_weights = weights.tolist()
|
||||
states = [s0, s1]
|
||||
offset = 0
|
||||
for i in range(self._steps):
|
||||
clist = []
|
||||
if i == 0:
|
||||
indicator = all_select( len(states) )
|
||||
else:
|
||||
indicator = random_select( len(states), 0.5 )
|
||||
for j, h in enumerate(states):
|
||||
if indicator[j] == 0: continue
|
||||
x = self._ops[offset+j](h, weights[offset+j], cpu_weights[offset+j])
|
||||
clist.append( x )
|
||||
s = sum(clist) / sum(indicator)
|
||||
offset += len(states)
|
||||
states.append(s)
|
||||
|
||||
return torch.cat(states[-self._multiplier:], dim=1)
|
||||
|
||||
|
||||
class NetworkV4(nn.Module):
|
||||
|
||||
def __init__(self, C, num_classes, layers, steps=4, multiplier=4, stem_multiplier=3):
|
||||
super(NetworkV4, self).__init__()
|
||||
self._C = C
|
||||
self._num_classes = num_classes
|
||||
self._layers = layers
|
||||
self._steps = steps
|
||||
self._multiplier = multiplier
|
||||
|
||||
C_curr = stem_multiplier*C
|
||||
self.stem = nn.Sequential(
|
||||
nn.Conv2d(3, C_curr, 3, padding=1, bias=False),
|
||||
nn.BatchNorm2d(C_curr)
|
||||
)
|
||||
|
||||
C_prev_prev, C_prev, C_curr = C_curr, C_curr, C
|
||||
reduction_prev, cells = False, []
|
||||
for i in range(layers):
|
||||
if i in [layers//3, 2*layers//3]:
|
||||
C_curr *= 2
|
||||
reduction = True
|
||||
else:
|
||||
reduction = False
|
||||
cell = Cell(steps, multiplier, C_prev_prev, C_prev, C_curr, reduction, reduction_prev)
|
||||
reduction_prev = reduction
|
||||
cells.append( cell )
|
||||
C_prev_prev, C_prev = C_prev, multiplier*C_curr
|
||||
self.cells = nn.ModuleList(cells)
|
||||
|
||||
self.global_pooling = nn.AdaptiveAvgPool2d(1)
|
||||
self.classifier = nn.Linear(C_prev, num_classes)
|
||||
self.tau = 5
|
||||
|
||||
# initialize architecture parameters
|
||||
k = sum(1 for i in range(self._steps) for n in range(2+i))
|
||||
num_ops = len(PRIMITIVES)
|
||||
|
||||
self.alphas_normal = Parameter(torch.Tensor(k, num_ops))
|
||||
self.alphas_reduce = Parameter(torch.Tensor(k, num_ops))
|
||||
nn.init.normal_(self.alphas_normal, 0, 0.001)
|
||||
nn.init.normal_(self.alphas_reduce, 0, 0.001)
|
||||
|
||||
def set_tau(self, tau):
|
||||
self.tau = tau
|
||||
|
||||
def get_tau(self):
|
||||
return self.tau
|
||||
|
||||
def arch_parameters(self):
|
||||
return [self.alphas_normal, self.alphas_reduce]
|
||||
|
||||
def base_parameters(self):
|
||||
lists = list(self.stem.parameters()) + list(self.cells.parameters())
|
||||
lists += list(self.global_pooling.parameters())
|
||||
lists += list(self.classifier.parameters())
|
||||
return lists
|
||||
|
||||
def forward(self, inputs):
|
||||
batch, C, H, W = inputs.size()
|
||||
s0 = s1 = self.stem(inputs)
|
||||
for i, cell in enumerate(self.cells):
|
||||
if cell.reduction:
|
||||
weights = F.softmax(self.alphas_reduce, dim=-1)
|
||||
else:
|
||||
weights = F.softmax(self.alphas_reduce, dim=-1)
|
||||
s0, s1 = s1, cell(s0, s1, weights)
|
||||
out = self.global_pooling(s1)
|
||||
out = out.view(batch, -1)
|
||||
logits = self.classifier(out)
|
||||
return logits
|
||||
|
||||
def genotype(self):
|
||||
|
||||
def _parse(weights):
|
||||
gene, n, start = [], 2, 0
|
||||
for i in range(self._steps):
|
||||
end = start + n
|
||||
W = weights[start:end].copy()
|
||||
edges = sorted(range(i + 2), key=lambda x: -max(W[x][k] for k in range(len(W[x])) if k != PRIMITIVES.index('none')))[:2]
|
||||
for j in edges:
|
||||
k_best = None
|
||||
for k in range(len(W[j])):
|
||||
if k != PRIMITIVES.index('none'):
|
||||
if k_best is None or W[j][k] > W[j][k_best]:
|
||||
k_best = k
|
||||
gene.append((PRIMITIVES[k_best], j, float(W[j][k_best])))
|
||||
start = end
|
||||
n += 1
|
||||
return gene
|
||||
|
||||
with torch.no_grad():
|
||||
gene_normal = _parse(F.softmax(self.alphas_normal, dim=-1).cpu().numpy())
|
||||
gene_reduce = _parse(F.softmax(self.alphas_reduce, dim=-1).cpu().numpy())
|
||||
|
||||
concat = range(2+self._steps-self._multiplier, self._steps+2)
|
||||
genotype = Genotype(
|
||||
normal=gene_normal, normal_concat=concat,
|
||||
reduce=gene_reduce, reduce_concat=concat
|
||||
)
|
||||
return genotype
|
@ -1,174 +0,0 @@
|
||||
# gumbel softmax
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from torch.nn.parameter import Parameter
|
||||
from .operations import OPS, FactorizedReduce, ReLUConvBN
|
||||
from .genotypes import PRIMITIVES, Genotype
|
||||
from .construct_utils import random_select, all_select
|
||||
|
||||
|
||||
class MixedOp(nn.Module):
|
||||
|
||||
def __init__(self, C, stride):
|
||||
super(MixedOp, self).__init__()
|
||||
self._ops = nn.ModuleList()
|
||||
for primitive in PRIMITIVES:
|
||||
op = OPS[primitive](C, stride, False)
|
||||
self._ops.append(op)
|
||||
|
||||
def forward(self, x, weights, cpu_weights):
|
||||
clist = []
|
||||
for j, cpu_weight in enumerate(cpu_weights):
|
||||
if abs(cpu_weight) > 1e-10:
|
||||
clist.append( weights[j] * self._ops[j](x) )
|
||||
assert len(clist) > 0, 'invalid length : {:}'.format(cpu_weights)
|
||||
if len(clist) == 1: return clist[0]
|
||||
else : return sum(clist)
|
||||
|
||||
|
||||
class Cell(nn.Module):
|
||||
|
||||
def __init__(self, steps, multiplier, C_prev_prev, C_prev, C, reduction, reduction_prev):
|
||||
super(Cell, self).__init__()
|
||||
self.reduction = reduction
|
||||
|
||||
if reduction_prev:
|
||||
self.preprocess0 = FactorizedReduce(C_prev_prev, C, affine=False)
|
||||
else:
|
||||
self.preprocess0 = ReLUConvBN(C_prev_prev, C, 1, 1, 0, affine=False)
|
||||
self.preprocess1 = ReLUConvBN(C_prev, C, 1, 1, 0, affine=False)
|
||||
self._steps = steps
|
||||
self._multiplier = multiplier
|
||||
|
||||
self._ops = nn.ModuleList()
|
||||
for i in range(self._steps):
|
||||
for j in range(2+i):
|
||||
stride = 2 if reduction and j < 2 else 1
|
||||
op = MixedOp(C, stride)
|
||||
self._ops.append(op)
|
||||
|
||||
def forward(self, s0, s1, weights):
|
||||
s0 = self.preprocess0(s0)
|
||||
s1 = self.preprocess1(s1)
|
||||
|
||||
cpu_weights = weights.tolist()
|
||||
states = [s0, s1]
|
||||
offset = 0
|
||||
for i in range(self._steps):
|
||||
clist = []
|
||||
if i == 0: indicator = all_select( len(states) )
|
||||
else : indicator = random_select( len(states), 0.6 )
|
||||
|
||||
for j, h in enumerate(states):
|
||||
if indicator[j] == 0: continue
|
||||
x = self._ops[offset+j](h, weights[offset+j], cpu_weights[offset+j])
|
||||
clist.append( x )
|
||||
s = sum(clist)
|
||||
offset += len(states)
|
||||
states.append(s)
|
||||
|
||||
return torch.cat(states[-self._multiplier:], dim=1)
|
||||
|
||||
|
||||
class NetworkV5(nn.Module):
|
||||
|
||||
def __init__(self, C, num_classes, layers, steps=4, multiplier=4, stem_multiplier=3):
|
||||
super(NetworkV5, self).__init__()
|
||||
self._C = C
|
||||
self._num_classes = num_classes
|
||||
self._layers = layers
|
||||
self._steps = steps
|
||||
self._multiplier = multiplier
|
||||
|
||||
C_curr = stem_multiplier*C
|
||||
self.stem = nn.Sequential(
|
||||
nn.Conv2d(3, C_curr, 3, padding=1, bias=False),
|
||||
nn.BatchNorm2d(C_curr)
|
||||
)
|
||||
|
||||
C_prev_prev, C_prev, C_curr = C_curr, C_curr, C
|
||||
reduction_prev, cells = False, []
|
||||
for i in range(layers):
|
||||
if i in [layers//3, 2*layers//3]:
|
||||
C_curr *= 2
|
||||
reduction = True
|
||||
else:
|
||||
reduction = False
|
||||
cell = Cell(steps, multiplier, C_prev_prev, C_prev, C_curr, reduction, reduction_prev)
|
||||
reduction_prev = reduction
|
||||
cells.append( cell )
|
||||
C_prev_prev, C_prev = C_prev, multiplier*C_curr
|
||||
self.cells = nn.ModuleList(cells)
|
||||
|
||||
self.global_pooling = nn.AdaptiveAvgPool2d(1)
|
||||
self.classifier = nn.Linear(C_prev, num_classes)
|
||||
self.tau = 5
|
||||
|
||||
# initialize architecture parameters
|
||||
k = sum(1 for i in range(self._steps) for n in range(2+i))
|
||||
num_ops = len(PRIMITIVES)
|
||||
|
||||
self.alphas_normal = Parameter(torch.Tensor(k, num_ops))
|
||||
self.alphas_reduce = Parameter(torch.Tensor(k, num_ops))
|
||||
nn.init.normal_(self.alphas_normal, 0, 0.001)
|
||||
nn.init.normal_(self.alphas_reduce, 0, 0.001)
|
||||
|
||||
def set_tau(self, tau):
|
||||
self.tau = tau
|
||||
|
||||
def get_tau(self):
|
||||
return self.tau
|
||||
|
||||
def arch_parameters(self):
|
||||
return [self.alphas_normal, self.alphas_reduce]
|
||||
|
||||
def base_parameters(self):
|
||||
lists = list(self.stem.parameters()) + list(self.cells.parameters())
|
||||
lists += list(self.global_pooling.parameters())
|
||||
lists += list(self.classifier.parameters())
|
||||
return lists
|
||||
|
||||
def forward(self, inputs):
|
||||
batch, C, H, W = inputs.size()
|
||||
s0 = s1 = self.stem(inputs)
|
||||
for i, cell in enumerate(self.cells):
|
||||
if cell.reduction:
|
||||
weights = F.gumbel_softmax(self.alphas_reduce, self.tau, True)
|
||||
else:
|
||||
weights = F.gumbel_softmax(self.alphas_normal, self.tau, True)
|
||||
s0, s1 = s1, cell(s0, s1, weights)
|
||||
out = self.global_pooling(s1)
|
||||
out = out.view(batch, -1)
|
||||
logits = self.classifier(out)
|
||||
return logits
|
||||
|
||||
def genotype(self):
|
||||
|
||||
def _parse(weights):
|
||||
gene, n, start = [], 2, 0
|
||||
for i in range(self._steps):
|
||||
end = start + n
|
||||
W = weights[start:end].copy()
|
||||
edges = sorted(range(i + 2), key=lambda x: -max(W[x][k] for k in range(len(W[x])) if k != PRIMITIVES.index('none')))[:2]
|
||||
for j in edges:
|
||||
k_best = None
|
||||
for k in range(len(W[j])):
|
||||
if k != PRIMITIVES.index('none'):
|
||||
if k_best is None or W[j][k] > W[j][k_best]:
|
||||
k_best = k
|
||||
gene.append((PRIMITIVES[k_best], j, float(W[j][k_best])))
|
||||
start = end
|
||||
n += 1
|
||||
return gene
|
||||
|
||||
with torch.no_grad():
|
||||
gene_normal = _parse(F.softmax(self.alphas_normal, dim=-1).cpu().numpy())
|
||||
gene_reduce = _parse(F.softmax(self.alphas_reduce, dim=-1).cpu().numpy())
|
||||
|
||||
concat = range(2+self._steps-self._multiplier, self._steps+2)
|
||||
genotype = Genotype(
|
||||
normal=gene_normal, normal_concat=concat,
|
||||
reduce=gene_reduce, reduce_concat=concat
|
||||
)
|
||||
return genotype
|
@ -2,6 +2,7 @@ import torch
|
||||
import torch.nn as nn
|
||||
import numpy as np
|
||||
|
||||
|
||||
def count_parameters_in_MB(model):
|
||||
if isinstance(model, nn.Module):
|
||||
return np.sum(np.prod(v.size()) for v in model.parameters())/1e6
|
||||
|
@ -9,4 +9,5 @@ bash scripts-cluster/submit.sh yq01-v100-box-idl-2-8 PTB-GDAS 1 "bash ./scripts-
|
||||
## CNN
|
||||
```
|
||||
bash scripts-cluster/submit.sh yq01-v100-box-idl-2-8 CIFAR10-CUT-GDAS-F1 1 "bash ./scripts-cnn/train-cifar.sh GDAS_F1 cifar10 cut"
|
||||
bash scripts-cluster/submit.sh yq01-v100-box-idl-2-8 IMAGENET-GDAS-F1 1 "bash ./scripts-cnn/train-imagenet.sh GDAS_F1 52 14"
|
||||
```
|
||||
|
@ -6,9 +6,11 @@ sh /home/HGCP_Program/software-install/afs_mount/bin/afs_mount.sh \
|
||||
`pwd`/hadoop-data \
|
||||
afs://xingtian.afs.baidu.com:9902/user/COMM_KM_Data/dongxuanyi/datasets
|
||||
|
||||
tar xvf ./hadoop-data/cifar.python.tar -C ./data/data/
|
||||
export TORCH_HOME="./data/data/"
|
||||
tar xvf ./hadoop-data/cifar.python.tar -C ${TORCH_HOME}
|
||||
#tar xvf ./hadoop-data/ILSVRC2012.tar -C ${TORCH_HOME}
|
||||
|
||||
cifar_dir="./data/data/cifar.python"
|
||||
cifar_dir="${TORCH_HOME}/cifar.python"
|
||||
if [ -d ${cifar_dir} ]; then
|
||||
echo "Find cifar-dir: "${cifar_dir}
|
||||
else
|
||||
@ -16,7 +18,6 @@ else
|
||||
exit 1
|
||||
fi
|
||||
echo "CHECK-DATA-DIR DONE"
|
||||
export TORCH_HOME="./data/data/"
|
||||
|
||||
|
||||
# config python
|
||||
|
@ -24,6 +24,8 @@ if [ ! -f ${PY_C} ]; then
|
||||
PY_C="python"
|
||||
else
|
||||
echo "Cluster Run with Python: "${PY_C}
|
||||
echo "Unzip ILSVRC2012"
|
||||
tar xvf ./hadoop-data/ILSVRC2012.tar -C ${TORCH_HOME}
|
||||
fi
|
||||
|
||||
${PY_C} --version
|
||||
|
Loading…
Reference in New Issue
Block a user