update TF models (beta version)
This commit is contained in:
		
							
								
								
									
										144
									
								
								exps-tf/GDAS.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										144
									
								
								exps-tf/GDAS.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,144 @@ | ||||
| # CUDA_VISIBLE_DEVICES=0 python exps-tf/GDAS.py | ||||
| import os, sys, time, random, argparse | ||||
| import tensorflow as tf | ||||
| from pathlib import Path | ||||
|  | ||||
| lib_dir = (Path(__file__).parent / '..' / 'lib').resolve() | ||||
| if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) | ||||
|  | ||||
| # self-lib | ||||
| from tf_models import get_cell_based_tiny_net | ||||
| from tf_optimizers import SGDW, AdamW | ||||
| from config_utils import dict2config | ||||
| from log_utils import time_string | ||||
| from models import CellStructure | ||||
|  | ||||
|  | ||||
| def pre_process(image_a, label_a, image_b, label_b): | ||||
|   def standard_func(image): | ||||
|     x = tf.pad(image, [[4, 4], [4, 4], [0, 0]]) | ||||
|     x = tf.image.random_crop(x, [32, 32, 3]) | ||||
|     x = tf.image.random_flip_left_right(x) | ||||
|     return x | ||||
|   return standard_func(image_a), label_a, standard_func(image_b), label_b | ||||
|  | ||||
|  | ||||
| def main(xargs): | ||||
|   cifar10 = tf.keras.datasets.cifar10 | ||||
|  | ||||
|   (x_train, y_train), (x_test, y_test) = cifar10.load_data() | ||||
|   x_train, x_test = x_train / 255.0, x_test / 255.0 | ||||
|   x_train, x_test = x_train.astype('float32'), x_test.astype('float32') | ||||
|  | ||||
|   # Add a channels dimension | ||||
|   all_indexes = list(range(x_train.shape[0])) | ||||
|   random.shuffle(all_indexes) | ||||
|   s_train_idxs, s_valid_idxs = all_indexes[::2], all_indexes[1::2] | ||||
|   search_train_x, search_train_y = x_train[s_train_idxs], y_train[s_train_idxs] | ||||
|   search_valid_x, search_valid_y = x_train[s_valid_idxs], y_train[s_valid_idxs] | ||||
|   #x_train, x_test = x_train[..., tf.newaxis], x_test[..., tf.newaxis] | ||||
|    | ||||
|   # Use tf.data | ||||
|   #train_ds = tf.data.Dataset.from_tensor_slices((x_train, y_train)).shuffle(10000).batch(64) | ||||
|   search_ds = tf.data.Dataset.from_tensor_slices((search_train_x, search_train_y, search_valid_x, search_valid_y)) | ||||
|   search_ds = search_ds.map(pre_process).shuffle(1000).batch(64) | ||||
|  | ||||
|   test_ds = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32) | ||||
|  | ||||
|   # Create an instance of the model | ||||
|   config = dict2config({'name': 'GDAS', | ||||
|                         'C'   : xargs.channel, 'N': xargs.num_cells, 'max_nodes': xargs.max_nodes, | ||||
|                         'num_classes': 10, 'space': 'nas-bench-102', 'affine': True}, None) | ||||
|   model = get_cell_based_tiny_net(config) | ||||
|   #import pdb; pdb.set_trace() | ||||
|   #model.build(((64, 32, 32, 3), (1,))) | ||||
|   #for x in model.trainable_variables: | ||||
|   #  print('{:30s} : {:}'.format(x.name, x.shape)) | ||||
|   # Choose optimizer | ||||
|   loss_object = tf.keras.losses.SparseCategoricalCrossentropy() | ||||
|   w_optimizer = SGDW(learning_rate=xargs.w_lr, weight_decay=xargs.w_weight_decay, momentum=xargs.w_momentum, nesterov=True) | ||||
|   a_optimizer = AdamW(learning_rate=xargs.arch_learning_rate, weight_decay=xargs.arch_weight_decay, beta_1=0.5, beta_2=0.999, epsilon=1e-07) | ||||
|   #w_optimizer = tf.keras.optimizers.SGD(learning_rate=0.025, momentum=0.9, nesterov=True) | ||||
|   #a_optimizer = tf.keras.optimizers.AdamW(learning_rate=xargs.arch_learning_rate, beta_1=0.5, beta_2=0.999, epsilon=1e-07) | ||||
|   #### | ||||
|   # metrics | ||||
|   train_loss = tf.keras.metrics.Mean(name='train_loss') | ||||
|   train_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='train_accuracy') | ||||
|   valid_loss = tf.keras.metrics.Mean(name='valid_loss') | ||||
|   valid_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='valid_accuracy') | ||||
|   test_loss = tf.keras.metrics.Mean(name='test_loss') | ||||
|   test_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='test_accuracy') | ||||
|    | ||||
|   @tf.function | ||||
|   def search_step(train_images, train_labels, valid_images, valid_labels, tf_tau): | ||||
|     # optimize weights | ||||
|     with tf.GradientTape() as tape: | ||||
|       predictions = model(train_images, tf_tau, True) | ||||
|       w_loss = loss_object(train_labels, predictions) | ||||
|     net_w_param = model.get_weights() | ||||
|     gradients = tape.gradient(w_loss, net_w_param) | ||||
|     w_optimizer.apply_gradients(zip(gradients, net_w_param)) | ||||
|     train_loss(w_loss) | ||||
|     train_accuracy(train_labels, predictions) | ||||
|     # optimize alphas | ||||
|     with tf.GradientTape() as tape: | ||||
|       predictions = model(valid_images, tf_tau, True) | ||||
|       a_loss = loss_object(valid_labels, predictions) | ||||
|     net_a_param = model.get_alphas() | ||||
|     gradients = tape.gradient(a_loss, net_a_param) | ||||
|     a_optimizer.apply_gradients(zip(gradients, net_a_param)) | ||||
|     valid_loss(a_loss) | ||||
|     valid_accuracy(valid_labels, predictions) | ||||
|  | ||||
|   # TEST | ||||
|   @tf.function | ||||
|   def test_step(images, labels): | ||||
|     predictions = model(images) | ||||
|     t_loss = loss_object(labels, predictions) | ||||
|  | ||||
|     test_loss(t_loss) | ||||
|     test_accuracy(labels, predictions) | ||||
|  | ||||
|   print('{:} start searching with {:} epochs ({:} batches per epoch).'.format(time_string(), xargs.epochs, tf.data.experimental.cardinality(search_ds).numpy())) | ||||
|  | ||||
|   for epoch in range(xargs.epochs): | ||||
|     # Reset the metrics at the start of the next epoch | ||||
|     train_loss.reset_states() ; train_accuracy.reset_states() | ||||
|     test_loss.reset_states()  ; test_accuracy.reset_states() | ||||
|     cur_tau = xargs.tau_max - (xargs.tau_max-xargs.tau_min) * epoch / (xargs.epochs-1) | ||||
|     tf_tau  = tf.cast(cur_tau, dtype=tf.float32, name='tau') | ||||
|  | ||||
|     for trn_imgs, trn_labels, val_imgs, val_labels in search_ds: | ||||
|       search_step(trn_imgs, trn_labels, val_imgs, val_labels, tf_tau) | ||||
|     genotype = model.genotype() | ||||
|     genotype = CellStructure(genotype) | ||||
|  | ||||
|     #for test_images, test_labels in test_ds: | ||||
|     #  test_step(test_images, test_labels) | ||||
|  | ||||
|     template = '{:} Epoch {:03d}/{:03d}, Train-Loss: {:.3f}, Train-Accuracy: {:.2f}%, Valid-Loss: {:.3f}, Valid-Accuracy: {:.2f}% | tau={:.3f}' | ||||
|     print(template.format(time_string(), epoch+1, xargs.epochs, | ||||
|                           train_loss.result(), | ||||
|                           train_accuracy.result()*100, | ||||
|                           valid_loss.result(), | ||||
|                           valid_accuracy.result()*100, | ||||
|                           cur_tau)) | ||||
|     print('{:} genotype : {:}\n{:}\n'.format(time_string(), genotype, model.get_np_alphas())) | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|   parser = argparse.ArgumentParser(description='NAS-Bench-102', formatter_class=argparse.ArgumentDefaultsHelpFormatter) | ||||
|   # training details | ||||
|   parser.add_argument('--epochs'            , type=int  ,   default= 250  ,   help='') | ||||
|   parser.add_argument('--tau_max'           , type=float,   default= 10   ,   help='') | ||||
|   parser.add_argument('--tau_min'           , type=float,   default= 0.1  ,   help='') | ||||
|   parser.add_argument('--w_lr'              , type=float,   default= 0.025,   help='') | ||||
|   parser.add_argument('--w_weight_decay'    , type=float,   default=0.0005,   help='') | ||||
|   parser.add_argument('--w_momentum'        , type=float,   default= 0.9  ,   help='') | ||||
|   parser.add_argument('--arch_learning_rate', type=float,   default=0.0003,   help='') | ||||
|   parser.add_argument('--arch_weight_decay' , type=float,   default=0.001,    help='') | ||||
|   # marco structure | ||||
|   parser.add_argument('--channel'           , type=int  ,   default=16,       help='') | ||||
|   parser.add_argument('--num_cells'         , type=int  ,   default= 5,       help='') | ||||
|   parser.add_argument('--max_nodes'         , type=int  ,   default= 4,       help='') | ||||
|   args = parser.parse_args() | ||||
|   main( args ) | ||||
		Reference in New Issue
	
	Block a user