To re-org Q-results
This commit is contained in:
		 Submodule .latent-data/qlib updated: 49697b1f15...91fd53ab4d
									
								
							| @@ -65,16 +65,16 @@ def update_market(config, market): | ||||
| def run_exp(task_config, dataset, experiment_name, recorder_name, uri): | ||||
|  | ||||
|     # model initiaiton | ||||
|     print('') | ||||
|     print('[{:}] - [{:}]: {:}'.format(experiment_name, recorder_name, uri)) | ||||
|     print('dataset={:}'.format(dataset)) | ||||
|     print("") | ||||
|     print("[{:}] - [{:}]: {:}".format(experiment_name, recorder_name, uri)) | ||||
|     print("dataset={:}".format(dataset)) | ||||
|  | ||||
|     model = init_instance_by_config(task_config["model"]) | ||||
|  | ||||
|     # start exp | ||||
|     with R.start(experiment_name=experiment_name, recorder_name=recorder_name, uri=uri): | ||||
|  | ||||
|         log_file = R.get_recorder().root_uri / '{:}.log'.format(experiment_name) | ||||
|         log_file = R.get_recorder().root_uri / "{:}.log".format(experiment_name) | ||||
|         set_log_basic_config(log_file) | ||||
|  | ||||
|         # train model | ||||
| @@ -109,12 +109,14 @@ def main(xargs, exp_yaml): | ||||
|     qlib.init(**config.get("qlib_init")) | ||||
|     dataset_config = config.get("task").get("dataset") | ||||
|     dataset = init_instance_by_config(dataset_config) | ||||
|     pprint('args: {:}'.format(xargs)) | ||||
|     pprint("args: {:}".format(xargs)) | ||||
|     pprint(dataset_config) | ||||
|     pprint(dataset) | ||||
|  | ||||
|     for irun in range(xargs.times): | ||||
|         run_exp(config.get("task"), dataset, xargs.alg, "recorder-{:02d}-{:02d}".format(irun, xargs.times), xargs.save_dir) | ||||
|         run_exp( | ||||
|             config.get("task"), dataset, xargs.alg, "recorder-{:02d}-{:02d}".format(irun, xargs.times), xargs.save_dir | ||||
|         ) | ||||
|  | ||||
|  | ||||
| if __name__ == "__main__": | ||||
|   | ||||
							
								
								
									
										135
									
								
								exps/trading/organize_results.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										135
									
								
								exps/trading/organize_results.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,135 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.02 # | ||||
| ##################################################### | ||||
| # python exps/trading/organize_results.py | ||||
| ##################################################### | ||||
| import sys, argparse | ||||
| import numpy as np | ||||
| from typing import List, Text | ||||
| from collections import defaultdict, OrderedDict | ||||
| from pathlib import Path | ||||
| from pprint import pprint | ||||
| import ruamel.yaml as yaml | ||||
|  | ||||
| lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve() | ||||
| if str(lib_dir) not in sys.path: | ||||
|     sys.path.insert(0, str(lib_dir)) | ||||
|  | ||||
| import qlib | ||||
| from qlib.config import REG_CN | ||||
| from qlib.workflow import R | ||||
|  | ||||
|  | ||||
| class QResult: | ||||
|  | ||||
|   def __init__(self): | ||||
|     self._result = defaultdict(list) | ||||
|  | ||||
|   def append(self, key, value): | ||||
|     self._result[key].append(value) | ||||
|  | ||||
|   @property | ||||
|   def result(self): | ||||
|     return self._result | ||||
|  | ||||
|   def update(self, metrics, filter_keys=None): | ||||
|     for key, value in metrics.items(): | ||||
|       if filter_keys is not None and key in filter_keys: | ||||
|         key = filter_keys[key] | ||||
|       elif filter_keys is not None: | ||||
|         continue | ||||
|       self.append(key, value) | ||||
|  | ||||
|   @staticmethod | ||||
|   def full_str(xstr, space): | ||||
|     xformat = '{:' + str(space) + 's}' | ||||
|     return xformat.format(str(xstr)) | ||||
|  | ||||
|   def info(self, keys: List[Text], separate: Text = '', space: int = 25, show=True): | ||||
|     avaliable_keys = [] | ||||
|     for key in keys: | ||||
|       if key not in self.result: | ||||
|         print('There are invalid key [{:}].'.format(key)) | ||||
|       else: | ||||
|         avaliable_keys.append(key) | ||||
|     head_str = separate.join([self.full_str(x, space) for x in avaliable_keys]) | ||||
|     values = [] | ||||
|     for key in avaliable_keys: | ||||
|       current_values = self._result[key] | ||||
|       mean = np.mean(current_values) | ||||
|       std = np.std(current_values) | ||||
|       values.append('{:.4f} $\pm$ {:.4f}'.format(mean, std)) | ||||
|     value_str = separate.join([self.full_str(x, space) for x in values]) | ||||
|     if show: | ||||
|       print(head_str) | ||||
|       print(value_str) | ||||
|     else: | ||||
|       return head_str, value_str | ||||
|  | ||||
|  | ||||
| def compare_results(heads, values, names, space=10): | ||||
|   for idx, x in enumerate(heads): | ||||
|     assert x == heads[0], '[{:}] {:} vs {:}'.format(idx, x, heads[0]) | ||||
|   new_head = QResult.full_str('Name', space) + heads[0] | ||||
|   print(new_head) | ||||
|   for name, value in zip(names, values): | ||||
|     xline = QResult.full_str(name, space) + value | ||||
|     print(xline) | ||||
|  | ||||
|  | ||||
| def filter_finished(recorders): | ||||
|     returned_recorders = dict() | ||||
|     not_finished = 0 | ||||
|     for key, recorder in recorders.items(): | ||||
|         if recorder.status == "FINISHED": | ||||
|             returned_recorders[key] = recorder | ||||
|         else: | ||||
|             not_finished += 1 | ||||
|     return returned_recorders, not_finished | ||||
|  | ||||
|  | ||||
| def main(xargs): | ||||
|     R.reset_default_uri(xargs.save_dir) | ||||
|     experiments = R.list_experiments() | ||||
|  | ||||
|     key_map = {"IC": "IC", | ||||
|                "ICIR": "ICIR", | ||||
|                "Rank IC": "Rank_IC", | ||||
|                "Rank ICIR": "Rank_ICIR", | ||||
|                "excess_return_with_cost.annualized_return": "Annualized_Return", | ||||
|                "excess_return_with_cost.information_ratio": "Information_Ratio", | ||||
|                "excess_return_with_cost.max_drawdown": "Max_Drawdown"} | ||||
|     all_keys = list(key_map.values()) | ||||
|  | ||||
|     print("There are {:} experiments.".format(len(experiments))) | ||||
|     head_strs, value_strs, names = [], [], [] | ||||
|     for idx, (key, experiment) in enumerate(experiments.items()): | ||||
|         if experiment.id == '0': | ||||
|           continue | ||||
|         recorders = experiment.list_recorders() | ||||
|         recorders, not_finished = filter_finished(recorders) | ||||
|         print( | ||||
|             "====>>>> {:02d}/{:02d}-th experiment {:9s} has {:02d}/{:02d} finished recorders.".format( | ||||
|                 idx, len(experiments), experiment.name, len(recorders), len(recorders) + not_finished | ||||
|             ) | ||||
|         ) | ||||
|         result = QResult() | ||||
|         for recorder_id, recorder in recorders.items(): | ||||
|           result.update(recorder.list_metrics(), key_map) | ||||
|         head_str, value_str = result.info(all_keys, show=False) | ||||
|         head_strs.append(head_str) | ||||
|         value_strs.append(value_str) | ||||
|         names.append(experiment.name) | ||||
|     compare_results(head_strs, value_strs, names, space=10) | ||||
|  | ||||
|  | ||||
| if __name__ == "__main__": | ||||
|  | ||||
|     parser = argparse.ArgumentParser("Show Results") | ||||
|     parser.add_argument("--save_dir", type=str, default="./outputs/qlib-baselines", help="The checkpoint directory.") | ||||
|     args = parser.parse_args() | ||||
|  | ||||
|     provider_uri = "~/.qlib/qlib_data/cn_data" | ||||
|     qlib.init(provider_uri=provider_uri, region=REG_CN) | ||||
|  | ||||
|     main(args) | ||||
| @@ -4,7 +4,7 @@ | ||||
| # Refer to: | ||||
| # - https://github.com/microsoft/qlib/blob/main/examples/workflow_by_code.ipynb | ||||
| # - https://github.com/microsoft/qlib/blob/main/examples/workflow_by_code.py | ||||
| # python exps/trading/workflow_tt.py | ||||
| # python exps/trading/workflow_tt.py --market all | ||||
| ##################################################### | ||||
| import sys, argparse | ||||
| from pathlib import Path | ||||
| @@ -102,10 +102,9 @@ def main(xargs): | ||||
|  | ||||
|     task = dict(model=model_config, dataset=dataset_config, record=record_config) | ||||
|  | ||||
|  | ||||
|     # start exp to train model | ||||
|     with R.start(experiment_name="tt_model", uri=xargs.save_dir): | ||||
|         set_log_basic_config(R.get_recorder().root_uri / 'log.log') | ||||
|     with R.start(experiment_name="tt_model", uri=xargs.save_dir + "-" + xargs.market): | ||||
|         set_log_basic_config(R.get_recorder().root_uri / "log.log") | ||||
|  | ||||
|         model = init_instance_by_config(model_config) | ||||
|         dataset = init_instance_by_config(dataset_config) | ||||
| @@ -138,7 +137,7 @@ if __name__ == "__main__": | ||||
|     parser.add_argument("--market", type=str, default="csi300", help="The market indicator.") | ||||
|     args = parser.parse_args() | ||||
|  | ||||
|     provider_uri = "~/.qlib/qlib_data/cn_data"  # target_dir | ||||
|     provider_uri = "~/.qlib/qlib_data/cn_data" | ||||
|     qlib.init(provider_uri=provider_uri, region=REG_CN) | ||||
|  | ||||
|     main(args) | ||||
|   | ||||
| @@ -24,12 +24,12 @@ class PositionalEncoder(nn.Module): | ||||
|         else: | ||||
|           pe[pos, i] = math.cos(value) | ||||
|     pe = pe.unsqueeze(0) | ||||
|     self.dropout = nn.Dropout(p=dropout) | ||||
|     self.register_buffer('pe', pe) | ||||
|   | ||||
|    | ||||
|   def forward(self, x): | ||||
|     batch, seq, fdim = x.shape[:3] | ||||
|     embeddings = self.pe[:, :seq, :fdim] | ||||
|     import pdb; pdb.set_trace() | ||||
|     outs = self.dropout(x + embeddings) | ||||
|     return x + embeddings | ||||
|     return outs | ||||
|   | ||||
| @@ -5,6 +5,7 @@ from __future__ import division | ||||
| from __future__ import print_function | ||||
|  | ||||
| import os | ||||
| import math | ||||
| import numpy as np | ||||
| import pandas as pd | ||||
| import copy | ||||
| @@ -43,7 +44,7 @@ class QuantTransformer(Model): | ||||
|     d_feat=6, | ||||
|     hidden_size=48, | ||||
|     depth=5, | ||||
|     dropout=0.0, | ||||
|     pos_dropout=0.1, | ||||
|     n_epochs=200, | ||||
|     lr=0.001, | ||||
|     metric="", | ||||
| @@ -63,7 +64,7 @@ class QuantTransformer(Model): | ||||
|     self.d_feat = d_feat | ||||
|     self.hidden_size = hidden_size | ||||
|     self.depth = depth | ||||
|     self.dropout = dropout | ||||
|     self.pos_dropout = pos_dropout | ||||
|     self.n_epochs = n_epochs | ||||
|     self.lr = lr | ||||
|     self.metric = metric | ||||
| @@ -94,7 +95,7 @@ class QuantTransformer(Model): | ||||
|         d_feat, | ||||
|         hidden_size, | ||||
|         depth, | ||||
|         dropout, | ||||
|         pos_dropout, | ||||
|         n_epochs, | ||||
|         lr, | ||||
|         metric, | ||||
| @@ -114,9 +115,10 @@ class QuantTransformer(Model): | ||||
|  | ||||
|     self.model = TransformerModel(d_feat=self.d_feat, | ||||
|                                   embed_dim=self.hidden_size, | ||||
|                                   depth=self.depth) | ||||
|                                   depth=self.depth, | ||||
|                                   pos_dropout=pos_dropout) | ||||
|     self.logger.info('model: {:}'.format(self.model)) | ||||
|     self.logger.info('model size: {:.3f} MB'.format(count_parameters_in_MB(self.model))) | ||||
|     self.logger.info('model size: {:.3f} MB'.format(count_parameters(self.model))) | ||||
|    | ||||
|      | ||||
|     if optimizer.lower() == "adam": | ||||
| @@ -129,17 +131,10 @@ class QuantTransformer(Model): | ||||
|     self.fitted = False | ||||
|     self.model.to(self.device) | ||||
|  | ||||
|   def mse(self, pred, label): | ||||
|     loss = (pred - label) ** 2 | ||||
|     return torch.mean(loss) | ||||
|  | ||||
|   def loss_fn(self, pred, label): | ||||
|     mask = ~torch.isnan(label) | ||||
|  | ||||
|     if self.loss == "mse": | ||||
|       import pdb; pdb.set_trace() | ||||
|       print('--') | ||||
|       return self.mse(pred[mask], label[mask]) | ||||
|       return F.mse_loss(pred[mask], label[mask]) | ||||
|     else: | ||||
|       raise ValueError("unknown loss `{:}`".format(self.loss)) | ||||
|  | ||||
| @@ -309,7 +304,7 @@ class Attention(nn.Module): | ||||
|     self.num_heads = num_heads | ||||
|     head_dim = dim // num_heads | ||||
|     # NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights | ||||
|     self.scale = qk_scale or head_dim ** -0.5 | ||||
|     self.scale = qk_scale or math.sqrt(head_dim) | ||||
|  | ||||
|     self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | ||||
|     self.attn_drop = nn.Dropout(attn_drop) | ||||
| @@ -333,17 +328,18 @@ class Attention(nn.Module): | ||||
|  | ||||
| class Block(nn.Module): | ||||
|  | ||||
|   def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., | ||||
|          drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm): | ||||
|   def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, | ||||
|                attn_drop=0., mlp_drop=0., drop_path=0., | ||||
|                act_layer=nn.GELU, norm_layer=nn.LayerNorm): | ||||
|     super(Block, self).__init__() | ||||
|     self.norm1 = norm_layer(dim) | ||||
|     self.attn = Attention( | ||||
|       dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) | ||||
|       dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=mlp_drop) | ||||
|     # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here | ||||
|     self.drop_path = xlayers.DropPath(drop_path) if drop_path > 0. else nn.Identity() | ||||
|     self.norm2 = norm_layer(dim) | ||||
|     mlp_hidden_dim = int(dim * mlp_ratio) | ||||
|     self.mlp = xlayers.MLP(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) | ||||
|     self.mlp = xlayers.MLP(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=mlp_drop) | ||||
|  | ||||
|   def forward(self, x): | ||||
|     x = x + self.drop_path(self.attn(self.norm1(x))) | ||||
| @@ -356,12 +352,13 @@ class SimpleEmbed(nn.Module): | ||||
|   def __init__(self, d_feat, embed_dim): | ||||
|     super(SimpleEmbed, self).__init__() | ||||
|     self.d_feat = d_feat | ||||
|     self.embed_dim = embed_dim | ||||
|     self.proj = nn.Linear(d_feat, embed_dim) | ||||
|  | ||||
|   def forward(self, x): | ||||
|     x = x.reshape(len(x), self.d_feat, -1)  # [N, F*T] -> [N, F, T] | ||||
|     x = x.permute(0, 2, 1)                  # [N, F, T] -> [N, T, F] | ||||
|     out = self.proj(x) | ||||
|     out = self.proj(x) * math.sqrt(self.embed_dim) | ||||
|     return out | ||||
|  | ||||
|  | ||||
| @@ -375,7 +372,7 @@ class TransformerModel(nn.Module): | ||||
|          mlp_ratio: float = 4., | ||||
|          qkv_bias: bool = True, | ||||
|          qk_scale: Optional[float] = None, | ||||
|          drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=None): | ||||
|          pos_dropout=0., mlp_drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=None): | ||||
|     """ | ||||
|     Args: | ||||
|       d_feat (int, tuple): input image size | ||||
| @@ -385,7 +382,8 @@ class TransformerModel(nn.Module): | ||||
|       mlp_ratio (int): ratio of mlp hidden dim to embedding dim | ||||
|       qkv_bias (bool): enable bias for qkv if True | ||||
|       qk_scale (float): override default qk scale of head_dim ** -0.5 if set | ||||
|       drop_rate (float): dropout rate | ||||
|       pos_dropout (float): dropout rate for the positional embedding | ||||
|       mlp_drop_rate (float): the dropout rate for MLP layers in a block | ||||
|       attn_drop_rate (float): attention dropout rate | ||||
|       drop_path_rate (float): stochastic depth rate | ||||
|       norm_layer: (nn.Module): normalization layer | ||||
| @@ -398,14 +396,13 @@ class TransformerModel(nn.Module): | ||||
|     self.input_embed = SimpleEmbed(d_feat, embed_dim=embed_dim) | ||||
|  | ||||
|     self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) | ||||
|     self.pos_embed = xlayers.PositionalEncoder(d_model=embed_dim, max_seq_len=65) | ||||
|     self.pos_drop = nn.Dropout(p=drop_rate) | ||||
|     self.pos_embed = xlayers.PositionalEncoder(d_model=embed_dim, max_seq_len=65, dropout=pos_dropout) | ||||
|  | ||||
|     dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)]  # stochastic depth decay rule | ||||
|     self.blocks = nn.ModuleList([ | ||||
|       Block( | ||||
|         dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, | ||||
|         drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer) | ||||
|         attn_drop=attn_drop_rate, mlp_drop=mlp_drop_rate, drop_path=dpr[i], norm_layer=norm_layer) | ||||
|       for i in range(depth)]) | ||||
|     self.norm = norm_layer(embed_dim) | ||||
|  | ||||
| @@ -431,7 +428,6 @@ class TransformerModel(nn.Module): | ||||
|     cls_tokens = self.cls_token.expand(batch, -1, -1)  # stole cls_tokens impl from Phil Wang, thanks | ||||
|     feats_w_ct = torch.cat((cls_tokens, feats), dim=1) | ||||
|     feats_w_tp = self.pos_embed(feats_w_ct) | ||||
|     feats_w_tp = self.pos_drop(feats_w_tp) | ||||
|  | ||||
|     xfeats = feats_w_tp | ||||
|     for block in self.blocks: | ||||
|   | ||||
| @@ -1,6 +1,6 @@ | ||||
| from .evaluation_utils import obtain_accuracy | ||||
| from .gpu_manager      import GPUManager | ||||
| from .flop_benchmark   import get_model_infos, count_parameters_in_MB | ||||
| from .flop_benchmark   import get_model_infos, count_parameters, count_parameters_in_MB | ||||
| from .affine_utils     import normalize_points, denormalize_points | ||||
| from .affine_utils     import identity2affine, solve2theta, affine2image | ||||
| from .hash_utils       import get_md5_file | ||||
|   | ||||
		Reference in New Issue
	
	Block a user