update TF models (beta version)
This commit is contained in:
		
							
								
								
									
										32
									
								
								lib/tf_models/__init__.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										32
									
								
								lib/tf_models/__init__.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,32 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ################################################## | ||||
| import torch | ||||
| from os import path as osp | ||||
|  | ||||
| __all__ = ['get_cell_based_tiny_net', 'get_search_spaces'] | ||||
|  | ||||
|  | ||||
| # the cell-based NAS models | ||||
| def get_cell_based_tiny_net(config): | ||||
|   group_names = ['GDAS'] | ||||
|   if config.name in group_names: | ||||
|     from .cell_searchs import nas_super_nets | ||||
|     from .cell_operations import SearchSpaceNames | ||||
|     if isinstance(config.space, str): search_space = SearchSpaceNames[config.space] | ||||
|     else: search_space = config.space | ||||
|     return nas_super_nets[config.name]( | ||||
|                   config.C, config.N, config.max_nodes, | ||||
|                   config.num_classes, search_space, config.affine) | ||||
|   else: | ||||
|     raise ValueError('invalid network name : {:}'.format(config.name)) | ||||
|  | ||||
|  | ||||
| # obtain the search space, i.e., a dict mapping the operation name into a python-function for this op | ||||
| def get_search_spaces(xtype, name): | ||||
|   if xtype == 'cell': | ||||
|     from .cell_operations import SearchSpaceNames | ||||
|     assert name in SearchSpaceNames, 'invalid name [{:}] in {:}'.format(name, SearchSpaceNames.keys()) | ||||
|     return SearchSpaceNames[name] | ||||
|   else: | ||||
|     raise ValueError('invalid search-space type is {:}'.format(xtype)) | ||||
							
								
								
									
										120
									
								
								lib/tf_models/cell_operations.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										120
									
								
								lib/tf_models/cell_operations.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,120 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ################################################## | ||||
| import tensorflow as tf | ||||
|  | ||||
| __all__ = ['OPS', 'ResNetBasicblock', 'SearchSpaceNames'] | ||||
|  | ||||
| OPS = { | ||||
|   'none'        : lambda C_in, C_out, stride, affine: Zero(C_in, C_out, stride), | ||||
|   'avg_pool_3x3': lambda C_in, C_out, stride, affine: POOLING(C_in, C_out, stride, 'avg', affine), | ||||
|   'nor_conv_1x1': lambda C_in, C_out, stride, affine: ReLUConvBN(C_in, C_out, 1, stride, affine), | ||||
|   'nor_conv_3x3': lambda C_in, C_out, stride, affine: ReLUConvBN(C_in, C_out, 3, stride, affine), | ||||
|   'nor_conv_5x5': lambda C_in, C_out, stride, affine: ReLUConvBN(C_in, C_out, 5, stride, affine), | ||||
|   'skip_connect': lambda C_in, C_out, stride, affine: Identity(C_in, C_out, stride) | ||||
| } | ||||
|  | ||||
| NAS_BENCH_102         = ['none', 'skip_connect', 'nor_conv_1x1', 'nor_conv_3x3', 'avg_pool_3x3'] | ||||
|  | ||||
| SearchSpaceNames = { | ||||
|                     'nas-bench-102': NAS_BENCH_102, | ||||
|                    } | ||||
|  | ||||
|  | ||||
| class POOLING(tf.keras.layers.Layer): | ||||
|  | ||||
|   def __init__(self, C_in, C_out, stride, mode, affine): | ||||
|     super(POOLING, self).__init__() | ||||
|     if C_in == C_out: | ||||
|       self.preprocess = None | ||||
|     else: | ||||
|       self.preprocess = ReLUConvBN(C_in, C_out, 1, 1, affine) | ||||
|     if mode == 'avg'  : self.op = tf.keras.layers.AvgPool2D((3,3), strides=stride, padding='same') | ||||
|     elif mode == 'max': self.op = tf.keras.layers.MaxPool2D((3,3), strides=stride, padding='same') | ||||
|     else              : raise ValueError('Invalid mode={:} in POOLING'.format(mode)) | ||||
|  | ||||
|   def call(self, inputs, training): | ||||
|     if self.preprocess: x = self.preprocess(inputs) | ||||
|     else              : x = inputs | ||||
|     return self.op(x) | ||||
|  | ||||
|  | ||||
| class Identity(tf.keras.layers.Layer): | ||||
|   def __init__(self, C_in, C_out, stride): | ||||
|     super(Identity, self).__init__() | ||||
|     if C_in != C_out or stride != 1: | ||||
|       self.layer = tf.keras.layers.Conv2D(C_out, 3, stride, padding='same', use_bias=False) | ||||
|     else: | ||||
|       self.layer = None | ||||
|    | ||||
|   def call(self, inputs, training): | ||||
|     x = inputs | ||||
|     if self.layer is not None: | ||||
|       x = self.layer(x) | ||||
|     return x | ||||
|  | ||||
|  | ||||
|  | ||||
| class Zero(tf.keras.layers.Layer): | ||||
|   def __init__(self, C_in, C_out, stride): | ||||
|     super(Zero, self).__init__() | ||||
|     if C_in != C_out: | ||||
|       self.layer = tf.keras.layers.Conv2D(C_out, 1, stride, padding='same', use_bias=False) | ||||
|     elif stride != 1: | ||||
|       self.layer = tf.keras.layers.AvgPool2D((stride,stride), None, padding="same") | ||||
|     else: | ||||
|       self.layer = None | ||||
|    | ||||
|   def call(self, inputs, training): | ||||
|     x = tf.zeros_like(inputs) | ||||
|     if self.layer is not None: | ||||
|       x = self.layer(x) | ||||
|     return x | ||||
|  | ||||
|  | ||||
| class ReLUConvBN(tf.keras.layers.Layer): | ||||
|   def __init__(self, C_in, C_out, kernel_size, strides, affine): | ||||
|     super(ReLUConvBN, self).__init__() | ||||
|     self.C_in = C_in | ||||
|     self.relu = tf.keras.activations.relu | ||||
|     self.conv = tf.keras.layers.Conv2D(C_out, kernel_size, strides, padding='same', use_bias=False) | ||||
|     self.bn   = tf.keras.layers.BatchNormalization(center=affine, scale=affine) | ||||
|    | ||||
|   def call(self, inputs, training): | ||||
|     x = self.relu(inputs) | ||||
|     x = self.conv(x) | ||||
|     x = self.bn(x, training) | ||||
|     return x | ||||
|  | ||||
|  | ||||
| class ResNetBasicblock(tf.keras.layers.Layer): | ||||
|  | ||||
|   def __init__(self, inplanes, planes, stride, affine=True): | ||||
|     super(ResNetBasicblock, self).__init__() | ||||
|     assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride) | ||||
|     self.conv_a = ReLUConvBN(inplanes, planes, 3, stride, affine) | ||||
|     self.conv_b = ReLUConvBN(  planes, planes, 3,      1, affine) | ||||
|     if stride == 2: | ||||
|       self.downsample = tf.keras.Sequential([ | ||||
|                                 tf.keras.layers.AvgPool2D((stride,stride), None, padding="same"), | ||||
|                                 tf.keras.layers.Conv2D(planes, 1, 1, padding='same', use_bias=False)]) | ||||
|     elif inplanes != planes: | ||||
|       self.downsample = ReLUConvBN(inplanes, planes, 1, stride, affine) | ||||
|     else: | ||||
|       self.downsample = None | ||||
|     self.addition = tf.keras.layers.Add() | ||||
|     self.in_dim  = inplanes | ||||
|     self.out_dim = planes | ||||
|     self.stride  = stride | ||||
|     self.num_conv = 2 | ||||
|  | ||||
|   def call(self, inputs, training): | ||||
|  | ||||
|     basicblock = self.conv_a(inputs, training) | ||||
|     basicblock = self.conv_b(basicblock, training) | ||||
|  | ||||
|     if self.downsample is not None: | ||||
|       residual = self.downsample(inputs) | ||||
|     else: | ||||
|       residual = inputs | ||||
|     return self.addition([residual, basicblock]) | ||||
							
								
								
									
										6
									
								
								lib/tf_models/cell_searchs/__init__.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										6
									
								
								lib/tf_models/cell_searchs/__init__.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,6 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ################################################## | ||||
| from .search_model_gdas     import TinyNetworkGDAS | ||||
|  | ||||
| nas_super_nets = {'GDAS': TinyNetworkGDAS} | ||||
							
								
								
									
										50
									
								
								lib/tf_models/cell_searchs/search_cells.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										50
									
								
								lib/tf_models/cell_searchs/search_cells.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,50 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ################################################## | ||||
| import math, random | ||||
| import tensorflow as tf | ||||
| from copy import deepcopy | ||||
| from ..cell_operations import OPS | ||||
|  | ||||
|  | ||||
| class SearchCell(tf.keras.layers.Layer): | ||||
|  | ||||
|   def __init__(self, C_in, C_out, stride, max_nodes, op_names, affine=False): | ||||
|     super(SearchCell, self).__init__() | ||||
|  | ||||
|     self.op_names  = deepcopy(op_names) | ||||
|     self.max_nodes = max_nodes | ||||
|     self.in_dim    = C_in | ||||
|     self.out_dim   = C_out | ||||
|     self.edge_keys = [] | ||||
|     for i in range(1, max_nodes): | ||||
|       for j in range(i): | ||||
|         node_str = '{:}<-{:}'.format(i, j) | ||||
|         if j == 0: | ||||
|           xlists = [OPS[op_name](C_in , C_out, stride, affine) for op_name in op_names] | ||||
|         else: | ||||
|           xlists = [OPS[op_name](C_in , C_out,      1, affine) for op_name in op_names] | ||||
|         for k, op in enumerate(xlists): | ||||
|           setattr(self, '{:}.{:}'.format(node_str, k), op) | ||||
|         self.edge_keys.append( node_str ) | ||||
|     self.edge_keys  = sorted(self.edge_keys) | ||||
|     self.edge2index = {key:i for i, key in enumerate(self.edge_keys)} | ||||
|     self.num_edges  = len(self.edge_keys) | ||||
|  | ||||
|   def call(self, inputs, weightss, training): | ||||
|     w_lst = tf.split(weightss, self.num_edges, 0) | ||||
|     nodes = [inputs] | ||||
|     for i in range(1, self.max_nodes): | ||||
|       inter_nodes = [] | ||||
|       for j in range(i): | ||||
|         node_str = '{:}<-{:}'.format(i, j) | ||||
|         edge_idx = self.edge2index[node_str] | ||||
|         op_outps = [] | ||||
|         for k, op_name in enumerate(self.op_names): | ||||
|           op = getattr(self, '{:}.{:}'.format(node_str, k)) | ||||
|           op_outps.append( op(nodes[j], training) ) | ||||
|         stack_op_outs = tf.stack(op_outps, axis=-1) | ||||
|         weighted_sums = tf.math.multiply(stack_op_outs, w_lst[edge_idx]) | ||||
|         inter_nodes.append( tf.math.reduce_sum(weighted_sums, axis=-1) ) | ||||
|       nodes.append( tf.math.add_n(inter_nodes) ) | ||||
|     return nodes[-1] | ||||
							
								
								
									
										99
									
								
								lib/tf_models/cell_searchs/search_model_gdas.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										99
									
								
								lib/tf_models/cell_searchs/search_model_gdas.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,99 @@ | ||||
| ########################################################################### | ||||
| # Searching for A Robust Neural Architecture in Four GPU Hours, CVPR 2019 # | ||||
| ########################################################################### | ||||
| import tensorflow as tf | ||||
| import numpy as np | ||||
| from copy import deepcopy | ||||
| from ..cell_operations import ResNetBasicblock | ||||
| from .search_cells     import SearchCell | ||||
|  | ||||
|  | ||||
| def sample_gumbel(shape, eps=1e-20): | ||||
|   U = tf.random.uniform(shape, minval=0, maxval=1) | ||||
|   return -tf.math.log(-tf.math.log(U + eps) + eps) | ||||
|  | ||||
|  | ||||
| def gumbel_softmax(logits, temperature): | ||||
|   gumbel_softmax_sample = logits + sample_gumbel(tf.shape(logits)) | ||||
|   y = tf.nn.softmax(gumbel_softmax_sample / temperature) | ||||
|   return y | ||||
|  | ||||
|  | ||||
| class TinyNetworkGDAS(tf.keras.Model): | ||||
|  | ||||
|   def __init__(self, C, N, max_nodes, num_classes, search_space, affine): | ||||
|     super(TinyNetworkGDAS, self).__init__() | ||||
|     self._C        = C | ||||
|     self._layerN   = N | ||||
|     self.max_nodes = max_nodes | ||||
|     self.stem = tf.keras.Sequential([ | ||||
|                     tf.keras.layers.Conv2D(16, 3, 1, padding='same', use_bias=False), | ||||
|                     tf.keras.layers.BatchNormalization()], name='stem') | ||||
|    | ||||
|     layer_channels   = [C    ] * N + [C*2 ] + [C*2  ] * N + [C*4 ] + [C*4  ] * N     | ||||
|     layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N | ||||
|  | ||||
|     C_prev, num_edge, edge2index = C, None, None | ||||
|     for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)): | ||||
|       cell_prefix = 'cell-{:03d}'.format(index) | ||||
|       #with tf.name_scope(cell_prefix) as scope: | ||||
|       if reduction: | ||||
|         cell = ResNetBasicblock(C_prev, C_curr, 2) | ||||
|       else: | ||||
|         cell = SearchCell(C_prev, C_curr, 1, max_nodes, search_space, affine) | ||||
|         if num_edge is None: num_edge, edge2index = cell.num_edges, cell.edge2index | ||||
|         else: assert num_edge == cell.num_edges and edge2index == cell.edge2index, 'invalid {:} vs. {:}.'.format(num_edge, cell.num_edges) | ||||
|       C_prev = cell.out_dim | ||||
|       setattr(self, cell_prefix, cell) | ||||
|     self.num_layers = len(layer_reductions) | ||||
|     self.op_names   = deepcopy( search_space ) | ||||
|     self.edge2index = edge2index | ||||
|     self.num_edge   = num_edge | ||||
|     self.lastact    = tf.keras.Sequential([ | ||||
|                         tf.keras.layers.BatchNormalization(), | ||||
|                         tf.keras.layers.ReLU(), | ||||
|                         tf.keras.layers.GlobalAvgPool2D(), | ||||
|                         tf.keras.layers.Flatten(), | ||||
|                         tf.keras.layers.Dense(num_classes, activation='softmax')], name='lastact') | ||||
|     #self.arch_parameters = nn.Parameter( 1e-3*torch.randn(num_edge, len(search_space)) ) | ||||
|     arch_init = tf.random_normal_initializer(mean=0, stddev=0.001) | ||||
|     self.arch_parameters = tf.Variable(initial_value=arch_init(shape=(num_edge, len(search_space)), dtype='float32'), trainable=True, name='arch-encoding') | ||||
|  | ||||
|   def get_alphas(self): | ||||
|     xlist = self.trainable_variables | ||||
|     return [x for x in xlist if 'arch-encoding' in x.name] | ||||
|  | ||||
|   def get_weights(self): | ||||
|     xlist = self.trainable_variables | ||||
|     return [x for x in xlist if 'arch-encoding' not in x.name] | ||||
|  | ||||
|   def get_np_alphas(self): | ||||
|     arch_nps = self.arch_parameters.numpy() | ||||
|     arch_ops = np.exp(arch_nps) / np.sum(np.exp(arch_nps), axis=-1, keepdims=True) | ||||
|     return arch_ops | ||||
|  | ||||
|   def genotype(self): | ||||
|     genotypes, arch_nps = [], self.arch_parameters.numpy() | ||||
|     for i in range(1, self.max_nodes): | ||||
|       xlist = [] | ||||
|       for j in range(i): | ||||
|         node_str = '{:}<-{:}'.format(i, j) | ||||
|         weights = arch_nps[ self.edge2index[node_str] ] | ||||
|         op_name = self.op_names[ weights.argmax().item() ] | ||||
|         xlist.append((op_name, j)) | ||||
|       genotypes.append( tuple(xlist) ) | ||||
|     return genotypes | ||||
|  | ||||
|   #  | ||||
|   def call(self, inputs, tau, training): | ||||
|     weightss = tf.cond(tau < 0, lambda: tf.nn.softmax(self.arch_parameters, axis=1), | ||||
|                                 lambda: gumbel_softmax(tf.math.log_softmax(self.arch_parameters, axis=1), tau)) | ||||
|     feature = self.stem(inputs, training) | ||||
|     for idx in range(self.num_layers): | ||||
|       cell = getattr(self, 'cell-{:03d}'.format(idx)) | ||||
|       if isinstance(cell, SearchCell): | ||||
|         feature = cell.call(feature, weightss, training) | ||||
|       else: | ||||
|         feature = cell(feature, training) | ||||
|     logits = self.lastact(feature, training) | ||||
|     return logits | ||||
		Reference in New Issue
	
	Block a user